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Abstract Melatonin is involved in many physiological

functions and it plays an important role in many patho-

logical processes as well. Melatonin has been shown to

reduce the incidence of experimentally induced cancers

and can significantly inhibit the growth of some human

tumors, namely hormone-dependent cancers. The antican-

cer effects of melatonin have been observed in breast

cancer, both in in vivo with models of chemically induced

rat mammary tumors, and in vitro studies on human breast

cancer cell lines. Melatonin acts at different physiological

levels and its antitumoral properties are supported by a set

of complex, different mechanisms of action, involving

apoptosis activation, inhibition of proliferation, and cell

differentiation.
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Introduction

In the last two decades, a compelling body of evidence has

outlined the relevance of melatonin to human physiology

and pathology. Melatonin displays important roles in sev-

eral biologic functions, among which are circadian

rhythms, sleep, mood, reproductive physiology, and dis-

eases of aging [1–8]. Additionally, in the event of elevated

oxidative stress, melatonin functions as a highly efficient

antioxidant [9–12]. Numerous studies, based on animal as

well as on clinical data, have provided evidence that mel-

atonin reduces the incidence of experimentally induced

cancers [13–15] and may significantly inhibit the growth of

some human tumors [16–18]. The general conclusion is

that melatonin inhibits cell proliferation and induces

apoptosis in tumors (especially hormone-sensitive can-

cers), and decreases the incidence and the proliferation rate

of chemically induced murine neoplasias. Interestingly,

there is no consensus regarding the major mechanisms by

which melatonin reduces tumor growth although numerous

well-supported explanations have been proposed [19–24].

The first suggestion concerning a potential relationship

between the pineal gland and cancer was made more than

80 years ago [25]. Soon after the discovery of melatonin,

its role in the control of neoplastic growth quickly was

often investigated [26, 27]. In 1978, the seminal paper by

Cohen et al. [28] first proposed that the pineal gland and its

main secretory product are likely to play an important role

in the pathogenesis of breast cancer. These authors sug-

gested that a reduction in pineal function, whatever its

cause, and the consequent loss in melatonin secretion, may

induce a state of relative hyperestrogenism, thus leading to

a prolonged exposure of breast tissue to estrogens and

eventually ending in cancer induction. Studies performed

on the field in recent decades have highlighted that the
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anticancer effects exerted by melatonin on breast tumors

are complex and can be recognized at different physio-

logical levels (from the molecular to the endocrine level)

[21].

Breast cancer is one of the most frequently occurring

cancers, and one of the leading causes of death among

women aged 40–55 years [29]. Many factors, such as

genetics, hormonal environment, age, diet, alcohol con-

sumption, and cigarette smoking, have been hypothesized

as contributors to the development of breast cancer [30–32].

However, a major consequence of a modern lifestyle is the

disruption of circadian rhythms, a condition that leads to

several pathological conditions, including sleep distur-

bances and depression [20, 33]. The alternation of the day

and night circadian cycle is indeed a very important regu-

lator of a wide variety of physiological biorhythms in

organisms, including humans. In particular, accumulating

evidence shows that alteration of circadian rhythms might

lead to increased susceptibility to cancer in humans. Epi-

demiological studies have revealed the risk for breast cancer

to be significantly higher in industrialized societies, and that

the risk increases in women who work night shifts, and in

individuals who spend more hours working at night [34].

Recently, experimental data has provided compelling evi-

dence in support of such a hypothesis [35].

Growing in parallel with industrialization, the use of

artificial light prolonged the ‘‘day,’’ permitting employers

to extend their work schedules well into the night and in

many cases throughout the 24-h period. Because of this

temporal coincidence, light at night suppresses the syn-

thesis and release of melatonin; this drop has been

incriminated as a plausible contributor to the elevated

cancer risk [26, 36]. What this means is that humans in

modern societies are rendering themselves progressively

more melatonin-deficient by shortening their daily dark

period, which also reduces the total amount of melatonin

produced [24]. Kerenyi et al. [37] were early advocates of

the idea that ‘‘light pollution’’ might be a potentially

important etiologic influence on the genesis of other human

cancers. Epidemiologic studies [38, 39] have shown that

women working night shifts have a significantly elevated

risk of breast cancer, which is likely related to circadian

disruption, sleep deprivation, and melatonin suppression

[33]. In 1981, Bartsch et al. [40] published an early study

demonstrating that plasma concentrations are diminished in

patients with breast cancer. Since then, other reports have

confirmed that patients with established breast cancer have

measurably lower levels of melatonin [41, 42]. Overall,

these studies highlight how the nocturnal melatonin rhythm

may represent a critically important chronobiotic signal,

which not only directly inhibits human breast cancer signal

transduction, but temporally organizes cancer metabolism

and growth to help maintain the host–cancer balance.

Disruption of tumor circadian organization shifts the host–

cancer balance in favor of constantly up-regulated tumor

metabolism and fuels ‘‘runaway’’ cancer cell proliferation

and survival.

Melatonin’s effects on breast cancer: animal studies

and clinical trials

Insights into the relationship between melatonin and breast

cancer have been provided by studies performed on

chemically induced mammary cancer in animals. Reducing

circulating melatonin levels in rats (through pinealectomy,

or by exposure to different photoperiods), generally leads

to increased spontaneous tumor induction or enhanced

growth of implanted cancers [43]. Conversely, restoring

melatonin levels generally prevents or restrains the devel-

opment of breast cancer [44, 45].

Melatonin significantly reduces the incidence and tumor

size of rat mammary cancers induced by 7,12-dimethyl-

benz[a]anthracene (DMBA) or N-nitrosomethylurea (NMU)

[43, 46]. In DMBA-exposed rats, long-term daily adminis-

tration of melatonin inhibited tumorigenesis, whereas

pinealectomy increased the incidence of breast tumors [47].

Similar results have been reported by several authors [48].

Moreover, constant light (known to suppress melatonin

release) reduces the latency and increases the number of

DMBA-induced mammary tumors in rats; it also increases

the incidence of different spontaneous cancers in female

CBA mice [49]. Moreover, in NMU-treated rats, melatonin’s

cytostatic effects are similar to those exerted by tamoxifen,

i.e., melatonin increases tumor latency, reduces cancer

incidence (% of animals developing tumors) and also redu-

ces the number and size of tumors [46]. Furthermore,

melatonin retards the rate of tumor-growth and enhances

spontaneous tumor regression [50, 51]. Collectively, these

data show that melatonin inhibits both cancer initiation and

progression, through several mechanisms, including estro-

gen-pathway modulation, receptor-mediated and receptor-

independent effects on different enzymatic processes, as

well as anti-oxidant effects [21]. It is well documented that

reactive oxygen species (ROS) participate in a variety of

processes regulating cell growth, gene transcription, differ-

entiation, and apoptosis [52]. In cancer cells, free radicals

and ROS can act as tumor promoters, leading to cancer ini-

tiation or to the growth enhancement of already-transformed

cells. Therefore, free radical scavengers and antioxidant

molecules like melatonin can display a significant role in

preventing cancer and/or in hindering its progression

[53, 54].

