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Abstract Tumor differentiation factor (TDF) is an under-

investigated protein produced by the pituitary with no

definitive function. TDF is secreted into the bloodstream

and targets the breast and prostate, suggesting that it has an

endocrine function. Initially, TDF was indirectly discov-

ered based on the differentiation effect of alkaline pituitary

extracts of the mammosomatotropic tumor MtTWlO on

MTW9/PI rat mammary tumor cells. Years later, the cDNA

clone responsible for this differentiation activity was iso-

lated from a human pituitary cDNA library using

expression cloning. The cDNA encoded a 108-amino-acid

polypeptide that had differentiation activity on MCF7

breast cancer cells and on DU145 prostate cancer cells

in vitro and in vivo. Recently, our group focused on

identification of the TDF receptor (TDF-R). As potential

TDF-R candidates, we identified the members of the Heat

Shock 70-kDa family of proteins (HSP70) in both MCF7

and BT-549 human breast cancer cells (HBCC) and PC3,

DU145, and LNCaP human prostate cancer cells (HPCC),

but not in HeLa cells, NG108 neuroblastoma, or HDF-a

and BLK CL.4 cells fibroblasts or fibroblast-like cells. Here

we review the current advances on TDF, with particular

focus on the structural investigation of its receptor and on

its functional effects on breast and prostate cells.
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Abbreviations

TDF Tumor differentiation factor

TDF-R TDF-Receptor

HBCC Human breast cancer cells

HPCC Human prostate cancer cells

MCF7 cells Steroid-responsive breast cancer

cells

BT-549 cells Steroid-resistant breast cancer

cells

DU145 cells Steroid-resistant prostate cancer

cells

PC3 cells Steroid-resistant prostate cancer

cells

LNCaP Steroid-responsive prostate cancer

cells

HeLa Cervical cancer cells

NG108 cells Mouse neuroblastoma x rat glioma

cells

BLK CL.4 cells Embryonic fibroblasts-like cells

HDF-a Human dermal fibroblasts

ORF Open reading frame

SDS-PAGE Sodium dodecyl sulfate–polyacryl

amide gel electrophoresis

Ab Antibodies

AP Affinity chromatography

IAP Immunoaffinity purification

MS Mass spectrometry

ESI-MS Electrospray ionization mass

spectrometry

LC–MS/MS Liquid chromatography tandem

mass spectrometry
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TIC Total ion current

m/z Mass/charge

CID Collision-induced dissociation

WB Western blotting

IF Immunofluorescence

GRP78 precursor/BiP Glucose regulated protein

(accession # gi6470150/gi386758)

HSP8 Heat shock 70-kDa protein 8

isoform 1 (accession #

gi62897129/gi5729877)

HSP70 Heat shock 70-kDa protein

(accession # gi386785)

HSP1 Heat shock 70-kDa protein 1

(accession # gi4529893)

HSP90Bb Heat shock 90Bb protein

(accession # gi20149594)

HSP90 Heat shock protein 90 (accession

# gi306891)

HSPA9 Heat shock 70-kDa protein 9

(accession # gi12653415)

Introduction

Tumor differentiation factor (TDF) is a recently discovered

protein, produced by the pituitary gland and secreted into the

blood stream, with an under-investigated mechanism of

action. TDF induces morphological and biochemical changes

in vitro and in vivo, which suggest that it is involved in the

differentiation of HBCC and HPCC [1, 2]. Specifically, it

induces markers of differentiation such as the polarization

and formation of cell junctions and basement membrane.

Furthermore, it promotes milk protein synthesis and the over-

expression of E-cadherin [3–10]. However, TDF has no

known morphological differentiation effect on fibroblasts,

kidney, hepatoma, or leukemic lymphocytic cell lines [1, 2].

The differentiation activity of TDF has not been reproduced

by any of the known pituitary hormones or other growth

factors produced by the pituitary [1, 2]. TDF is secreted by

the pituitary directly into the blood, suggesting that this

protein has an endocrine role (Fig. 1). However, it is not yet

completely clear where it goes and to what receptor it binds.

It is also not clear how TDF protein promotes cell differen-

tiation. Since 1992, when its activity was first discovered and

described, there have been only three additional publications,

two of which emerged from our group. Here we discuss how

TDF was first discovered and then further investigated, with

particular focus on the structural investigation of its receptor

and its functional effects on breast and prostate cells.

