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BMPs	� Bone morphogenetic proteins
SHH	� Sonic Hedgehog
PCP	� Planar cell polarity signaling
AJs	� Adherens junctions
Grhl	� Grainyhead-like
Par1	� Protease-activated receptor 1
CNC	� Cranial neural crest cell
FMB	� Forebrain-midbrain boundary
ANR	� Anterior neural ridge
Apaf-1	� Apoptotic protease activating factor 1
JNK	� c-Jun N-terminal kinase
Ambra 1 � Activating molecule in beclin-1-regulated 

autophagy

Introduction

The process of cranial neural tube closure (NTC) creates the 
basic morphological scaffold for the central nervous system.  
Defects in this critical process result in lethal cranial 
neural tube defects (NTDs), most commonly expressed  
in humans as anencephaly. In human, NTDs including 
spinal defects such as spina bifida and craniorachischisis, 
occur in approximately one out of 1,000 births worldwide. 
NTDs have been studied intensively both epidemiologically  
in humans, and experimentally in animal models, includ-
ing frogs, chickens, and rodents [1–4]. Although dietary 
folic acid fortification or supplementation efforts have been 
effective in preventing NTDs in human populations, little is 
known about how it works [5–7]. Understanding the basis 
of normal and abnormal NTC is not only fascinating from 
a biological perspective but also has important clinical  
relevance.

There are many excellent reviews on NTC mechanisms in 
mammals (see [2–4, 8, 9]). Herein, we summarize previous 
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and recent studies addressing the molecular and cellular 
mechanisms of cranial NTC in amniotes such as birds and 
mammals. It is now obvious that many signaling pathways 
and morphogenetic processes are evolutionary conserved 
among birds and mammals, although many differences 
exist as well. As it is more feasible to perform experimental 
manipulation in order to dissect molecular and cellular path-
ways in chicken than in mouse, studies on the morphoge-
netic mechanisms using chicken as well as those using mice 
greatly help to increase our understanding of mammalian 
cranial NTC. We will also discuss the questions and con-
cepts that could be useful in further understanding various 
NTD mutant phenotypes and in developing approaches for 
future studies of cranial NTC.

Mechanisms of cranial NTC

Tissue movement in mammalian cranial NTC

Cranial NTC in mammals as well as in other vertebrates 
begins after neural induction that discriminates the neural 
plate from the adjacent surface ectoderm (Fig. 1a), and is 
achieved through sequential changes in the morphology of 
the neural plate as follows [2, 10].

1.	 Elevation and bending: The neural plate changes its 
morphology by bending in two phases, each initiated 
at “hinge points” [2]. The plate begins as a largely hori-
zontal, although slightly convex, dorsal neuroectoder-
mal field (Fig. 1b). The first morphological change is 
the bending of the plate at the midline, which forms the 
medial hinge point (MHP) (Fig. 1b, arrow), thus divid-
ing the neural plate into bilaterally symmetric regions. 

These lateral regions are then elevated by intrinsic 
neuroectodermal cell movements, and possibly by the 
extrinsic expansion of the underlying cranial mesen-
chyme as well, to create the vertical, concave walls of 
neuroepithelium that make up the neural folds (Fig. 1c). 
At the same time, the neural plate elongates rostrocau-
dally through convergent extension and cell division 
(see a later section; “Neurulation and body axis elon-
gation through convergent extension, the PCP pathway, 
and oriented cell division”). In the second phase, the 
neural folds bend at paired dorsolateral hingepoints 
(DLHP) (Fig. 1d). The exact location varies along the 
rostral-caudal axis.

2.	 Apposition and fusion: Once the neural folds are ele-
vated and have bent at both the MHP and DLHP, the tips 
of the neural folds are flipped (Fig. 1d, asterisks) and 
can be apposed (Fig. 1e). In apposition, the neural folds 
meet at the dorsal midline, after which the epithelium 
fuses by “zipping” or “buttoning-up” to form the neural 
tube.

3.	 Remodeling: Once the tube is closed, the dorsal mid-
line is remodeled to separate the inner neuroectoderm, 
or neuroepithelium, from the outer non-neural ectoderm 
(the surface ectoderm or future epidermis) (Fig. 1f).

The above basic processes are observed commonly 
among vertebrates except fish, which forms neural keels 
before neural tube formation, but the mode and mecha-
nism of cranial NTC appears most complicated in amni-
otes, especially in mammals [11]. In most mouse strains, 
the above process of closure is initiated at several points 
along the neural tube, at different developmental stages 
[8, 12–17]. At E8.5, when embryos have 6–7 pairs of 
somites (somite stage [ss] 6–7), the tips of the neural ridges 

Fig. 1   Morphological changes of neural plates to neural tube. After 
neural induction (a), the neural plate bends at MHP (b) and is ele-
vated to form the neural fold (c). Subsequently, flipping of the edges 
(asterisks) and bending at DLHP occur (d), resulting in apposition 

and fusion of the edges (e). Remodeling takes place to separate neu-
roectoderm and surface ectoderm (f). Neuroectoderm (neuroepithe-
lium): pink. Non-neural ectoderm (surface ectoderm): green. Bound-
ary region within non-neural ectoderm: Orange. Notochord: yellow
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typically have met and fused at the midline of the hind-
brain/cervical boundary (Fig. 2a, b, shown by asterisk (*)), 
and neural tube fusion proceeds both rostrally (toward the 
hindbrain) and caudally (toward the trunk) (summarized in 
[10, 13]). Closure initiated from this point is termed closure 
1 (Fig. 2a, b). Around ss 10–13, the neural ridges meet and 
fuse at the forebrain/midbrain boundary (FMB), initiating 
closure 2, which also proceeds bi-directionally from the 
contact point (Fig. 2a–c, shown by cross (†)). A third fusion 
initiation point begins at the rostral end of the neural plate. 
This closure 3 proceeds caudally and meets the rostrally 
directed wave of closure 2 to seal the anterior neuropore 
(ANP) (Fig.  2a, b, d, shown by sharp (#)). The caudally 
directed closure 2 meets the rostrally directed closure 1 
(which is also sometimes referred to in the literature as clo-
sure 4 [14–16]) to seal the midbrain-hindbrain neuropore 
(MHNP) (Fig. 2b, e). Analogous multiple closure sites are 
also observed in other mammals including humans, and 
also in a bird [8, 18–20].