Some results obtained from research carried out on

animals have been confirmed in studies performed in

humans. In addition to some preliminary anecdotic reports
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[55, 56], limited clinical trials carried out by Lissoni and

colleagues [57–63] have provided evidence of benefits in

treating cancer-bearing patients with melatonin. In a pilot

study, 14 women with metastatic breast cancer who had no

clinical response to tamoxifen alone were given 20 mg of

tamoxifen plus 20 mg of melatonin in the evening. A

partial response, defined as radiographic-confirmed reduc-

tion of lesions by greater than 50 %, was observed in four

out of 14 patients (28.5 %) with a median duration of

8 months [57]. In two randomized clinical trials [58, 59]

(including several types cancer, including breast tumors),

melatonin had beneficial effects among patients with

metastatic cancer.

Panzer and Viljoen [64] have reviewed clinical studies

with melatonin on patients with different types of cancer,

providing evidence about melatonin therapy benefits, and

showing that the indoleamine, may: (a) increase survival in

a few metastatic patients; (b) retard cancer progression;

(c) improve quality of life and performance status;

(d) decrease the incidence and severity of some side-effects

linked to conventional treatments (hypotension, thrombo-

cytopenia, myelodysplastic syndrome, lymphocytopenia)

[61–63, 65]. In the evaluated reports, several types of

advanced cancer patients are covered and only a few cases

of mammary tumors; thus, little information on the

potential efficacy of melatonin treatment in breast cancer

patients is currently available. Additionally, these findings

require verification by independent and controlled repli-

cation studies to overcome statistical bias and

methodological deficiencies due to the limited number of

patients under study [66].

Melatonin’s effects on breast cancer: in vitro studies

Inhibition of breast cancer cell growth

The anticancer effects attributed to melatonin have often

been observed in in vitro studies carried out on estrogen-

responsive human breast cancer cell lines. The first such

experiments using human MCF-7 cells demonstrated that

melatonin, even at physiological concentrations, directly

suppresses cancer cell growth [67]. Melatonin appears to

exert an inhibitory effect by causing an accumulation of cells

in the G0/G1 phase of the cell cycle [68] or, otherwise, by

delaying the progression of MCF-7 cells from the G1 phase to

the S phase of the cell cycle [69, 70] allowing the cells to

achieve a greater differentiation. A similar pattern was

observed for other estrogen-sensitive cancer cell lines (T47D

and ZR75-1) [71–73]. Growth-inhibition is accompanied by

a significant reduction in DNA content and thymidine

incorporation [74, 75]. These effects seem to be related to

both cancer cell characteristics and culture conditions.

Melatonin receptors and estrogen receptors

Melatonin significantly inhibits cell growth in breast can-

cer cells expressing estrogen receptors (ERa) [76, 77].

Melatonin does not inhibit the proliferation of MDA-MB-

231, MDA-MB-330, or BT-20 ERa-negative human breast

tumor cells lines. However, the indoleamine has been

demonstrated to reduce growth proliferation on ERa-neg-

ative breast cancer and progesterone receptor–negative

human breast tumor xenografts growing in nude rats [78].

Moreover, a significant oncostatic action has been observed

in ER-negative, non-breast tumors treated with melatonin

[79]. These data suggest that some non-estrogen receptor-

mediated effects are likely to be elicited by the complex

interplay between melatonin and cellular molecules not

related to estrogen receptors.

Certainly, some of the effects of the indoleamine are

mediated by the interaction with a specific membrane-bound

melatonin receptor. Numerous reports have demonstrated

that melatonin binds and activates the G protein-coupled

membrane receptors 1 (MT1) and 2 (MT2) in a variety of

tissues [80, 81].

The oncostatic effects of melatonin on ER-positive

breast cancer cells seem to be, at least in a major part,

dependent on the presence of the MT1, which has been

found in human breast cancer tissues [82]. The MT1

receptor is differentially expressed in ERa-positive and

ERa-negative breast cancer cells, with the higher MT1

levels found in the former cell lines [83]. The MT1

receptor couples with different Gai proteins in multiple cell

types, while also coupling with the Gq and G11 proteins in

other cell types [84]. Selective MT1 antagonists (i.e., lu-

zindole) suppress melatonin-induced anticancer effects

[84, 85] while, overexpression of MT1 receptor in MCF-7

cells significantly enhances the response of these cells to

the growth-inhibitory actions of melatonin, both in vitro

and in vivo [86, 87]. Similar results have been observed

when treating MCF-7 cells with valproic acid, a MT1

receptor inducer [88]. The sensitivity of different MCF-7

strains to melatonin is strongly dependent on MT1

expression [89]. Significantly diminished night-time and

early morning levels of MT1 receptors were observed in

uteri from old rats compared to adult and young animals; in

association with this reduction, the growth-suppressive

action of exogenous melatonin was found to be diminished

in old rats [90]. The MT2 receptor seems not to be involved

in oncostatic effects triggered by melatonin, in that

MT2 activation is incapable of mediating the antiprolifer-

ative effects of melatonin on breast tumors [91]. Recent

findings also demonstrated that the MT1 receptor co-

localizes with the Cav-1 antibody, indicating the MT1

receptor resides in the caveola, a key membrane-signaling

platform [92].
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MT1 and MT2 receptors are G-protein-coupled recep-

tors, which are expressed in various parts of the central

nervous system and in numerous peripheral organs (blood

vessels, mammary gland, gastrointestinal tract, liver,

kidney and bladder, ovary, testis, prostate, skin, and the

immune system) [93]. Indeed, melatonin’s receptor may

exist in every cell in the body. Melatonin receptors mediate

a plethora of intracellular events depending on the cellular

milieu. These effects include changes in intracellular cyclic

nucleotides (cAMP, cGMP) and calcium levels, activation

of certain protein kinase C subtypes, intracellular locali-

zation of steroid hormone receptors, and regulation of G

protein signaling proteins [81, 94].