Initial identification of TDF

TDF was indirectly discovered based on its effect on the

alkaline pituitary extracts of the mammosomatotropic

PituitaryProduction

Breast TDF 
B

cancer
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Prostate 
cancer
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proteinB

Fig. 1 Schematic of the site of

the synthesis of TDF and its

target organs in men and women
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tumor MtTW10 on MTW9/Pl rat mammary tumor cells. The

investigators found that alkaline pituitary extracts of MtTW10

tumors induced aggregation and adhesion of MTW9/Pl cells

[1]. They also observed that upon exposure to the pituitary

extract, the MTW9/Pl cells started to synthesize lactalbumin

and overexpress laminin, as determined by Western blotting

(WB). The researchers concluded, using available micro-

scopic and biochemical evidence, that the MTW9/Pl cells

aggregate, adhere to each other and differentiate, due to a

factor contained within the pituitary extract. Years later, the

same group used expression cloning to identify the cDNA

responsible for this differentiation activity [2]. They reported

the isolation of a cDNA clone of 1.1 kb from a human pituitary

cDNA library by expression cloning in Xenopus oocytes. The

cDNA encodes a 108-aa polypeptide. This protein was named

the tumor differentiation factor (TDF). The recombinant TDF

protein and a 20-amino-acid peptide, TDF-P1, selected from

the open reading frame (ORF) of the gene, induced morpho-

logical and biochemical changes similar to the pituitary

extract and consistent with differentiation of HBCC and

HPCC. Fibroblast, kidney, hepatoma, and leukemic lympho-

cytic cell lines were unaffected. Breast and prostate cancer

cells aggregated in spheroid-like acini after exposure to TDF.

This effect was abrogated by anti-TDF-P1 antibodies.

E-cadherin expression was increased in a dose-dependent

manner by TDF. Moreover, treatment of MCF7 cells with

TDF led to production of a lactalbumin-related protein, which

did not occur in untreated MCF7 [2].

Characterization of TDF

TDF protein is very small with a predicted molecular mass

of 12 kDa. It does not share homology with any protein

sequence available in databases (Expasy, NCBI, etc.) and

contains a histidine-rich region, two N-myristoylation sites

(6GTRVGQ11 and 10GQALSF15), and two protein kinase

C phosphorylation sites (57SLK59 and 102TFR104) [11,

12]. It also contains additional phosphorylation sites for

Casein kinase II and protein kinase A. TDF also contains

four cysteine residues that may be disulfide-linked in the

secreted TDF isoform. TDF contains no particular motifs

for other post-translational modifications such as N-gly-

cosylation, or processing/truncation (e.g., a furin-like

cleavage site). In addition, although this protein is secreted,

it does not have a signal sequence, suggesting that it is

secreted through a non-classical secretory pathway [13].

Furthermore, TDF is either glycated or glycosylated at

serine and/or threonine residues [2]. The observed molec-

ular mass of TDF protein is much higher than the

theoretical one: the glycosylated protein has 45 kDa and

the de-glycosylated one is 35 kDa [2], but its theoretical

mass is 12 kDa. Currently, the isolation and characteriza-

tion of this intensely post-translationally modified protein,

partially published [14], is underway in our laboratory.

Isolation and identification of the potential TDF

receptor candidates

The effect of TDF on HBCC and HPCC can be interpreted

through the existence of a receptor: TDF receptor (TDF-R).

Therefore, identification and characterization of TDF-R

from HBCC and HPCC was always the highest priority in

our laboratory. However, when the existence of a receptor

is suspected, a strong rationale for its identification must

exist, and a good strategy for (1) design of the experiments

for isolation and characterization of TDF-R, (2) execution

of the experiments, and (3) interpretation of the results is

required. A schematic of the design of the experiments is

shown in Fig. 2. The outcomes of these experiments were

already published by our laboratory [15, 16]. In our

Cells growing Affinity purification
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Database
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Fig. 2 Strategy for isolation and identification of the TDF-R candi-

dates by AP and LC–MS/MS. The DU145 and MCF7 cell lysates were

incubated with TDF-P1 agarose beads and the eluates were separated

by SDS-PAGE and stained by Coomassie. The gels were then cut into

pieces and digested by trypsin and then the resulting peptide mixtures

were analyzed by liquid chromatography tandem mass spectrometry

(LC–MS/MS). The raw data were processed by ProteinLynx Global

Server (PLGS version 2.4, Waters Corporation) and the pkl files were

submitted to Mascot (http://www.matrixscience.com) database search

for protein identification
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experiments, we used affinity purification (AP) chroma-

tography for purification of the potential TDF-R candidates

and liquid chromatography tandem mass spectrometry

(LC–MS/MS) for their identification and characterization.

Validation and follow-up was performed using additional

methods (described later). Initially we grew the cells

in vitro, lysed the cells, and then purified the potential

TDF-R candidates using the TDF-P1 coupled to agarose

beads. We reasoned that if the native TDF, the recombinant

TDF (rTDF), and TDF-P1 peptide promote differentiation

of HPCC and HBCC, then the potential TDF-R candidates

could be isolated by affinity chromatography using TDF-P1

only. Once we purified the potential TDF-R candidates, the

eluates were separated by SDS-PAGE and the gel pieces

were digested by trypsin and the peptides mixtures were

extracted and analyzed by LC–MS/MS and submitted to a

Mascot database search for the identification of proteins

(Fig. 2).