Any disturbance in the dynamic, sequential events of cra-
nial NTC can cause cranial NTDs [10]. In particular, failure 
in closure 2 often causes exencephaly. The exencephalic 
brain often grows well in utero, but eventually undergoes 
neurodegeneration and the ultimate anencephalic phenotype 
ensues [8, 21, 22]. Defective closure 1 between the mid-
brain and lower spine causes craniorachischisis, in which 
the neural tube is open along the entire axis of the body 
secondary to a complete failure of the neural folds to elevate 
and fuse. A partial failure in closure 1 to close the thoracic 

or lumbosacral region, or its re-opening, causes the common 
human birth defect spina bifida.

Morphogens affecting the position of bending

Neural fold bending at the MHP and DLHP are essential 
steps in cranial NTC. However, the precise mechanism(s) 
by which the bending position is determined at the molecu-
lar and cellular levels has remained unclear. A recent study 
using chicken embryos revealed how the MHP is deter-
mined [23]. Within neural plates, a two-dimensional canoni-
cal BMP activity gradient exists, which results in a low and 
pulsed BMP activity at the MHP. Disturbing this gradient 
by overexpression BMP signaling antagonists (e.g., Nog-
gin) can induce ectopic hinge-point formation in the more 
lateral neural plates, and conversely, overexpression of a 
constitutively active form of BMP receptor IA suppresses 
MHP formation. Thus, BMP blockage is necessary and suf-
ficient for MHP formation in the chicken cranial region. 
Because BMP blockage does not affect the expression of 
Shh, or phoxA2, one of the ventral neural plate markers, the 
study suggests that the effect of BMP blockage on MHP 
formation is likely independent of Shh. How the BMP activ-
ity gradient is formed still remains unclear. The study also 
proposed that BMP attenuation induces neural plate bend-
ing via apical constriction, possibly through endocytosis of 
apical protein Par3 and N-cadherin [23, 24] (Fig. 3a). Fur-
ther studies are required to examine whether similar BMP 
gradient is important for mammalian NTC. Interestingly, 

Fig. 2   Multiple closures in 
cranial NTC of mouse embryos. 
a Bi-directional closure 1 
occurs from the cervical region 
(asterisks) before embryonic 
turning in an E8.5 ICR embryo. 
b Schematic representation of 
multiple closures in an E8.75 
ICR embryo. MHNP is closed 
by caudal closure 2 and rostral 
closure 1(closure 4), and ANP 
by caudal closure 2 and closure 
3. asterisks: closure 1 start site. 
Crosses: bi-directional closure 2 
start site. Sharp: closure 3 start 
site. Directions of the closures 
are shown by red arrows.  
c Frontal views of closure 2 at 
MHNP and ANP. d Ventral view 
of closure 3 at ANP. e Dorsal 
views of closure 1(4) and 2 at 
MHNP. Unclosed regions are 
colored purple
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some of BMP signaling mutants including Noggin exhibit 
NTD in mice [25–27].

Compared to the MHP, it seems more difficult to under-
stand how the position of DLHP formation is determined in 
the cranial regions. This is because position of the DLHP 
shifts during NTC and differs among species, and there are 
no known DLHP-specific molecular markers at present. The 
elevation and bending mechanisms of DLHP have been well 
studied in the mouse spinal region, where the structure is 
relatively simple and therefore, more feasible for analysis. 
Precise observations of relationships between gene expres-
sion patterns and DLHP formation in the neural folds sug-
gested that integrative actions between Shh, BMPs, and 
the BMP antagonist Noggin, regulate the formation of the 
DLHP [27, 28]. Spina bifida and exencephaly are seen in 
mice overexpressing Shh or lacking Noggin, suggesting that 
a similar regulatory interaction likely operates in the cra-
nial region, where bending of the DLHP is also a prominent 
event during neurulation [25–27]. As well as in the MHP, 
the ultimate mechanism by which these signals actually 
causes the neural plates to bend, remains to be revealed.

Do growth factors regulate neural plate bending directly or 
through neural plate patterning?

With regard to the position of bending, in addition to mor-
phogenetic movements, we should also consider dorsoven-
tral (D–V) patterning of the neural folds. It is well known 
that the above-mentioned growth factors including Shh are 
crucial for D–V patterning of the neural tube. The nature 

of neural progenitors in the neural tube is specified gradu-
ally during development by a combination of transcriptional 
factors’ expression, which is generated by morphogen gra-
dients; Shh as the ventralizing factor, and Wnts and possibly 
BMPs as the dorsalizing factors [29, 30] (Fig. 4). The D–V 
patterning starts at the neural plate stage when the MHP 
begins to form, since Shh emanating from the notochord is 
already inducing a ventral identity (Nkx6.1-positive cells) 
in the medial region of the neural plate, and is acting con-
tinuously as a morphogen to progressively pattern the neural 
folds, at least in mouse [29, 31, 32].