MT1 expression is regulated by both melatonin and

estradiol, as first documented in experiments performed on

cells of the pars tuberalis [95]. The steady-state level of

MT1 mRNA is significantly enhanced in MCF-7 cells

cultured in estradiol-depleted medium. In cancer cells

cultured in the presence of fetal bovine serum (FBS), the

MT1 receptor steady-state mRNA level is suppressed by

the addition of estradiol (1 nM) or significantly diminished

by the addition of melatonin, confirming the ability of

melatonin to down-regulate the levels of its own receptor,

at least at the steady-state mRNA levels [91, 96]. The

ability of estradiol to down-regulate MT1 receptors could

explain some contradictory results, i.e., the lack of mela-

tonin inhibition on estradiol-induced proliferation of breast

cancer cells [97].

While removal of estradiol from the culture media up-

regulates MT1 levels, several reports were unable to dem-

onstrate an enhanced growth-inhibitory response to

melatonin in MCF-7 cells growing in estradiol-deficient

media, as the overall growth of those cells is generally

slowed in the absence of estradiol [98]. These results imply

that a number of other hormones, cytokines, or growth

factor-related signaling pathways modulate MT1 expres-

sion, and the hormonal milieu of the tumor at the time of

melatonin administration may dramatically impact the

responsiveness of the tumor to the anti-proliferative action

of melatonin. These actions are generally recognized as

hormone-like effects. However, melatonin does not always

act in this manner, and several melatonin-induced actions

are carried out without the intervention of a receptor [98–

100]. Melatonin should be rather considered as a tissue

factor, behaving like a paracoid, an autocoid, an antioxi-

dant, or a pro-oxidant factor depending on the physiological

context [101].

The oncostatic effects triggered by melatonin are

strictly context-dependent. Reducing the FBS concentra-

tion abrogates the responsiveness of MCF-7 cells to

melatonin, until cells are totally refractory in serum-free

medium [102]; on the contrary, melatonin-induced inhi-

bition is enhanced in both human [76] and animal cancer

cells [72] cultured in stripped serum supplemented with

estradiol. Moreover, differences in MCF-7 cell strains

and especially differences in their proliferation rate

may account for the different sensitivity to the inhibi-

tory effects induced by melatonin [103]. The effect of

melatonin seems specific since melatonin precursors,

metabolites, or other pineal methoxyindoles, have not

been shown to inhibit breast cancer cell proliferation.

Melatonin’s inhibitory activity is dependent on the pattern

(continuous or pulsated) of the exposure to the indole

hormone in the culture media; the highest antiproliferative

effects are obtained when the concentration of melatonin

in culture media is changed every 12 h with concentra-

tions ranging from 10-11 to 10-9 M, thus mimicking the

physiological day/night oscillation of melatonin in the

plasma of most mammals [104].

Culture conditions exert a relevant modulation on cell

sensitivity to melatonin. In cells growing in anchorage-

dependent monolayer culture with FBS, melatonin inhibits

MCF-7 cells according to a bell-shaped curve, showing that

the highest cytostatic effect is generally obtained around

the physiological range (10-11–10-9 M). Higher or lower

concentrations produce little or no inhibition [68]. Growth-

inhibition becomes evident after 48–72 h and thereafter

increases linearly up to 144 h [70]. However, in an

anchorage-independent culture system, the dose–response

curve loses its characteristic form and becomes quite linear

with increasing melatonin concentrations producing pro-

gressively greater inhibition [105]. This result highlights

that cellular attachment to a substratum—that is likely to

modify both cytoskeleton and cell shape—plays an

important role in setting the level of cell sensitivity to

melatonin.

Signaling pathways involved: estrogen pathways

Melatonin influences estrogenic actions on mammary tis-

sue in three different ways: (1) by down-regulating gonadal

synthesis of steroids and, consequently, decreasing their

circulating levels. Thus melatonin interferes with the sys-

temic effects of estrogens; (2) by interacting with the

estrogen-receptor (ER), thus behaving as an anti-estrogen;

and (3) by down-regulating the activity of some enzymes,

such as aromatase, involved in the synthesis of estrogens

from androgens, i.e., behaving as a selective estrogen

enzyme modulator [21, 106].

Systemic effects

Melatonin was initially shown to control seasonal

reproduction in animals under natural photoperiods [107–

109]. In seasonally breeding mammalian species, mela-

tonin controls reproductive function through the
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activation of receptor sites within the hypothalamic-

pituitary axis thus driving the levels of gonadal activity

[109, 110]. As part of this action, melatonin down-reg-

ulates ovarian estrogen secretion in a variety of

mammals. It was initially hypothesized that an impaired

pineal secretion leads to reduced circulating melatonin

levels, which results in unopposed estrogen secretion and

thus to an elevated susceptibility to breast cancer [111].

In turn, normal or high serum melatonin levels, by

suppressing of estrogen secretion, or by direct inhibitory

effects on breast tissue, might restrain induction of

mammary cancer (Fig. 1). Although in humans the role

of melatonin on the reproductive physiology is not

totally clear [112, 113], an inverse relationship between

melatonin and ovarian activity [114] and a role of

melatonin in the modulation of neuroendocrine-repro-

ductive axis has been proposed [115, 116]. Indeed,

melatonin exerts some modulatory actions on steroido-

genesis in human granulosa-luteal cells [117]; moreover,

functional melatonin receptors have been identified in

cells of antral follicles and corpora lutea of rat ovaries

[118]. Together, these data suggest that melatonin may

participate in the modulation of ovarian function by

down-regulating the production of estrogens, thereby

supporting the above-mentioned hypothesis of its role in

breast cancer.

Melatonin–ER interactions

Only ERa-positive breast tumor cell lines are growth-

inhibited by physiologic concentrations of melatonin,

whereas ERa-negative cell lines are unaffected by the

indoleamine [77, 119]. Various breast cancer cell lines

have been reported to exhibit significant differences in their

sensitivity to the antiproliferative action of melatonin. This

may correlate with the degree of estrogen responsiveness

[120] or the ERa/ERb ratio [67, 121]; indeed, MCF-7

cell sensitivity to melatonin is abolished by ERb
overexpression.

Since melatonin’s inhibitory activity has been observed

principally in estrogen-responsive breast cancer cells, it has

been hypothesized that melatonin hinders cancer cell

growth by antagonizing the intracellular estrogen-response

pathway. Melatonin blocks the mitogenic effects of estra-

diol as well as counteracting the estradiol-induced

invasiveness of MCF-7 cells [122]. Furthermore, the

indoleamine augments the sensitivity of MCF-7 cells to

anti-estrogens [123] and down-regulates the expression of

proteins, growth factors, and proto-oncogenes regulated by

estrogens [124]. Moreover, the transfection of MT1 mela-

tonin receptors into MCF-7 cells or MDA-MB-231 cells

(ERa negative) significantly enhances the growth-sup-

pressive effects of melatonin exclusively in MCF-7 cells;

Fig. 1 Melatonin and estrogens have different actions on breast cancer cells. Estradiol stimulates cell proliferation, while reducing

differentiation processes; conversely, melatonin promotes differentiation and reduces breast cancer cell proliferation
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thus, only cells also expressing an estrogen receptor are

inhibited [87]. Indeed, melatonin significantly blunts

estrogen-induced ERa transcriptional activity, while the

addition of pertussis toxin (a known uncoupler of Gai2

proteins) suppresses melatonin-induced inhibitory effects

[125].