The work pertaining to the isolation, identification, and

characterization of potential TDF-R candidates was per-

formed according to published procedures [17–24] and the

outcomes of these studies were recently published [15, 16].

In our experiments, we incubated the TDF-P1 beads with

the cell lysates, washed the beads, eluted the TDF receptor

candidates, and analyzed them by LC–MS/MS, as descri-

bed in Fig. 2. We analyzed two cell types that are

representative for identification of the potential TDF-R

candidates from all cells: steroid-responsive MCF7 HBCC

and steroid-resistant DU145 HPCC. Identification of the

same potential TDF-R candidates would suggest that the

TDF induces differentiation of both HBCC and HPCC,

through a steroid-independent pathway. Conversely, iden-

tification of the potential TDF-R candidates that are

different in HBCC and HPCC would suggest that the (1)

TDF-R is different in HBCC compared with HPCC and

TDF promotes cell differentiation through a mechanism

that is different in breast cells, compared with prostate

cells; (2) the TDF-R is the same in both HBCC and HPCC,

but specific only to steroid-responsive or steroid-resistant

cells. In this case, regardless of whether possibility 1 of 2 is

correct, further experiments are required.

Isolation and identification of TDF-R candidates

from androgen-resistant DU145 cells by AP and

LC–MS/MS

In the AP and LC–MS/MS experiments for identification of

TDF receptor candidate using DU145 cells as starting

material, we identified with high confidence seven proteins

that are potential TDF receptor candidates: GRP78 pre-

cursor or BiP (gi6470150), heat shock 70-kDa protein 8

isoform 1 (HSP8, gi62897129), heat shock 70-kDa protein

(HSP1, gi386785), Heat shock 90Bb protein (HSP90Bb,

gi20149594), heat shock protein 90 (HSP90, gi306891),

Sequestosome 1 (gi119574171) and valosin-containing

protein (gi11305821). HSP90Bb and HSP90 were not

considered since they were identified by only one peptide.

The first hit in our experiments that had the highest

probability to be the potential TDF receptor was glucose-

regulated protein (GRP78), a 78-kDa protein and a member

of the heat shock protein (HSP) family, also named heat

shock 70-kDa protein 5 (HSP70 or HSP5) or immuno-

globulin heavy chain-binding protein (BiP). Total ion

current (TIC), MS, and MS/MS of a peptide that is part of

GRP78 are shown in Fig. 3. GRP78 is a member of the

heat shock protein (HSP) 70 family of proteins and is

involved in the folding and assembly of proteins in the

endoplasmic reticulum (ER), but it may also be identified

in the cytosol or at the cell membrane [25, 26]. HSPs are

highly expressed in cancerous cells [25, 27–34] and are

essential to the survival of these cells [35] and therefore

HSP inhibitors show promise as anticancer agents [36, 37].

HSPs (HSP70 and HSP90) have been found to be associ-

ated with both estrogen and androgen receptors [38–42].

HSPs have a role in cell proliferation and inhibition of one

HSP (HSP90) led to dysregulation of a different HSPs

(HPS70) and inhibition of cell proliferation [43]. HSPs also

have a role in apoptosis and cell differentiation, especially

HSP70 and HSP90. These proteins interact with apoptotic

proteins and block the apoptotic pathways, thus promoting

cell differentiation [43]. HSPs may even determine whether

cells should undergo apoptosis or differentiation [44].

Recently, it was demonstrated that GRP78 forms a cell

surface complex with Cripto, an oncoprotein that signals

via MAPK/ERK, PI3 K/Akt, and Smad2/3 pathways, and

mediates signaling in human tumor, mammary epithelial,

and embryonic stem cells [25]. Active Cripto from Cripto-

GRP78 complex promotes cellular proliferation, decrease

of cell adhesion, and down-regulation of E-cadherin.

However, Cripto alone is not able to signal and promote the

above-mentioned cellular events. Therefore, GRP78, when

in complex with Cripto is an oncogene [25], while when it

is not complexed with Cripto, it may promote cell differ-

entiation [44]. The two other HSPs, heat shock 70-kDa

protein 8 isoform 1 (HSP8, gi62897129), heat shock

70-kDa protein (HSP70, gi386785) are all HSPs from the

same family with GRP78 and are currently being

investigated.