In the mouse cranial region, if the dorsal neural folds 
are ventralized by either overactive Shh signaling or the 
suppression of dorsalizing signals such as Wnt, the conse-
quences are often a deformed neural tube lacking DLHP 
formation, which results in cranial NTDs [26, 32–36]. 
Likewise, mice deficient for transcriptional factors that are 
expressed in dorsal neural folds, including paired box 3 
(Pax3), Zic2, Zic5, and sal-like 2 (Sall2), also exhibit cranial 
NTDs [27, 37–40]. However, it appears that even if the neu-
ral folds are dorsalized by loss of Shh signaling or enhanced 
Wnt signaling, the DLHP forms and NTC is completed [28, 
35, 41]. These lines of evidence suggest that specification 
of dorsal neural folds is crucial for success in cranial NTC 
(Fig.  4). This raises several questions: What downstream 
factors characterize the hinge point formation site? Is there 
a specific border that marks DLHP formation along the dor-
soventral (or, mediolateral) axis? In other words, is there a 
combination of transcription factors or a crosstalk of sign-
aling activities that determines where hingepoints form? 

Fig. 3   Mechanisms of bending 
at MHP in the cranial regions 
identified in chicken embryos. 
a Signals involved in MHP 
formation, and mechanisms of 
their actions in chicken cranial 
region. b PCP signaling links 
convergent extension with neu-
ral plate bending via oriented 
apical constriction in chicken 
cranial region. Oriented apical 
constriction along mediolateral 
(M–L) axis within neuroepithe-
lial cells (actin fibers are shown 
with red) couples elongation of 
the neural plate along anter-
oposterior (A–P) axis with its 
bending along M–L axis
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Answering these questions will require the precise charac-
terization of the position of hingepoint formation along the 
D–V and rostrocaudal axis in the cranial neural folds.

Neurulation and body axis elongation through convergent 
extension, the PCP pathway, and oriented cell division

The cellular movement of convergent extension occurs dur-
ing gastrulation and neurulation in vertebrates [42]. Con-
vergent extension leads to the rostrocaudal extension of the 
body axis, driven by polarized cell rearrangement, including 
lateral-to-medial cell displacement within the tissue and cell 
intercalation at the midline. Convergent extension is gov-
erned by evolutionarily conserved planer cell polarity (PCP) 
signaling, which was originally identified to regulate cell  
polarity within the plane of the wing epithelium in Dros-
ophila. Defective PCP signaling causes NTDs in vertebrates 
[43–45]. A severe NTD, craniorachischisis, is found in 
several mouse PCP-signaling mutants, including loop-tail 
(Lp) [Vangl2] mutants, crash [Celsr1] mutants, circletail  
[Scribble1], dishevelled 1 (Dvl1) and Dvl2 double mutants, 
and frizzled 3 (Fz3) and Fz6 double mutants [45–50]. In 
these PCP-signaling mutants, the neural plate and the 
underlying notochord fail to elongate rostrocaudally, due to 
ineffective cell intercalation at the midline. As a result, the 
neural plate widens, hampering the apposition and contact 
of the neural folds at the midline, and eventually leading to 
NTDs [43, 50].

In addition to convergent extension, there would be 
another factor contributing to body axis elongation; cell 
division. In Lp mutants, defective elongation in the midline 
is seen mainly in the caudal notochordal region and to a 

lesser extent in the rostral region [51]. This suggests that 
rostrocaudal elongation in the most anterior neural plate 
is relatively independent of convergent extension, and 
may instead result primarily from extensive longitudinally  
oriented mitoses occurring in the midline [51–54]. Whereas 
amphibian and fish do not significantly increase the embry-
onic cell numbers during NTC, higher vertebrates such as 
birds and mammals do substantially increase the cellular 
population of the neural tissues [52, 55]. Thus, inclusion of 
cell division into potential mechanisms involved in cranial 
NTC is plausible in birds and mammals.

Mechanics of neural plate bending: links between the PCP 
pathway and apical constriction

Among the cellular mechanisms that bend the neuroepithe-
lial sheet, the contraction of subapical actin microfilaments 
in neuroepithelial cells is the most-studied intrinsic NTC 
mechanism [56–59]. Actin microfilaments (F-actin) accu-
mulate to form a meshwork at the apical cortex which then 
contract, reducing the apex of the neuroepithelial cells dur-
ing NTC. The contraction is driven by the molecular motor 
myosin. Several studies have shown that disrupting acto-
myosin with chemicals causes cranial NTDs [58, 60–62]. 
Similarly, mice deficient for regulators of the cytoskeleton 
present with exencephaly (Abl1/Abl2, n-Cofilin, Marcks, 
Mena, Mlp, Shroom, Palladin, and Vinculin) [63–73]. In 
contrast, NTC in the spinal region does not appear to require 
actomyosin [58, 60].