How melatonin interacts with the estrogen pathway

remains an open question. Unlike anti-estrogenic drugs,

evidence indicates that melatonin does not bind to the ER

nor interfere with the binding of estradiol to its receptor

[126]. Melatonin reduces the expression of ERa (both at

the mRNA and protein level) and inhibits the binding of

estradiol–receptor complex to the estrogens response ele-

ment (ERE) on DNA [47, 127]. These effects likely depend

on its binding to a high-affinity membrane-bound receptor

coupled to Gi proteins [128] (Fig. 2). Via the activation of

Gai2 protein, melatonin limits the basal phosphorylation

level of the ERa. Thus, melatonin behaves as an anti-

estrogen, which does not bind to the ER, but to its own

membrane receptors; via this binding to its specific

receptors, melatonin interacts with the ER signaling path-

way. This effect is specific for ERa-mediated effects. One

of the desirable properties of a selective estrogen modu-

lator is its ability to specifically block the ERa but not ERb.

Indeed, it was demonstrated [52] that whereas melatonin is

a specific inhibitor of estrogen-induced ERa-mediated

transcriptional activation, the indoleamine does not inhibit

ERb-mediated transactivation.

Melatonin and nuclear receptors

The ligand-dependent nuclear transcription factors (NRs)

play a multitude of essential roles in development,

homeostasis, reproduction, and immune function [129].

NRs regulate transcription by several mechanisms and can

both activate and inhibit gene expression [130]. The NRs

include steroidal transcription factors such as the estrogen

(ER), glucocorticoid (GR), thyroid hormone receptor (TR),

liver X receptor (LXR), farnesoid X receptor (FXR),

vitamin D receptor (VDR), retinoid acid receptor (RAR),

retinoid X receptor (RXR), and peroxisome proliferators-

activated receptors (PPARs) [131]. Through its role as a

required heterodimeric partner, RXRs control the function

of many other NRs, thus integrating a unique transcrip-

tional network dependent on RXR responses [132, 133].

RXR forms heterodimers with virtually all NRs including

GR, ER, TR, PPAR, VDR, LXR, and FXR. NRs can

activate transcription as monomers and/or dimers with the

RXR. Once activated, NRs dissociate from co-repressors

and recruit co-activator proteins, which promote tran-

scriptional activation [134, 135]. Half of the NRs are so-

called ‘‘orphan’’ receptors because the identity of their

Fig. 2 Melatonin interacts with the Ca??/calmodulin signaling

pathway, either by modifying the intracellular accumulation of Ca??

or by means of a direct interaction with calmodulin. Calmodulin

interacts with ER, stimulating the phosphorylation of the receptor and

enhancing the binding of the estradiol–ER complex to ERE (estrogen

response elements). Estrogens activate adenylate cyclase and increase

cAMP; on the contrary, melatonin, after its binding to MT1, inhibits

adenylate cyclase and reduces cAMP
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ligand is unknown. However, some receptors belonging to

RXRs are no longer ‘‘orphaned’’. Evidence of a genomic

action of melatonin via nuclear RZR/ROR receptors was

initially hypothesized by Becker-Andre in 1994 [136].

Subsequent studies have detected the nuclear melatonin

receptor by using in situ hybridization in neuronal tissue

[137, 138] including the pineal gland [139] and in non-

neuronal other tissues as well [140–142].

Direct evidence of the epigenetic effect of melatonin has

been provided by Sharma et al. [143]. In this study, mel-

atonin significantly elevated mRNA expression for various

histone deacetylases (HDAC) isoforms and increased his-

tone H3 acetylation in neural stem cell lines. As suggested

by Korkmaz and colleagues [144, 145], these effects are

indicative of an epigenetic regulation exerted by melatonin

at NR/co-regulator level rather than selective enzymatic

inhibition or activation. It is not still known if melatonin’s

effects are mediated via direct changes in phosphorylation

of the nuclear receptor, regulation of coactivator or core-

pressor phosphorylation, or both [146]. Regardless, these

data clearly demonstrate the ability of melatonin, via signal

transduction pathways, to influence gene expression in

human breast cancer cells.

Melatonin as calmodulin and calcium modulator

Even if the molecular link between melatonin and estrogen

pathways has not been fully elucidated, it is likely that

cyclic AMP (cAMP) could, at least in part, modulate this

function. Estrogens activate adenylate cyclase, thereafter

increasing c-AMP levels; in turn, c-AMP synergizes with

hormone receptors, enhancing ER-mediated transcription

[147]. On the contrary, melatonin, after it binds to MT1, it

inhibits adenylate cyclase, reduces c-AMP and in turn

protein kinase A (PKA) activity leading to a diminished

phosphorylation and activation of ERa and the co-activators

CBP/p300, thus blocking the estrogenic effect [148, 149].

It has recently been proposed that melatonin may hinder

the estrogen pathway through the Ca??/calmodulin sig-

naling pathway, either modifying the intracellular

accumulation of Ca?? or by means of a direct interaction

with calmodulin (CaM) [150, 151]. Furthermore, melatonin

changes CaM subcellular redistribution stimulating its

phosphorylation by protein kinase C (PKCa) [152]. It is

known that calmodulin interacts with ER, stimulating the

phosphorylation of the receptor and thus enhancing the

binding of the estradiol–ER complex to the ERE [153].

Conversely, anti-calmodulin compounds inhibit breast

cancer growth, probably by interfering with the CaM-ER

interplay [154]. Since both melatonin and calmodulin are

phylogenetically well preserved, calmodulin–melatonin

interaction probably represents a major mechanism for

regulation and synchronization of cell physiology and it is

likely that melatonin interference with calmodulin functions

could contribute to modulate estrogen receptor activation.