The second protein that we identified as a potential TDF

receptor in our AP experiments using androgen-resistant

DU145 cells as a starting material was Sequestosome 1, a

47-kDa cytoplasmatic protein, also named ubiquitin-bind-

ing protein p62. Sequestosome 1 has a Phox and Bem1p

(PB1) domain, present in many eukaryotic cytoplasmic

signaling proteins. The PB1 domain-containing proteins

2838 I. Sokolowska et al.
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are usually involved in cell signaling, receptor internali-

zation, protein turnover, and protein–protein interactions.

This protein interacts with the proteasome [45], aPKC [46],

and MEK5 [47]. However, we did not find for this protein

any link to steroid receptors, cell differentiation, or cell

proliferation. Since we did not identify this protein in AP

experiments using MCF7 cells (see later), it is possible that

this protein was a contaminant in our experiments. Nev-

ertheless, we still do not exclude this protein from our list

of TDF receptor candidates. The last protein that we

identified in our AP and LC–MS/MS experiments with

DU145 cells was valosin-containing protein, also named

transitional endoplasmic reticulum ATPase, an 89-kDa

protein. This protein is usually found as a homohexamer

[48] with a predicted and determined molecular mass of

540 kDa [17, 20, 24].

Isolation and identification of TDF receptor candidates

from estrogen-responsive MCF7 cells by AP and

LC–MS/MS

In our LC–MS/MS experiments performed with the mate-

rial isolated from estrogen-responsive MCF7 cells, we

identified four proteins with high confidence: GRP78

precursor (gi386758); heat shock 70-kDa protein 8 isoform

1 (HSP8, gi5729877 heat shock 70-kDa protein 1 (HSP1,

gi4529893), heat shock 70-kDa protein 9 (HSPA9,

gi12653415). Additional structural proteins such as actin,

keratin, cytokeratin, and tubulin were also identified. So

far, the only strong TDF receptor candidates were GRP78

and HSP70. These proteins were identified with high

confidence in the experiments using both MCF7 and

DU145 steroid-responsive breast and steroid-resistant

prostate cancer cells. The two additional proteins, Sig-

nalosome 1 and valosin-containing protein, are very

unlikely to be TDF-R candidates. The other potential TDF-

R candidates (heat shock 70-kDa protein 8 isoform 1, heat

shock-induced protein, and heat shock 70-kDa protein 9

isoform) are all HSPs from the same family with GRP78

are also currently being investigated.

Validation of the AP and LC–MS/MS by AP

and Western blotting (WB)

Identification of the TDF-R candidates by AP and LC–MS/

MS do not hold much value without proper validation.

Therefore, validation of the TDF-R was investigated using

AP and WB in various cell lines. To validate our
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Fig. 3 AP and LC–MS/MS analysis of a peptide mixture for

identification of the potential TDF receptor. The TDF-P1 beads were

incubated with DU145 cell lysate and the AP protein sample was

eluted and then separated on SDS-PAGE. The gel bands were then

excised and digested by trypsin and the resulting peptide mixture was

separated on a C18 reverse phase column over 75 min of gradient of

acetonitrile. a TIC of the chromatogram. b MS survey mass spectrum,

in which one double-charged peak at m/z of 918.93 (expanded in the

inbox) was fragmented by MS/MS and produced a MS/MS spectrum

(c). The resulting peaks in the MS/MS spectrum correspond to a series

of b and y ions from a peptide that was part of GRP78. Data analysis

of these peaks led to identification of the sequence shown in (c) and

identification of GRP78 as potential TDF receptor. Figure adapted

from reference 15 with permission from the publisher
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experiments, we used AP and WB using antibodies (Ab)

against GRP78 and against HSP70 protein; anti-GRP78-Ab

recognized only human GRP78, while the anti-HSP70-Ab

recognized HSP8 and HSP1. We reasoned that GRP78 is

the main TDF-R candidate, but HRP70 is also a TDF-R

candidate and represents a family of proteins including

HSP8 and HSP1 HSP70. We also included the possibility

that both GRP78 and HSP70 are TDF-R and form a

GRP78-HSP70 core protein complex. The outcome of the

AP and WB experiments is shown in Fig. 4.