During NTC, the neural plate bends only along the medi-
olateral axis. Such a polarized neural plate bending implies 
a polarized cellular contraction, otherwise the neural plate 

Fig. 4   Schematic illustration of 
events occurring in the dorsal 
neural folds during cranial 
NTC. Cellular behaviors and 
molecular mechanisms are 
shown with blue and black 
fonts, respectively. Neuroecto-
derm (neuroepithelium): pink. 
Non-neural ectoderm (surface 
ectoderm): green. Bound-
ary region within non-neural 
ectoderm: orange. Boundary 
cells mediating fusion at tips: 
red. Cranial neural crest cells 
(CNC): purple. Head mesen-
chyme: light blue. Apoptotic 
dying cells: gray. A cell under-
going division is shown with 
yellow in surface ectoderm (left)
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bending would occur only radially. A recent study using 
chicken embryos revealed that PCP signaling directly 
links apical constriction to convergent extension, promot-
ing the polarized mediolateral bending of the neural plate 
(Fig.  3b) [74]. During the bending process Celsr1, a ver-
tebrate homolog of the Drosophila gene Flamingo (one of 
the core PCP members) [49], concentrates in adherens junc-
tions (AJs) oriented along the mediolateral axis of the neural 
plate, along with Dvl, DAAM1, and PDZRhoGEF, which 
together upregulate Rho kinase. This causes actomyosin-
dependent planar-polarized contraction, which promotes the 
simultaneous apical constriction and midline convergence 
of the neuroepithelial cells (Fig. 3b). This system ensures 
that neural plate bending and body axis elongation are well 
coordinated [74, 75]. A similar mechanism may also operate 
in mammalian NTC.

Besides these intrinsic neural plate mechanisms, NTC is 
also affected by extrinsic factors from surrounding tissues, 
the earliest of which is Shh emanating from the notochord. 
Signals from the head mesenchyme and non-neural surface 
ectoderm also shape morphogenetic events during cranial 
NTC.

Head mesenchyme’s role in closure

The cranial neural plate is surrounded mainly by the head 
mesenchyme, which originates from primary mesenchyme, 
the earliest group of cells ingressing upon gastrulation 
[76]. The head mesenchyme possibly affects cranial NTC, 
because mutant embryos lacking genes expressed in the 
head mesenchyme, e.g., twist homolog 1 (Twist), cartilage 
homeo protein 1 (Cart1), aristaless-like homeobox 3 (Alx3), 
or the ubiquitously expressed HECT domain containing 1 
(Hectd1), often have exencephaly. It is thought that this is 
due to defective DLHP formation and neural fold elevation 
of the forebrain and midbrain, along with abnormal head 
mesenchyme density around the neural folds [77–80]. The 
density of the head mesenchyme decreases in the Twist or 
Cart1 mutant, but increases in the Hectd1 mutant. Thus, 
proper head mesenchymal cell behavior is likely required 
to regulate cranial NTC. Understanding how head mesen-
chyme affects the formation of the neural folds will require 
future study.

Non-neural surface ectoderm: a supporting player

An effect of the non-neural surface ectoderm on the cra-
nial NTC was first demonstrated in urodele amphibians 
and birds [81, 82]. In chicken embryos, medially directed 
non-neural surface ectoderm expansion is observed only 
in the cranial region, not the spinal region, and surgically 
removing the tissue prevents DLHP formation. Thus, as it 
expands, the non-neural surface ectoderm may physically 

force the neural plate to bend (Fig.  4) [82–84]. Since a 
small, narrow boundary region of the non-neural surface 
ectoderm adjacent to the neural plate is both sufficient and 
necessary to induce bending at the DLHP in the head region 
in chickens, and in the lower spinal region in mice [28, 84], 
another possibility arises, not mutually exclusive to the first: 
bending at the DLHP may be mediated by inductive interac-
tions between the neural folds and the adjacent non-neural 
surface ectoderm (Fig. 4). In fact, as mentioned in the previ-
ous chapter, BMPs from the non-neural surface ectoderm 
induce expression of the BMP antagonist Noggin in the tips 
of the neural folds, and this antagonism of BMP signaling 
is necessary and sufficient to form the DLHP in the lower 
spinal regions in mice [27].

The importance of the non-neural surface ectodermal 
cells for NTC is emphasized by several findings, one of 
which comes from a functional analysis of the grainyhead-
like (Grhl) gene family. Grhl family genes encode transcrip-
tion factors that includes the Drosophila gene grainyhead 
(grh), which is essential for epidermal differentiation and 
wound healing in the fly [85, 86]. Loss of the Grhl2 or 
Grhl3 genes, which are specifically expressed in the non-
neural surface ectoderm, causes NTDs [87–90]. Mutant of 
Grhl family genes interact with several of the PCP-signaling 
mutants, and exhibit PCP-like defects both in fly and mice 
[91, 92]. A series of studies indicate that the Grhl genes are 
indispensable for proper development of non-neural epithe-
lial tissues in mice [88, 90, 92–96]. Thus, non-neural epithe-
lial properties in the non-neural surface ectoderm defined by 
the Grhl genes are considered to be essential for successful 
cranial NTC (Fig. 4).

Another finding supporting the importance of non-neural 
surface ectoderm in cranial NTC is that mouse embryos lack-
ing protease-activated receptor 1 (Par1) and Par2 develop 
exencephaly and spina bifida [97]. Both Par1 and Par2 are 
expressed in the non-neural surface ectoderm. Par2 expres-
sion is restricted to the cells surrounding the neuropore, and 
possibly to boundary cells (Fig. 4, see below). Matriptase, a 
membrane-tethered protease that is activated by hepsin and 
prostasin activates Par2. Par2’s downstream signals include 
the G protein-coupled receptors Gi/z and Rac1, as shown by 
the finding that conditionally ablating these genes in Grhl3-
expressing cells causes NTDs [97]. Thus, NTC requires 
local protease signaling in cells at the edge of the non-neural 
surface ectoderm (Fig. 4).