Moreover, the melatonin-induced rise in both intracellular

Ca?? and membrane-bound calmodulin could enhance

apoptosis and E-cadherin mediated cell–cell adhesion

[155]. Consistent with this, Blask et al. [156] reported that

melatonin inhibits Ca??-stimulated MCF-7 cell growth via

a glutathione-dependent mechanism. Indeed, once gluta-

thione synthesis is inhibited using buthionine sulfoximine

(an inhibiter of c-glutamylcysteine synthetase) the onco-

static action of 1 nM melatonin was blocked, indicating that

glutathione is required for melatonin action [157]. In

addition, glutathione depletion has been shown to cause a

reduction in microtubule polymerization in cells that may

relate to the oxidation of sulfhydryl groups [158]. In con-

trast, physiological concentrations of melatonin are known

to stabilize microtubules by inhibiting Ca??/CaM depoly-

merization, which is itself a mitogenic signal transduction

mechanism [159]. Thus, adequate levels of glutathione may

be required to maintain the sulfhydryl groups of microtu-

bule-associated proteins in a reduced state in order for

melatonin to suppress Ca??/CaM-mediated depolymeriza-

tion of the cytoskeleton and thus cell proliferation. These

effects are seemingly to be ER-independent, keeping in

mind that they have been recorded also in ER-negative

breast cancer cells, as well as in non-breast cancer cell lines

devoid of the ER; these data therefore could provide a

reasonable hypothesis about how melatonin inhibits cell

proliferation [44, 160, 161] (Fig. 2). Clearly, further studies

are warranted in order to verify and better understand the

physiological meaning of melatonin’s modulation of cal-

modulin and intracellular calcium in breast cancer cells.

Aromatase pathways

In MCF-7 breast cancer cells, as well as in adipose tissue of

tumor-bearing breasts, expression of the CYP19 gene,

which encodes aromatase P450, the enzyme responsible for

estrogen biosynthesis, is regulated by two proximal pro-

moters, i.e., I.3 and II [162], mainly modulated by

intracellular cAMP [163]. Therefore, molecules or drugs

able to modulate cAMP levels could also influence aro-

matase expression in breast cancer cells. This is the case

with prostaglandin E2 (PGE2) that increases intracellular

cAMP levels and stimulates aromatase and estrogen bio-

synthesis [164]. Estrogens also increase cAMP, as

previously mentioned. Thus, in breast cancer cells, but not

in normal epithelial cells with different CYP19 promoters,

estrogens may induce, through a paracrine loop, the local

biosynthesis of estrogens via the increase of cAMP and

expression of aromatase. On the other hand, melatonin,

after its binding to MT1 membrane receptor linked to Gi

proteins, decreases in a dose- and time-dependent manner
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the activity of adenylate cyclase and subsequently reduces

cAMP synthesis thus leading to elevated cGMP levels and

a reduced aromatase concentration [165]. Indeed, it has

been observed that melatonin, at both physiological

(10-9 M) and pharmacological (10-4 M) concentrations,

reduces the synthesis of estrogen in MCF-7 cells, through

aromatase inhibition [166]. Furthermore, transfection of

the MT1 melatonin receptor in MCF-7 cells significantly

reduced aromatase activity and MT1-transfected cells

showed a level of aromatase activity that was 50 % of that

of the control cancer cells when both are treated with

melatonin [167]. Moreover, melatonin enhances the

inhibitory effect of aminoglutethimide on aromatase

activity in breast cancer cells, through a significant

reduction in aromatase mRNA expression [168]. Addi-

tionally in MCF-7 cells, aromatase activity is stimulated by

epidermal growth factor and transforming growth factor-a
[169], both of which are down-regulated by melatonin

[170]; melatonin-dependent aromatase inhibition could be

further achieved through suppression of cyclooxygenase

activity and reduced prostaglandin E2 synthesis [171].

As breast cancer occurs in regions of the mammary

gland with the highest levels of aromatase expression, the

inhibition of aromatase activity by melatonin may be an

important mechanism in the ability of this indoleamine to

control tumor growth. Other studies confirmed that mela-

tonin efficiently inhibits local, tissue-based biosynthesis of

estrogen. It is well recognized that mammary cancer tissue

contains all the enzymatic machinery for the local bio-

synthesis of estrogens [172]. The presence of the type 1

(17b-HSD1) isoform of 17b-hydroxysteroid dehydrogen-

ases, which catalyze the conversion of the relatively weak

estrone (E1), androstenedione and 5-androstenedione to the

more potent estradiol, has been documented in several

human breast cancer cell lines, including T47D and MCF-7

[172]. Estrogen production in normal mammary tissue is

displaced toward the production of hormones with low

activity (like estrone), whereas in breast adenocarcinomas

what predominates is the formation of the active estradiol

[173]. This effect is likely to be due to the different enzyme

composition of normal and cancerous tissues. The former

exhibits a higher activity of both 17b-HSD type 2, which

converts estradiol to estrone, and estrogen sulfotransferase,

which inactivates both estrone and estradiol; on the other

hand, opposite effects are mediated by aromatase and type

2 isoform of 17b-hydroxysteroid dehydrogenase that are

largely represented in cancer tissues. It has been demon-

strated that melatonin reduces the synthesis of biologically

active estrogens in MCF-7 cells, through the contemporary

inhibition of sulfatases and 17b-HSD1 and the stimulation

of estrogen sulfotransferase, the enzyme responsible for the

formation of the biologically inactive estrogen sulphates.

As a result, the production of estradiol from estrone in

MCF-7 cells decreases two- to three-fold in the presence of

melatonin 1 nM [174].

The transcription factor nuclear factor jB (NF-jB) is

involved in CYP19 activation by inducing several pro-

inflammatory molecules [tumor necrosis factor-a (TNF-a),

inducible nitric oxide synthase (iNOS), cyclooxygenase

(COX-2), and PGE2] [175]. Over-expression of TNF-a,

COX-2, and PGE2 has been demonstrated to induce elevated

aromatase expression in both human and mice breast cancer

tissue [72, 176]. It is noteworthy that melatonin inhibits

every molecule in this pathway, mainly through its nuclear

actions [177, 178]. Moreover, melatonin inhibits p300 HAT

activity, thus leading to a reduced COX-2 and iNOS synthase

expression [179]. This effect is likely to be mediated by

inhibition of p52 acetylation and binding of DNA. As

expected, melatonin also suppresses NF-jB binding to DNA

[180–182], thereby decreasing TNF-a, iNOS, COX-2 and

PGE2 levels. Furthermore, melatonin interaction with

PPARs and RXR hinders NF-jB transcription, leading to

cancer cell growth inhibition [183, 184]. In turn, melatonin-

induced activation of both PPARs and RXR receptor inhibits

aromatase transcription via NF-jB. Melatonin also inhibits

the expression of other estrogen-regulated genes, like pS2 or

cathepsin [185]. These findings are important, as pS2 has

been demonstrated to be a differentiation factor in the gas-

trointestinal tract, as well as an inhibitor of adenocarcinoma

cell proliferation [186, 187].