GRP78 and HSP70 are the potential TDF-R candidates

in both steroid-responsive and steroid-resistant HBCC

and HPCC, suggesting a common steroid-independent

mechanism of TDF-induced cell differentiation

in breast and prostate cells

Initially, we tested HBCC to validate the TDF-R candi-

dates. We found the TDF-R candidates (GRP78 and

HSP70) by AP and WB in both MCF7 steroid-responsive

HBCC and in steroid-resistant BT-549 HBCC (these cells

do not express estrogen receptors) [49], suggesting that the

TDF-R candidates may activate the TDF pathway through

a mechanism independent of and perhaps parallel with the

steroid pathway. We also found a similar trend in steroid-

responsive LNCaP HPCC and in steroid-resistant DU145

and PC3 HPCC, suggesting that the TDF pathway may

be common to breast and prostate cancer cells. However,

we did not find the TDF-R candidates in AP and WB

experiments in non-breast, non-prostate HeLa cancerous

cells, NG108 neuroblastoma 9 glioma cells, as well as in

non-breast, non-prostate, non-cancerous human dermal

fibroblasts (HDF-a), or normal embryonal fibroblast-like

cells (BLK CL.4). Therefore, TDF-R candidates are

restricted to breast and prostate cells, but are not purified

from non-breast, non-prostate cancerous cells, or from

normal non-breast, non-prostate cells, suggesting that the

TDF pathway is restricted to steroid-responsive and ste-

roid-resistant breast and prostate cells.

Investigation of GRP78 and HSP70 as potential TDF-R

candidates using immunofluorescence (IF) and confocal

microscopy

Additional insights about potential TDF-R candidates came

from IF and confocal microscopy studies. In one of the

studies, we observed that GRP78 Ab interacts with their

antigens outside the plasma membrane, as compared with

CM-Dil, a plasma membrane marker [16]. This staining

pattern was observed in both steroid-responsive MCF7 and

steroid-resistant BT-549 cells, as well as in HeLa cancer-

ous cells, but not in HDF-a cells. In the same study [16],

we found that HSP70 antibodies identified their antigens

outside of plasma membrane in all cell lines studied

(MCF7, BT-549 breast cancer cell lines, HeLa cancer cells,

and HDF-a cells), which prompted us to suspect that the

HSP70 is not a specific TDF-R, the staining is not specific,

or HSP70 indeed exists outside the plasma membrane in all
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Fig. 4 AP and WB analysis of various cell lines using anti-GRP78

and HSP70 antibodies. The TDF-R candidates were purified from the

cell lines indicated by AP using TDF-P1 peptide and then the eluates

were investigated by WB. The cell lysates were prepared from HBCC

(MCF7 and BT-549), HPCC (DU145, PC3, and LNCaP), cancerous

cells (HeLa and NG108 neuroblastoma), and normal cells (HDF-a

fibroblasts and BLK CL.4 fibroblast-like cells). In WBs: (1) input cell

lysate, (2) flow through, (3) eluate, and (4) 59 concentrated eluate.

The molecular mass markers are indicated (kDa). Figure adapted from

Refs. [15, 16] with permission from the publisher
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cell lines studied, but the TDF-R is a multi-subunit receptor

whose specificity and activity depends on the interaction of

HSP70 with GRP78 to form a TDF-R complex, composed

of at least GRP78 and HSP70. Additional subunits that

could fit to our theory are HSP90Bb or HSP90 beta that

were identified in our experiments and that are known to

interact with HSP70 proteins.

Further evidence about the TDF-R came from a follow-

up study in which our lab investigated the HPCC by IF and

confocal microscopy [15]. GRP78 protein was detected by

their antibodies outside the plasma membrane of steroid-

resistant DU145 and PC3 HPCC, steroid-responsive LNCaP

HPCC, and in the non-prostate NG108 neuroblastoma cells,

but not in the normal fibroblast-like BLK CL.4 cells. For the

HSP70 protein, IF experiments showed similar staining in

all cell lines investigated (DU145, PC3, LNCaP HPCC,

NG108 neuroblastoma, and normal fibroblast-like BLK

CL.4 cells. These results demonstrated that while GRP78 is

detected outside the cells in HeLa and NG108 cancerous

cells, detection of this protein is not sufficient to be named a

TDF-R. Therefore, the initial suspicion that TDF-R may

contain more than one subunit became stronger. An

example of a staining by GRP78, HSP70, and CM-Dil

investigated by confocal microscopy is shown in Fig. 5.

Therefore, interaction of GRP78 with HSP70 and perhaps

with other proteins may indeed lead to a functional TDF-R,

which may also be a TDF-induced-formation of TDF-R

complex or a constitutive TDF-R complex.

Investigation of GRP78 and HSP70 as potential TDF-R

candidates using molecular modeling

Complementary information about GRP78 and HSP70

proteins as potential TDF-R candidates came from

molecular modeling of the published work from our labo-

ratory [15, 16], as well as from additional research (Fig. 6).