Zipping and fusion: the non-neural ectoderm boundary 
plays a key role

Cells at the edge of the non-neural surface ectoderm medi-
ate zipping and fusion to seal the midbrain and hindbrain. 
Classic transmission electron microscopy studies, as well as 
recent live-imaging studies, showed that at the border of the 
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mesencephalon and rhombencephalon, non-neural surface 
ectoderm cells overlying the neural folds make the initial 
contact in sealing the neuropore [98–100]. These non-neural 
surface ectoderm cells differ from the underlying neuroe-
ctoderm and the adjacent non-neural surface ectoderm in 
both morphology and location; they have a bipolar shape 
and are aligned along the rostral-caudal axis like a chain, 
whereas adjacent surface ectoderm cells are polygonal [99]. 
These “boundary cells” are brought into proximity and then 
into contact by “zipping” at the rhombencephalon (rostral 
closure 1 and caudal closure 2) (Fig. 4) [99, 100]. Within 
the mesencephalon of cultured embryos, the boundary cells 
protrude from the epithelial layer on opposing sides of the 
neural folds, extend long cellular processes toward each 
other, and then form contacts between the juxtaposed folds 
[99]. This “buttoning-up” closure eventually resolves into a 
continuous closure.

This observation raises the possibility that the bound-
ary cells, which are at the tips of the non-neural ectoder-
mal cells covering the neural fold edge, are sufficient to 
complete fusion if they are appropriately juxtaposed prior 
to being zipped. To test this idea, we need an experimental 
innovation that allows cells from both sides to be forced into 
contact before normally closed while keeping the embryo 
and closure intact, whether in utero or in a culture system. 
If this approach could be achieved, it would be interesting 
to examine whether or not edge boundary cells can achieve 
fusion in various NTD mutants, such as the PCP or Grhl2/3 
mutants. This will help to determine whether NTDs arise 
solely from defective elevation and bending, or from the 
fusion process and its maintenance, as well.

Molecules that mediate cell–cell interaction and fusion

Compared to the mechanisms for elevation and apposition, 
little is known about the molecules that mediate the cell-to-
cell interactions responsible for neural fold fusion [2, 101]. 
The subtypes of classic cadherins, which are cell-adhesion 
molecules, differ between neuroectoderm (N-cadherin+) 
and non-neural surface ectoderm (E-cadherin+), and sub-
type switching from E-cadherin to N-cadherin in neu-
roepithelium occurs during NTC [102, 103]. Deletion of 
N-cadherin results in increased cell death in cranial neural 
folds during NTC [104]. Removal of N-cadherin specifi-
cally from dorsal edges of neural folds (Wnt1+) results in 
exencephaly, as well as cardiac defects caused by defects 
in the cardiac neural crest cells [104]. Addition of block-
ing antibodies to N-cadherin or antisense-oligonucleotide 
against E-cadherin also disrupts the cranial NTC in chicken 
and rat [105, 106]. These results suggest that proper regula-
tion of these classic cadherins is indispensable for cranial 
NTC. Mice carrying hypomorphic alleles of p38-interacting 
protein (p38IP) (drey) exhibit exencephaly or spina bifida  

[107]. p38IP and p38 MAPK activation are required  
for downregulation of E-cadherin in mesoderm during  
gastrulation. It might be possible that downregulation 
of E-cadherin in neuroepithelium during normal NTC is 
also mediated by p38-dependent pathway. This regulation 
appears to be independent of Snail, a transcriptional factor 
that is a well-known regulator for switching of these cadher-
ins in epithelial–mesenchymal transition during gastrulation 
[103, 108]. The mutually exclusive expression of these cad-
herins is likely based on a negative-feedback regulation, just 
as suppressing E-cadherin mRNA in cultured non-neural 
epithelial cell lines leads to the compensatory upregulation 
of N-cadherin, which is not normally expressed in those 
cells [109]. In Grhl2 mutant mice, which exhibit cranial 
NTDs as mentioned above, E-cadherin mRNA and its pro-
tein are decreased in the epidermis, but N-cadherin protein 
is increased [88, 90]. Other evidence of epithelial dysregula-
tion in Grhl2 mutants includes decreased expression of the 
tight junction protein claudin-4. Since E-cadherin appears 
to be expressed in the non-neural ectodermal boundary 
cells that directly mediate zipping and fusion [90] (and our 
unpublished observation), a precise characterization of the 
behaviors and dynamics of these cells may shed light on 
the role of these classic adherence molecules during NTC 
(Fig. 4).

Another cell–cell interaction system, the Eph-ephrin 
system, is also important for fusion (Fig. 4). Eph tyrosine 
kinase receptors and their membrane-bound ephrin ligands 
participate in several developmental processes, including 
repelling axonal growth cones and promoting cell migra-
tion. The cranial neural tube fails to close in a small percent-
age of mice deficient in ephrin-A5 or its receptor, EphA7 
[110]. EphA7 and ephrin-A5 are strongly expressed along 
the edge of the neural fold. EphA7 has three splice-variant 
transcripts, and all of them are expressed in the neural folds. 
Two of the splicing variants encode a truncated form of 
EphA7 that lacks the tyrosine kinase domain, and these vari-
ants enhance cell adhesion with cells expressing ephrin-A5 
in vitro. These lines of evidence suggest that in the neural 
folds, the EphA7 and ephrin-A5 presumably act as a cell 
adhesion signal [110]. The importance of the Eph-ephrin 
system in fusion is also reported in spinal NTC; blocking 
EphA activity in whole-embryo culture delays NTC at the 
posterior neuropore, without disturbing neural plate eleva-
tion or DHLP formation [111].