Growth-inhibitory mechanisms

Melatonin significantly limits cancer proliferation in vitro.

For melatonin to achieve this effect, it seems several

mechanisms are involved, including actions on the

expression of some proteins involved in the control of the

G1–S transition, through the inhibition of cyclin D1

expression and the increase in p53 release (Fig. 3). Cyclin

D1 is a key protein of G1 to S transition and seems to

mediate the steroid-dependent growth of both normal and

malignant mammary epithelial cells [188]; moreover,

down-regulation of cyclin D1 expression may be sufficient

to drive the inhibitory effects displayed by anti-estrogenic

drugs [189]. Cyclin D1 interacts with several transcription

factors as well as with nuclear receptors (including GR,

ERa, and PPARs). NRs directly bind to cyclin D1 and their

ligand-dependent transactivation is modulated by cyclin

D1 [190]. It is noteworthy that cyclin D1 participates in the

activation process of ERa transcription and cooperates in

the down-regulation of both GR and PPARs [191]. Mela-

tonin induces a significant transcriptional down-regulation

of the cyclin D1 gene through the inhibition of c-jun and

ATF-2 proteins [192]. Both c-jun and ATF-2 proteins are

known to transactivate the cAMP-responsive element

present in the cyclin D1 promoter element [193].
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The p53 gene is involved in both growth suppression

and apoptosis pathways [193]. The p53 gene activates the

expression of the WAF1 gene (also known as p21), which

inhibits cyclin-dependent kinases thus leading to a failure

of the phosphorylation of the retinoblastoma protein and

the subsequent cell cycle arrest [194].

In breast cancer cells treated with physiological doses of

melatonin, both p53 and p21 expression is significantly

augmented [195]. It is likely that up-regulation of p53 occurs

downstream to enhanced release of TGFb-1 induced by

melatonin. Indeed, melatonin can up-regulate TGFb-1

mRNA expression in prostate [196] and breast cancer cells

[197]. Moreover, melatonin-inhibitory effect on breast can-

cer growth should be viewed as a TGFb-1 dependent process

as it can be completely prevented in several breast cancer cell

lines by adding anti-TGFb-1 antibodies [70, 74, 198]. A

significant rise in TGFb-1 levels in MCF-7 cells treated with

melatonin are measured after 72 h and an evident growth-

inhibitory action is documented only after this period. After

adding anti-TGFb-1 antibodies, the growth-inhibition

induced by melatonin was completely prevented. These data

point out that melatonin-induced cell-growth inhibition in

MCF-7 breast cancer cells is largely mediated through the

involvement of the TGFb-1 pathway.

Other mechanisms are also involved in melatonin-

mediated inhibition of cancer cells. The decrease in cAMP

production caused by melatonin via MT1 and MT2

receptor interaction reportedly slows down the uptake of

linoleic acid, an essential fatty acid, by specific fatty acid

transporters [199]. Linoleic acid can be oxidized to

13-hydroxyoctadecadienoic acid by 15-lipoxygenase,

serving as an energy source for tumor growth and tumor

growth signaling molecules. Inhibition of linoleic acid

uptake by melatonin is regarded as one mechanism of its

antiproliferative effects.

Melatonin hinders telomerase activity, induced by

estrogens or cadmium, both in vitro and in vivo [200, 201].

Melatonin-treated cells display a significant dose-depen-

dent decrement in telomerase reverse transcriptase mRNA

expression as well as the mRNA of telomerase-reverse, the

RNA telomerase subunit. Similar results have been

obtained with GP 52608—an agonist of melatonin nuclear

receptors—while treatment with an agonist of melatonin

membrane receptors did not produce any effect, thus

Fig. 3 Melatonin significantly inhibits cancer proliferation by

increasing the p53/MDM2 and Akt/Akt-P ratios. The p53 gene

activates the expression of p21, which inhibits cyclin-dependent

kinases, thus leading to cell cycle arrest. In addition, melatonin

induces apoptosis in MCF-7 cancer cells. Melatonin-mediated early

apoptosis is a caspase-independent process, involving the apoptosis-

inducing factor (AIF). Melatonin-induced late apoptosis is TGFb-1

and caspase-dependent process. During late apoptosis, activated

caspase-9, -7, and cleaved-PARP increase significantly, concomitant

with a down-regulation of the Bcl/Bax ratio. By adding anti-TGFb-1

neutralizing antibodies, growth inhibition and late apoptosis triggered

by melatonin are inhibited
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highlighting the relevance of epigenetic mechanisms trig-

gered by melatonin [202]. Telomerase is a specialized

ribonucleoprotein DNA polymerase that extends telomeres

of eukaryotic chromosomes and its activity is under control

of epigenetic regulation [203]. Telomerase is activated in

most human cancers and its inhibition leads to cancer cell

death. Therefore, it is tempting to speculate that such a

mechanism could also be involved in melatonin-dependent

cancer apoptosis [204].

Apoptosis pathways

In contrast to the well-studied inhibition of apoptotic pro-

cesses by melatonin in normal cells [205, 206], it is well

known that in cancer cells, melatonin actually promotes

apoptosis. Melatonin induces programmed cell death in colon

cancer cells [207–209], hepatocarcinoma cells [201, 210],

neuroblastoma [211], Ehrlich ascites carcinoma cells [212],

myeloid [213], lymphoma [214], pancreatic cancer [215, 216],

renal cancer [217], and leukemia cells [218–220]. However,

although inhibitory effects of melatonin in MCF-7 have been

well documented, the mechanism by which the apoptotic

effects are executed are still a matter of investigation. Cos and

coworkers [221] claimed no apoptotic effects on MCF-7 cells

treated with different concentrations of melatonin, while other

reports [222, 223] documented a significant rise in MCF-7

cells apoptotic rate when melatonin was administered together

with retinoids. In the latter studies, melatonin was able to

enhance apoptosis by modulating the transcriptional activity

of the retinoic acid receptors [224]. A recent study docu-

mented a significant increase in caspase-3 activity and DNA

fragmentation in tumor tissues obtained from breast cancer-

bearing rats treated with melatonin, therefore providing at

least an indirect proof of the apoptotic activity exerted by

melatonin on breast cancer [225].

These apoptotic actions of melatonin have been con-

firmed in vitro, where treating MCF-7 cells with nanomolar

concentrations of melatonin caused cell death [70]. Both

flow cytometry and DNA fragmentation-based techniques

documented an early (at 24 h) and a late (at 96 h) apoptosis

in melatonin-treated MCF-7 cells. Early apoptosis is a

caspase-independent process, and it is likely to be triggered

by the apoptosis-inducing factor (AIF). In contrast, a more

complex pathway underlies late apoptosis, involving both

TGFb-1 and terminal caspase effectors (caspases-7).