A homology model of protein structure was generated by

using the template single-chain PDB structure 2KHO [50],

the NMR structure of E. coli HSP70 (DnaK). The KHO

model is used as TDF-P1 receptor protein, and DnaK is the

prokaryotic correspondent of eukaryotic HSP70. The

resulting model structure of 2KHO, built using the Swiss-

Model automated mode [51–53], has 1.43 Å rmsd when

superposed with 2KHO using Ca atoms [54]. A ribbon

diagram of TDF-R model protein is depicted in Fig. 6a,

where the TDF receptor protein is colored from amino-

terminal (blue) to carboxyl-terminal (red). Exposed and

buried residues of this model receptor protein are shown in

Fig. 6b. Docking experiments were performed using

Gramm 9 docking server [55, 56] and have been described

previously [15, 16]. Among the top-ten structures, the

TDF-P1 peptide is docked six times onto the TDF receptor

model protein as seen in Fig. 7a. Another one of the top-ten

solutions led to essentially the same docking position as

displayed in Fig. 7d. These binding pockets and the

neighboring amino acid residues on the TDF-R candidate

are displayed in Fig. 7a–c and d–f. Neighboring amino acid

GRP78 CM-Dil Merged

HSP70 CM-Dil Merged

Fig. 5 Immunolocalization of GRP78 and HSP70 proteins in DU145

cells by confocal microscopy. GRP78 and HSP70 proteins were

detected by anti-GRP78 and anti-HSP70 antibodies and then

visualized with AlexaFluor 488 antibodies (green). Plasma membrane

was stained with CM-Dil (red). The merged images are also shown

TDF and TDF-R 2841

123



residues on the model receptor site are depicted in

Fig. 7b–c. These key neighboring residues are Met 196,

Arg 197, Ile 199, Phe 242, Asp 413, Leu 414, Val 415, Cys

420, Pro 421, Val 443, Val 505, Asn 506, Gly 507, Asn

528, and Ile 538. Here, H bonds are formed between Gln 4

(P1) ��� Phe242 (receptor model) and between Cys 16 (P1)

��� Cys 420 (receptor model). Neighboring amino acid

residues on the model receptor as depicted in Fig 7e–f are

Val 429, Thr 434, Pro491, Arg492, Gly 493, Lys 556, Asn

563, Glu 566, Ser 567, Gly 577, Asp 578. Here, H bonds

are formed between Gly 18 (P1) … Thr434 (receptor

model), and Arg 1(P1) ��� Gly 577 (receptor model).

Another set of docking trials were made by using the

Patch Dock and refined by Fire Dock servers [57–60].

Three out of the top-ten docking conformations using Fire

Dock returned results comparatively similar to the pose

shown in Fig. 7a. The remaining five Fire Dock simula-

tions from this group matched the pose in Fig. 7g. The

neighbor residues of the receptor in this P1-docked struc-

ture (Fig. 7g) are Thr 38, Arg 60, Tyr 65, Lys 81, Phe 93,

Asp 94, Phe 114, Gly 227, His252, Leu253, Gly 254-255,

Glu 256, Asp 259, Gln 286, Arg 290, Glu 293, Lys294, and

Arg 297. These residues are depicted in Fig. 7h–i (red

stick). Here, two H bonds are formed between Lys 17(P1)

��� Gly 254 (receptor model) and another one is in between

Gln 10 (P1) … Arg 297 (receptor model). The construction

as well as the analyses of all these figures were carried out

using the Accelrys Discovery Studio 3.1 [61].

Does TDF have any effect on normal breast

and prostate cells? Does TDF modulate the puberty

or pregnancy?

A malignant phenotype is the result of dysregulation of cell

differentiation and proliferation [62–65]. Malignant cells

are highly proliferative, but highly undifferentiated [62–

65]. An increased rate of cell differentiation is reflected by

inhibition of cell growth, manifested by a decreased rate of

cell proliferation and cell cycle arrest [44]. TDF promotes

cell differentiation in breast and prostate cancer cell lines,

but not in fibroblasts or in other cancerous cell lines.