Boundary regions and cranial neural crest cells

Cranial neural crest cells (CNCs) are generated at the 
dorsal edge of the neural folds (the boundary regions) 
(Fig. 4). Failure of the CNCs to develop or emigrate is often 
observed in cases of exencephaly [3], although the mecha-
nism how defects in CNCs lead to exencephaly is unclear. 
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In mice, CNCs in the midbrain and hindbrain begin detach-
ing from the edge of the neural folds and start migrating 
well before NTC is complete [112, 113]. A recent study 
reported that the non-neural surface ectoderm (Wnt1-Cre+/ 
E-cad+/PDGFRa+) in the cranial boundary regions produces 
CNC-like cells (Fig. 4) [114]. The “metablast” discussed in 
that study is likely a CNC subpopulation previously consid-
ered to arise only from neuroectoderm [114].

Because properties of the boundary regions are impor-
tant for successful closure, it should be interesting to exam-
ine whether CNC-defective mutants disrupting the cranial 
NTC have defects also in the boundary regions. Thus, it has 
become evident that cranial NTDs can be caused by dis-
rupted signaling or cellular events in the boundary regions 
(Fig.  4), including CNCs’ emigration, and cell death as 
follows.

Programmed cell death in the boundary regions

Apoptosis

Programmed cell death, especially apoptosis, was observed 
early in the study of NTC [12, 98, 115]. Apoptosis, which 
is prominent during development, is propogated through 
signaling cascades that eventually converge on and acti-
vate cysteine proteinases, the caspases, which ultimately 
cause cell death through cleavage of their substrate proteins  
[116, 117]. At the boundary of the rhombencephalon and 
mesencephalon, extensive apoptosis is observed—both 
in the non-neural surface ectoderm and the neuroepi-
thelium—before the neural folds are apposed and fused 
(Fig. 4). Because this pattern coincides with CNC genera-
tion, it has long been assumed that apoptosis contributes to 
CNC development, although its role has not been clearly 
determined [118]. Apoptosis is also extensive at the ante-
rior neural ridge (ANR), which is the boundary region of 
the most rostral prosencephalic region, and CNCs do not 
originate in this region. The role of apoptosis in the ANR is 
not yet known.

Mice lacking intrinsic apoptotic pathway genes (apaf-
1, caspase-3, or caspase-9) or harboring a mutant form of 
cytochrome-c that cannot activate apoptotic pathway but is 
intact for electron transport, or double-knockout mice for 
JNK1/JNK2 genes, exhibit cranial NTDs, including exen-
cephaly [119–123]. These results indicate that regulation of 
apoptosis is involved in successful cranial NTC. Although 
many of the boundary cells responsible for fusion undergo 
apoptosis, inhibiting apoptosis does not affect the fusion 
process itself [100, 118]. Recently, live-imaging analy-
sis revealed that in the absence of apoptosis mediated by 
caspase activation, DLHP formation and the flipping of 
the neural ridge are perturbed in MHNP, thus delaying cra-
nial NTC [100]. This suggests that apoptosis by caspase 

activation promotes the smooth progression of neural plate 
morphogenesis during cranial NTC.

It is not yet clear how apoptosis mediated by caspase 
activation (which occurs mainly in the boundary regions) 
achieves this, nor whether apoptosis acts permissively or 
instructively on the progression of NTC. Apoptosis mediated 
by caspases may instructively help to generate forces that 
promote epithelial sheet morphogenesis, as shown in other 
model organisms and in cell culture systems [124–126]. 
To determine this conclusively in mice would require new 
tools to inhibit or induce caspase activation and apoptosis, 
with precise control over region and timing. It is also worth 
investigating whether apoptosis and caspase activation in 
the boundary regions acts through the adjacent neuroepithe-
lium and surface ectoderm by releasing signaling molecules 
such as growth factors, small-molecule hormones, and fatty 
acids [127–132].

Apoptosis occurs continuously from the beginning 
through to the final step of NTC, including the entire remod-
eling process in which the neuroectoderm and the outer non-
neural ectoderm are separated and arranged to make a rigid 
neural tube. However, the contribution of apoptosis to this 
remodeling process is still unclear, as it is in other tissue-
fusion processes in which extensive apoptosis is observed 
[101, 133]. In cultured mouse embryos, it was reported that 
chemically inhibiting apoptosis does not affect the fusion or 
the separation of the neuroectoderm and epidermis [118], 
suggesting that apoptosis is dispensable for fusion and 
separation.

Non-apoptotic cell death and autophagy

Nevertheless, it is not yet clear whether cell death itself is 
non-essential in the remodeling process, because even in 
apoptosis-deficient embryos, alternate forms of cell death 
(non-apoptotic cell death) can occur [134, 135]. To clarify 
the impact of programmed cell death itself on NTC, it is 
necessary to determine whether non-apoptotic cell death 
such as caspase-independent cell death or autophagic cell 
death occurs in these embryos during NTC, and what actu-
ally causes the cells to die in the process.

Cell death is often accompanied by autophagy [136]. The  
role of autophagy during the cranial NTC remains to be elu-
cidated. Mice deficient for ambra1, which is necessary for  
beclin1-dependent autophagosomal formation during murine 
development, exhibit exencephaly and spina bifida [137]. 
Although macroautophagy is mainly mediated by Atg5 or 
Atg7, mutant mice deficient for those genes do not show any 
apparent developmental defects in NTC [138, 139]. Thus, 
NTC does not require Atg5/Atg7-dependent autophagy  
but does require the recently identified beclin1-mediated 
alternative autophagic pathway [140]. Interestingly, ambra1 
KO embryos showed increased Shh signaling in the neural 
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tube, suggesting that there might be an interaction between 
the regulation of Shh signaling and the Ambra 1 protein, and 
that this may be the cause of NTDs in these embryos [137, 
141]. Further studies will be needed to reveal the complex 
interplays between cell death, autophagy, and cell differen-
tiation programs during cranial NTC.