Indeed, adding anti-TGFb-1 antibodies, melatonin-induced

late-apoptosis is almost completely suppressed, while early

apoptosis remains unaffected. During late apoptosis, acti-

vated caspase-9 and -7 and cleaved-PARP increased

significantly, concomitantly with a down-regulation of the

Bcl-2/Bax ratio. It is noteworthy that melatonin-triggered

apoptosis involves both p53 and p73 release. In fact,

melatonin-treated MCF-7 cells showed a significant rise in

both p73 and p53, but only the p73 protein, the homologue

of p53 protein, increased at 96 h; concurrently, MDM2

levels were significantly reduced. These data suggest that

p53 is likely activated during early programmed cell death,

while only p73 is involved in caspase-dependent late-

apoptosis.

It is worth reiterating that MDM2 is decreased as a

consequence of melatonin treatment. MDM2 inhibits the

transcriptional activity of p53 and promotes its degradation

by the proteasome, thus representing the major physio-

logical antagonist of p53 [226]. An autoregulatory negative

feedback loop controls the MDM2 expression, where p53

induces MDM2 expression, whereas MDM2 represses p53

activity. Abrogation of the MDM2 expression allows the

p53 to escape from the autoregulatory loop, becoming

lethally active [227, 228]. Thus, melatonin induces an early

down-regulation of MDM2 expression concomitant with a

p53 rise, causing a significant rise in the p53/MDM2 ratio

(Fig. 4). It is likely that the modified p53/MDM2 ratio

could trigger the apoptotic cascade involving both caspase-

dependent and caspase-independent pathways.

We have recently found (unpublished results) that

melatonin enhances the depolarization of the mitochondrial

membrane, while inhibiting Akt-phosphorylation; these

effects are probably involved in melatonin-dependent

oncostatic effects and they participate in triggering the

complex apoptotic cascade. Similar results have been

obtained by adding melatonin together with vitamin D3

[229]. Melatonin and vitamin D3 induced in MCF-7 cells a

synergistic proliferative inhibition, with an almost com-

plete cell growth arrest at 144 h. Cell growth blockade is

associated to an activation of the TGFb-1 pathway, leading

to increased TGFb-1, Smad4, and phosphorylated-Smad3

levels. Concomitantly, melatonin and D3, alone or in

combination, caused a significant reduction in Akt phos-

phorylation and MDM2 values, with a consequent initial

elevation of p53/MDM2 ratio [229]. These effects were

completely suppressed by adding a monoclonal anti-TGFb-

1 antibody to the culture medium.

As Sainz and colleagues [205] reported, ‘‘melatonin

involvement in apoptotic processes is a new and relevant

field of investigation. The results obtained to date appear

promising, and if in fact melatonin uniformly induces

apoptosis in cancer cells, the findings could have important

clinical utility. Many tumors show resistance to drug

treatment mainly due to their resistance to undergo apop-

tosis. Identifying agents which potentiate apoptosis in

cancer cells is clearly of great interest’’. It may seem par-

adoxical that a substance could induce apoptosis in cancer

cells, while preventing this process in normal cells. How-

ever, melatonin shares this unusual behavior with other

known anti-oxidant compounds, including epigallocate-

chins and procyanidins [230]. Clearly melatonin’s ability to

2148 S. Proietti et al.

123



trigger apoptotic or anti-apoptotic pathways is largely

context-dependent.

Malignant behavior

Some preliminary observations suggest that melatonin can

efficiently reduce the metastatic ability of MCF-7 cells.

Mao et al. [231] have evaluated the potential anti-invasive

actions of melatonin, employing three clones of MCF-7

cells with high metastatic potential including the MCF-7/6

clone derived by serial passages in nude mice, MCF-

7Her2.1 cells stably transformed with and overexpressing

the Her2-neu/c-erbB2 construct, and MCF-7CXCR4 cells

stably transformed with and overexpressing the CXCR4

cytokine G protein-coupled receptor. The invasive capacity

of these clones was significantly reduced when they were

treated with melatonin (10-8 or 10-9 M). Melatonin

treatment resulted in marked suppression (60 to 85 %

decrease) of cell invasion using a Transwell assay system

and Matrigel-covered inserts.

In an in vitro study, Cos et al. [232] demonstrated that

1 nM melatonin reduced the invasiveness of cancer cells

measured in Falcon invasion chambers and also blocked

estradiol-induced invasion [123]; both sub-physiological

(0.1 pmol) and pharmacological concentrations (10 lM) of

melatonin failed to inhibit cell invasion. It is likely that

such effects could be attributed to an overall effect of

melatonin on cell morphology, which are mediated, at least

in part, by a melatonin-induced elevation in the expression

of two cell-surface adhesion proteins, E-cadherin and

b1-integrin, as well as by an increased gap junctional

intercellular communication between adjacent epithelial

cells also induced by melatonin [232]. It has been

hypothesized that if a cell would be unable to perform gap

junctional intercellular communication, normal growth

control and cell differentiation would not be possible,

thereby favoring the development of malignant neoplasia

[233]. Since there is an inverse correlation between the

ability of a cell to exhibit gap junctional communication

and its ability to metastasize [234], it is likely that mela-

tonin may reduce metastatic behavior through inducing

local gap junctional intercellular communication and re-

shaping the relationships between cancer cells and their

microenvironment.

Estrogen treatment is known to induce a marked rear-

rangement of the cytoskeleton and adhesion structures and

enhances the attachment of MCF-7 cells to laminin (a

basement membrane component); this action is completely

abolished by melatonin and shifts cancer cells to a lower

invasive status [235]. These findings indicate that melatonin

Fig. 4 After binding to the MT1 receptor, melatonin reduces MDM2

levels, thus allowing p53 to escape from the autoregulatory loop. The

modified p53/MDM2 ratio triggers the apoptosis cascade involving

both caspases-dependent and caspases-independent pathways. In

addition, melatonin increases mitochondrial membrane depolariza-

tion, releasing cytochrome C and apoptosis inducing factor (AIF).

Melatonin is likely to inhibit AKT phosphorylation and subsequently

the MAPK-related pathways
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could exert an additional anti-tumor action by modulating

the cross-talk between cells and stroma components (stro-

mal cells, laminin, collagen), and by increasing regulatory

signals shared between adjacent cells through intercellular

junctions. Also, cancer cell invasiveness is enhanced by the

elevated activities of matrix metallo-proteinases which

break down interstitial tissue thereby aiding cancer cell

movement and access to blood vessels. Since melatonin

inhibits the activities of the proteinases that cause the dis-

solution of the connective tissue elements [236], the indole

may also impede cancer cell invasiveness by this means.