However, it is not yet known whether normal breast and

prostate cells differentiate when exposed to TDF protein. If

TDF promotes the differentiation of normal, non-cancerous

breast and prostate cells, this suggests that TDF has addi-

tional yet-to-be-investigated roles. For example, if TDF

stimulates breast and prostate cancer cell differentiation

(but not the differentiation of their normal counterparts for

these cells), this could be due to a high level of ‘‘un-dif-

ferentiation’’ of cancer cells. Since TDF does not have any

effect on other non-breast and non-prostate cancer cell

lines, this suggests that TDF could promote differentiation

of breast and prostate cancer cells because they are both

steroid-regulated breast and prostate cells AND un-differ-

entiated cancerous cells. In addition, if TDF promotes cell

differentiation only in breast and prostate cancer cell lines,

but not in normal breast and prostate cells, then TDF could

in theory act specifically on un-differentiated breast and

prostate cells as part of a developmental process but not on

mature cells, which could explain the differentiation effect

of TDF on undifferentiated breast and prostate cancerous

cells. Therefore, investigation of TDF-induced cell differ-

entiation through analysis of the cell cycle progression and

monitoring of markers specific for cell differentiation

(cyclin D1, E-cadherin, beta-catenin, or gamma-catenin) in

normal and cancerous cells could lead to elucidation of the

molecular mechanisms through which TDF induces cell

differentiation. Further questions regarding the function of

TDF include: does TDF (1) have a constant concentration in

the bloodstream and (2) act on un-differentiated breast and

prostate normal cells? Will (3) TDF influence the devel-

opment and differentiation of the secondary sexual

characters during puberty? and (4) Will TDF have the blood

levels increased during puberty? This question could extend

to pregnancy: (5) will TDF influence the differentiation of

A B

Fig. 6 Structure of the model

receptor protein. a Ribbon

diagram of TDF receptor

protein colored from the

N-terminal (blue) to C-terminal

(red). b Solvent-accessible

surface of the model receptor

protein. Cyan denotes exposed

residues with more than 25 %

solvent accessible surface

(SAS) and dark brown residues

are buried with 10 % less

solvent accessibility. Probe

radius is 1.4 Å. Here, the

receptor protein is depicted in

ball-and-stick mode
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breast cells and their preparation for lactation? (6) will TDF

blood levels increase during pregnancy, due to increased

need for differentiation of breast cells? The answer to some

of these questions could hopefully reveal important infor-

mation about TDF, yet to be discovered. In fact, our

laboratory has already started to investigate the function of

TDF, with particular focus on puberty and pregnancy. In our

lab, we compared the levels of TDF in the sera from healthy

children and adults, but found no significant difference

(data not shown). However, we did not examine the sera

from children prior to puberty, during puberty, and after

puberty (from the same subject), so it is premature to con-

clude anything about TDF. We also monitored the TDF

levels in the sera of non-pregnant and pregnant women. We

found striking differences: the TDF levels in the sera of

pregnant women were at least twice as high when compared

with the TDF levels in the sera of non-pregnant women

(data not shown). However, since the number of samples

analyzed was too small, it is too early to conclude anything

about a potential role of TDF in pregnancy. However, our

experiments will have to be first reproduced with a larger

number of samples before we can conclude anything

regarding a potential role of TDF in pregnancy. In a last

experiment, we also investigated by AP and WB using anti-

GRP78 and anti-HSP70 in the cell lysate from MCF10A

normal breast cells (data not shown). We found no reaction

for any of the two proteins investigated, suggesting that the

normal breast cells do not have sufficient GRP78 and per-

haps HSP70 at the cell surface to allow us to purify them by

AP and identify them by WB.

Based on our recent studies, TDF activates a possible

novel pathway through the members of HSP70 family of

proteins. We also concluded that TDF may activate a

pathway that is specific to breast and prostate cancer cells,

but not to other cancer cells (e.g., HeLa and NG108 cells)

or normal cells (e.g., HDF-a). In the view of TDF-R, we

found that at least two proteins are TDF-R candidates

(GRP78 and HSP70) and they are identified by AP and WB

in both HBCC and HPCC but not on other cells. Therefore,

the actions of TDF could be dependent on the presence of

A
C

B

D
E

F

G H I

Fig. 7 Prediction and structural analyses of potential peptide binding

sites. a, d, g Potential TDF-P1 binding pockets in the model receptor

protein. b, c, e–f, h, i Closer look at the TDF-P1 binding site on

TDF-R protein. Key residues of the receptor protein in the binding

pockets are displayed. TDF-P1 peptide is depicted in blue and

receptor is depicted in red
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GRP78 and HSP70 at the right time, in the right place

(outside the membrane and close to each other). As such,

the actions of TDF on normal undifferentiated breast and

prostate cells during puberty and on the breast cells during

pregnancy could in theory be dependent on (and perhaps

limited by) the availability of the GRP78 and HSP70 at the

plasma membrane as a functional TDF-R complex. How-

ever, until the experiments confirm our theory, this is just

speculation and rational reasoning.

Targeting TDF and potential TDF-R candidates

to prevent breast and prostate cancer

Breast cells are responsive to steroid hormones [66–70].

Prostate cells are also responsive to steroid hormones [71–

91]. The current cytotoxic and hormonal therapy for breast

and prostate cancer has temporary effectiveness, but

mainly palliates the patient’s symptoms, and rarely cures

the disease. The need for new therapeutic strategies to

prolong survival or to cure this cancer is obvious [92, 93].