Remodeling and the integrity of the neural tube and  
epidermis

Little is known about cellular and molecular mechanisms 
of remodeling in the midline after fusion (Fig.  1f) [101]. 
During remodeling, dynamic cellular behaviors such as cell 
rearrangement, cell mixing, cell proliferation, and cell death 
are expected and indeed observed as mentioned above—but 
not precisely understood. Thus, it is difficult at present to 
assess the significance and normal characteristics of this 
remodeling. Detailed studies of these cellular behaviors are 
needed to determine the precise remodeling mechanisms 
that, if disrupted, would cause the neural tube to reopen, an 
event that results in exencephaly or spina bifida.

In fact, reopening of the neural tube might be con-
sidered a remodeling failure. The tumor suppressor gene  
neurofibromatosis type 2 (Nf2) likely contributes to the 
remodeling steps that prevent the neural tube from reo-
pening: the Nf2 gene product regulates the assembly of 
apico-lateral junctional complexes in the neuroepithelium 
[142]. Eliminating Nf2 specifically in developing neu-
roepithelium from E8.5 does not affect the initial fusion  
process, but the cranial neural tube reopens after E9.5,  
causing exencephaly. Thus, establishing the proper cell–cell 
adhesion structures during remodeling seems to be impor-
tant for keeping the neural tube closed, although this concept  
has not been directly tested by experimental manipulation 
of the remodeling.

Genetic background affects susceptibility

The penetrance of exencephalic phenotypes in the presence 
of genetic or environmental perturbation can vary according 
to mouse genetic background [9, 143, 144]. For instance, 
many knockout NTD mice maintained on the 129-dominant 
background exhibit exencephaly; while those on a C57B6L 
background do not—although the opposite has been reported 
in other cases (see [9]). Mice that differ in NTD phenotype 
according to their genetic background include mutants or 
knockouts for transcription factors such as p53, Cart1, 
Sall2, and splotch (Sp2H) (pax3) [17, 40, 78, 145], apoptosis 
regulators such as caspase-3 and apaf-1 [146–148], growth 
factor signaling (Noggin) [25, 26], cellular trafficking 
[149, 150], and chromatin modifiers (Jumonji) [151, 152].  
Presumably, multifactorial causes underlie the phenotypic 
differences and penetrance in these cases.

Interestingly, the mode of closure 2 appears to affect 
susceptibility to exencephaly under certain kinds of genetic 
or environmental perturbation in cranial NTC [15, 17]. 
Although the point where closure 2 begins is usually at the 
forebrain-midbrain boundary (FMB) (Fig. 2b, c), this loca-
tion varies among mouse strains [10, 15–17]. The SELH/Bc 
strain, for example, likely lacks closure 2 [15]; the forebrain 
is sealed only by closure 1 and closure 3, and this strain has 
a spontaneous exencephaly rate of about 20 %. This is not 
the only example. Closure 2 begins caudal to the FMB in 
the DBA/2 strain, and rostral to the FMB in the NZW strain 
[17]. Interestingly, a Sp2H (pax3) mutation introduced into 
DBA/2 background is less susceptible to exencephaly, but 
increases the susceptibility in NZW background [17]. These 
data have prompted the suggestion that, as the starting site 
of closure 2 becomes more rostral, susceptibility to exen-
cephaly increases in the presence of genetic perturbation 
or teratogenic agents [14, 17, 153]. It is not yet clear what 
causes the differences in closure 2 position, or how a more 
rostral site increases the risk of exencephaly.

A kinetic view of cranial NTC: Is there a closure deadline?

The more rostrally positioned closure 2 results in increase of 
the length of the MHNP that must be sealed by closures 1 and 
2. This presumably lengthens the time it takes to close the 
MHNP, thus delaying the completion of NTC. We performed 
a live-imaging observation of delayed closure and perturbed 
neural fold movement in the absence of apoptosis. On the basis 
of the results, we proposed a working model of a deadline for 
cranial NTC. This “developmental time window” hypoth-
esis holds that forces counteracting closure are generated and 
eventually surpass those promoting closure as embryonic brain 
development proceeds. In normal development, cranial NTC 
completes before counteracting forces become strong enough 
to interfere with closure (Fig. 5) [100]. However, if the progress 
of closure is delayed, whether due to genetic, environmental, 
or physical disturbances, cranial NTC fails—or the closure 
reopens as observed in a live-imaging analysis [100]—due to 
the stronger counteracting forces. This model explains why a 
disturbance in the NTC process would more severely impact 
mice with a rostrally positioned closure 2 or with delayed clo-
sure. The penetrance of NTDs varies in mice harboring muta-
tions known to cause them. Viewing NTC kinetically from this 
model may explain the variable phenotypic penetrance.

Live imaging of cranial NTC with functional reporters for 
cellular or signaling activities

Causal relationships between genetic mutations and NTDs 
have been identified by developing hundreds of mutant 
mouse models [4, 9]. In many cases, the linkage between 
a genetic mutation and the consequent NTD has not been 
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clarified, since the complexity and dynamics of cranial NTC 
cannot be captured solely by static methods. Recently devel-
oped live-imaging analysis allows for more precise investi-
gations. Using this approach, researchers have revealed how 
PCP signaling, cytoskeletal dynamics, or cellular behavior 
acts on neural tube morphogenesis in various animal mod-
els, including ascidian, fish, amphibians, and birds, whose 
embryos are more accessible for such analyses than are 
mammalian embryos [36, 43, 74, 154–157]. Such analyses 
will also help to understand basic mechanisms of the mam-
malian cranial NTC, which is much more complex than 
non-mammalian vertebrates [11].