Melatonin, cytoskeleton, and cell morphology

From the initial studies carried out by Hill et al. [67], it was

already apparent that melatonin significantly modifies breast

cancer cell morphology and cytoskeleton architecture.

Likewise, melatonin also changes the histomorphology of

prostate cancer cells and renders them more sensitive to

cytokine-mediated apoptosis [237, 238]. The significance of

these findings has been underestimated since only recently

compelling evidence has been provided documenting the

relevance of melatonin’s influence on the cytoskeleton.

The cytoskeleton is an important group of cellular

structures, composed of an intricate fibrous network

including microtubules, microfilaments, and intermediate

filaments as well as their associated proteins [239].

Dynamic and differential changes in cytoskeletal organi-

zation occur during different cellular processes according

to the cell type and the specific function. Moreover, the

cytoskeleton, together with integrins and other related

adhesion proteins, orients much of the metabolic and signal

transduction machinery of the cell [240]. Indeed, cells are

hard-wired to respond immediately to mechanical stresses

transmitted over cell surface receptors that physically

couple the cytoskeleton to the extracellular matrix or to

other cells [241]. The shape of cells and the internal

structure are consequences of physical forces generated in

the cytoskeleton as well as in extracellular matrix. Shape,

in reflecting cytoskeleton organization [242], is linked to a

repertoire of metabolic events, which result from the right

ordering in space of the enzymes catalyzing specific

pathways. Physical forces (e.g., microgravity) induce dra-

matic changes in gene expression and alter cellular shape

[243, 244]. In particular, distortions in cell shape can

switch between distinct cell phenotypes, and this process is

viewed as a biological phase transition [245, 246]. More-

over, tumor phenotype reversion is primarily associated

with relevant shape modifications, preceding molecular and

metabolic ‘‘normalization’’ [247].

The cytoskeleton is a phylogenetically well-preserved

structure allowing the cell to have a well-organized

structure, a specific shape-associated phenotype, and an

optimal functionality. By contrast, cancer is characterized

by an abnormal cytoskeletal rearrangement with poor

organization and structure [248]. Therefore, the ability of

melatonin to preserve normal microfilament distribution

and its influence on cytoskeleton rearrangement and cell

shape in cancerous tissues deserves further investigation

[249].

Cancer cells show an abnormal microfilament organiza-

tion, reduced stress fiber production, and loosened focal

contact adhesion. These changes enhance cell proliferation,

cell migration [250], and foster resistance to apoptosis [251].

Highly malignant metastatic cancer cells present poorly

structured microfilaments and scarce anchorage to their

substratum. These cells have microfilaments and microtu-

bules arranged in membrane ruffles, lamellipodia, and

filopodial formations at the leading edge; at the cell rear, a

retraction of these cytoskeletal structures occurs [252].

A bimodal effect of melatonin on microtubule organi-

zation was first described in 1994 in both in vitro

polymerization assays and in a preparation of cytoskeleton

material in situ [253]. Melatonin, in the presence of Ca??,

augmented tubulin polymerization, causing microtubule

enlargement, while melatonin without Ca?? inhibited

tubulin polymerization and caused microtubule disruption.

Interestingly, in kidney epithelial cells (MDCK), melato-

nin’s effects on cytoskeletal organization are not mediated

by membrane melatonin receptors, while in breast cancer

cells, luzindole, an MT1 and MT2 antagonist, completely

prevented melatonin-induced effects on microfilaments.

Furthermore, studies performed by Benitez-King et al.

[254] have demonstrated the complex interaction between

melatonin and the cytoskeleton. In experimental conditions

designed to measure cell anchorage, melatonin increases

the number of focal adhesion contacts by MCF-7 cells, and

microfilaments are arranged in thicker bundles of stress

fibers assembled with phospho-vinculin to form focal

adhesion contacts [255]. These results strongly suggest that

melatonin inhibits cancer cell invasion and metastasis

formation by changing microfilament phenotypes of

migratory cells (ruffles and lamellipodia) to stress fibers

that are microfilament phenotypes of attached cells.

Melatonin-induced effects on stress fibers involve pro-

tein kinase C (PKC) and the Rho-associated protein kinase

(ROCK), downstream of the PKC pathway [256]. In

MDCK and MCF-7 cells treated with melatonin, the

addition of the PKC inhibitor abolished the augmented

number and thickening of stress fibers, as well as the ele-

vated number of focal adhesion contacts elicited by the

indoleamine in both cell lines [257]. It is noteworthy that

calmodulin also participates in this process [258] and that

melatonin modulates stress fiber formation by involving

ROCK and Ca??/CaM balance. In MCF-7 cells, melatonin
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causes a redistribution of CaM and phosphorylated-CaM,

recruiting them to specific subcellular compartments, one

of which is the cytoskeleton [259]. CaM is redistributed to

the membrane cytoskeletal fraction where it becomes

associated to myosin phosphorylation, through the myosin

light-chain kinase [159].

Conclusions

Numerous studies have documented the oncostatic prop-

erties of melatonin both in vivo, with models of chemically

induced rat mammary tumors, as well as in vitro using

MCF-7 human breast cancer cells. Melatonin exerts both

inhibitory as well pro-apoptotic effects, interacting with

several molecular pathways. Generally, melatonin’s cyto-

static actions seem to be mediated by the interaction of the

indoleamine with both the estrogen receptors and the

melatonin receptors. However, recently, some receptor-

independent and estrogen-independent signaling pathways

activated by melatonin have been uncovered. In particular,

increasing attention should perhaps be directed to melato-

nin’s effects on the cytoskeleton and cell shape, as well as

identifying how melatonin inhibits both Akt activation and

MAPK-related pathways. A recent paper illustrates how

melatonin exerts an inhibitory effect on breast cancer cell

invasion through down-regulation of the p38 pathway and

inhibition of MMP-2 and MMP-9 expression and activity

[236]. The anticancer effects triggered by melatonin could

be at least in part mediated by a selective genetic modu-

lation, as it was shown that a set of microRNAs

are differentially up- or down-regulated by melatonin in

MCF-7 cells [260].

Additional research is required to clarify if melatonin

administration constitutes, either alone or in combination

with chemo-radiotherapy [261], a potentially new anti-

cancer treatment. Given its widespread actions on breast

cancer, its virtual absence of toxicity and its low cost, it

seems reasonable to strongly recommend more thorough

trials as to its usefulness as a preventive or treatment of

breast cancer.
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