One option is differentiation therapy, which uses agents

that induce cell differentiation. Therefore, if TDF induces

differentiation of HBCC and HPCC through a novel

pathway, then manipulation of the TDF pathway to pro-

duce differentiation of breast and prostate cancer cells

could provide an additional therapy alternative for the

treatment of breast and prostate cancer. If TDF and

TDF-P1 can induce cell differentiation, then two types of

compounds with better differentiation activity can be cre-

ated: small molecules, TDF-R agonists that can be obtained

after identification of TDF-R and (2) TDF-P1 analogs,

which are TDF-P1 derivatives with increased differentiation

activity, increased stability, and reduced toxicity. Therefore,

designing TDF-P1 analogs using D amino acids or substi-

tutions of glycine with alanine to create a restrain point

would be the first step in increasing the biological activity of

TDF-P1. There is still one caveat with the TDF-P1 analogs:

they are peptides, well known for their short life regarding

its stability. In addition, designing and testing TDF-R ago-

nists will also be a new avenue that could be explored for the

identification of enhanced differentiation agents. However, it

is worth noting and perhaps discussing, what types of TDF

agonists should be designed, built, and tested. Should we

target GRP78, HSP70, or both? Based on the AP and WB, as

well as immuno-AP and WB studies, GRP78 should be

targeted. However, based on the structural biology studies,

HSP70 proteins also interact with TDF-P1. Therefore,

advancement in understanding the function of TDF and

TDF-R will not be possible without elucidating whether the

TDF-R is a TDF-R complex, formed of at least GRP78 and

HSP70, or whether it is just one protein (GRP78 or HSP70

but not both).

Table 1 Summary of the cell lines where GRP78 and HSP70 pro-

teins were identified by AP and LC–MS/MS or by AP and WB

Cell lines GRP78 HSP70

Breast cancer cell lines

MCF7 ? ?

BT-549 ? ?

Prostate cancer cell lines

DU145 ? ?

PC3 ? ?

LNCaP ? ?

Other cancer cell lines

HeLa – –

NG108 – –

Normal cell lines

HDF-a – –

BLK CL.4 – –

A

B

Fig. 8 Hypothetical mechanism of action of TDF that considers only

GRP78 as TDF-R. a Overexpression of GRP78 at the cell surface

leads to prostate cancer; when in complex with Cripto, GRP78

enables Cripto to induce breast cancer. b When the blood TDF binds

to GRP78, it blocks the free (in prostate cancer) and Cripto-bound

GRP78, which blocks the development of the prostate and breast

cancers. When Cripto is not bound to GRP78, it is degraded and

therefore prevented from binding other GRP78 molecules
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Conclusions

We reviewed the available literature related to the dis-

covery and the investigation of TDF. We then compared

the AP and LC–MS/MS data published by our laboratory

that mostly focused on identification of TDF-R candidates

from a variety of cell lysates. The most likely TDF-R

candidates are GRP78 and HSP70, which are common in

both DU145 HPCC and MCF7 HBCC. We also concluded

using AP and WB that the TDF-R candidate is specific to

HPCC (DU145, PC3, and LNCaP) and in HBCC (MCF7

and BT-549), but not to other cancer (HeLa or NG108) or

normal (HDF-a BLK CL.4) fibroblast or fibroblast-like

cells investigated (Table 1). Identification of these two

proteins was then further compared in HBCC and HPCC

and investigated by fluorescence and confocal microscopy

and by molecular modeling. The possibility that TDF-R is

a multi-subunit protein complex, composed of at least

GRP78 and HSP70 is also considered. Using all of these

data, two main working models/hypothetical mechanisms

of action for TDF were built (Figs. 8, 9), that do not

exclude each other. These models are the basis of future

investigations.

Perspectives

Many questions regarding the function of TDF and its

receptor are still waiting for an answer. Some of the

questions will hopefully receive an answer, but most likely

many of them will still have to wait for a long time. Among

the most pressing questions are: What are the post-trans-

lational modifications that account for the differences

between the theoretical and experimental molecular mass

of TDF? What cells synthesize TDF? Is TDF restricted to

one organ or tissue? Is TDF specific to mammals? Do other

mammals and non-mammals (e.g., fish) have a TDF

homologue? Do TDF levels from the blood increase in

pregnancy? If yes, is TDF a pregnancy-protective? Do TDF

levels in the blood decrease in cancer? If yes, can TDF be

used as a biomarker for prediction of breast and prostate

cancer?

Future directions

In addition to the questions described in the perspective

section and that are waiting for an answer, one additional

question that requires an answer should be considered:

could TDF be considered a biomarker? Could overex-

pression of GRP78 and/or other HSP70 members be good

indicators of the onset and perhaps treatment of breast and

prostate cancer, simply by investigating the clinical sam-

ples (normal versus cancerous)? If this is the case, targeting

TDF-R with TDF and TDF-P1 agonists, as well as with

TDF-R agonists could help us not only in the treatment of

breast and prostate cancer but most importantly in its

prevention.
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