Furthermore, live-imaging analysis with functional report-
ers for biological signals or molecules can now allow us  
to visualize and monitor the activities or behaviors of signal-
ing molecules within living cells. Although it has long been 
difficult to generate transgenic mice that stably expresses 
genetically encoded fluorescent reporters monitoring bio-
logical signaling activities, several groups have succeeded 
to generate them [100, 158–160]. With new fast-scanning  
confocal microscopy methods for high-resolution obser-
vation of living embryos, it has now become possible to 
observe real-time cell signaling during mammalian cranial 
NTC [99, 100]. This has revealed unexpected, differential 
modes of apoptosis occurring during NTC [100]. It would be 
interesting to visualize neural plate morphogenesis and the 
specific signaling pathways responsible for closure. Further 
development of these new methods of analysis will allow 
us to gain new insights into the mechanics and dynamics of  
cranial NTC and etiology of NTDs.

Nutrition, metabolism, and epigenetic regulation

We have summarized factors contributing to the process 
of cranial NTC, focusing on neural plate morphogenesis 

and cell–cell/tissue–tissue interactions. In addition to these 
embryonic mechanisms of NTC, we want to conclude by 
mentioning two other aspects that are important when 
considering the etiology of human NTDs; contribution of 
maternal nutritional factors including folic acid, and epige-
netic regulation [2, 7, 161].

Among maternal nutrient factors, the preventive effects 
of folic acid on human NTD risk have been well established, 
and several countries mandate folic acid fortification of the 
grain supply [5, 6]. However, how folic acid contributes to 
normal NTC or prevents NTDs is not well known. There are 
so far six genes that are identified to be responsible for folate 
transport in mammals; the glycosyl-phosphatidylinositol-
anchored folate receptors (Folr 1, Folr 2, Folr 3, and Folr 4) 
[162, 163], the bidirectional reduced folate carrier 1 (RFC1; 
also known as SLC19A1) [164], and protom coupled folate 
transporter (PCFT) [165]. Mice deficient for either Folr1 
or RFC exhibit severe growth retardation and embryonic 
lethality before the beginning of NTC [162, 166]. Supple-
mentation with a high amount of folates to pregnant mothers 
allows those mutant embryos to survive to birth, suggesting 
that folate transport from amniotic fluid to embryos is essen-
tial for embryonic growth [166, 167]. Embryos from moth-
ers supplemented with modest levels of folates are rescued 
from early embryonic lethality but still exhibit NTDs [168]. 
Interestingly, Folr1 is strongly expressed in the dorsal tips 
of neural folds during NTC, implying that developmental 
events in those regions, including neural crest generation, 
may require a high amount of available folates [169, 170]. 
These lines of evidence together suggest that the adequate 
amount of folates available for embryos is a crucial fac-
tor throughout developmental stages from gastrulation to 
neurulation. However, it is not yet clear how this is related 
to preventive effects of folates on NTDs. There are both 
folate-sensitive and folate-resistant NTDs mouse models. 

Fig. 5   Developmental time-
window model for cranial NTC. 
NTC must be completed by 
a hypothetical developmental 
deadline (about somite stage 
20), when forces incompat-
ible with NTC may arise. Any 
perturbation on NTC program 
could delay NTC. Even when 
closure is delayed, the embryo 
can develop without NTDs, as 
long as NTC can be completed 
before the deadline (shown as 
“rescue form delay”). However, 
if closure is not completed by 
the deadline, cranial NTC ends 
in failure to close at the MHNP, 
resulting in cranial NTDs such 
as exencephaly
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Furthermore, recent studies suggest that excessive folic 
acid intake is deleterious to several NTD mouse mutants, 
and even to normal embryogenesis [171, 172]. These lead 
to general concerns about unintended consequences of folic 
acid supplementation [5, 6].

Folate availability affects the one-carbon metabolism 
that supplies, as its name suggests, the one-carbon groups 
required for de novo synthesis of purines and thymidylate, or 
methylation [7]. Indeed, availability of folate impacts both 
nucleotide synthesis and DNA methylation [173–175]. Inter-
estingly, deficient DNA methylation leads to cranial NTDs 
[176, 177]. Such epigenetic regulation by methylation may 
also be involved in the higher rate of exencephaly seen in 
female embryos [177, 178]. A recent study reported that loss-
of-function mutations in the glycine-cleavage system, which 
is an important component of folate one-carbon metabolism 
in mitochondria, predispose to NTDs in humans and in mice 
[179]. This suggests that functional folate one-carbon metab-
olism itself is crucial for NTC. How folate metabolism and 
epigenetic regulation fit into the developmental NTC mecha-
nism remains to be determined in future studies.

Conclusions and perspective

Cranial NTC is a fascinating, dynamic process that is cru-
cial to the development of functional brain. In this review, 
we have attempted to clarify the mechanisms of cranial 
NTC. Normal developmental programs required for cra-
nial NTC include neural plate patterning, signaling systems 
responsible for tissue movement or fusion, and mecha-
nisms responsible for the coordination of cell division, cell 
differentiation, and cell death. By examining these devel-
opmental programs, it will be possible to understand the 
mechanical and kinetic aspects of closure that may largely 
affect the occurrence of cranial NTDs. Newly emerging 
techniques including functional live-imaging analysis now 
allow researchers to analyze the interactions between sign-
aling activity and morphological changes in detail in various 
model organisms including mice. With these tools, it may 
be possible to determine precisely when and how mutations 
disrupt normal developmental programs and produce NTDs. 
This knowledge may also help us to understand the action of 
teratogenic drugs and to find ways to prevent NTDs [144].
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