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Abstract Cancer is a complex multistep process involv-

ing genetic and epigenetic changes that eventually result in

the activation of oncogenic pathways and/or inactivation of

tumor suppressor signals. During cancer progression, can-

cer cells acquire a number of hallmarks that promote tumor

growth and invasion. A crucial mechanism by which car-

cinoma cells enhance their invasive capacity is the

dissolution of intercellular adhesions and the acquisition of

a more motile mesenchymal phenotype as part of an epi-

thelial-to-mesenchymal transition (EMT). Although many

transcription factors can trigger it, the full molecular

reprogramming occurring during an EMT is mainly

orchestrated by three major groups of transcription factors:

the ZEB, Snail and Twist families. Upregulated expression

of these EMT-activating transcription factors (EMT-ATFs)

promotes tumor invasiveness in cell lines and xenograft

mice models and has been associated with poor clinical

prognosis in human cancers. Evidence accumulated in the

last few years indicates that EMT-ATFs also regulate an

expanding set of cancer cell capabilities beyond tumor

invasion. Thus, EMT-ATFs have been shown to cooperate

in oncogenic transformation, regulate cancer cell stemness,

override safeguard programs against cancer like apoptosis

and senescence, determine resistance to chemotherapy and

promote tumor angiogenesis. This article reviews the

expanding portfolio of functions played by EMT-ATFs in

cancer progression.
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Abbreviations

bHLH Basic helix loop helix

CSC Cancer stem cells

EMT Epithelial-to-mesenchymal transition

EMT-ATF EMT-activating transcription factors

HNSCC Head and neck squamous cell carcinoma

MET Mesenchymal-to-epithelial transition

NSCLC Non-small cell lung carcinoma

Introduction

Cancer is a multipronged process that requires the acqui-

sition by malignant cells of a number of capabilities—

referred as hallmarks of cancer [1]—that ensure their sur-

vival and proliferation and, therefore, the growth of the

tumor. Cancer cells in a solid tumor can detach from

the main mass to invade the surrounding stroma, enter the

circulation and eventually metastasize to distant organs. In

most cases, invading cancer cells lose their polarity and

intercellular adhesions and acquire a more motile pheno-

type as part of an epithelial-to-mesenchymal transition

(EMT) [2–5]. While EMT was identified in the context of

embryogenesis almost three decades ago, its underlying

molecular mechanisms have only begun to be understood

more recently with the discovery of its role in tumor

invasiveness.

A hallmark of EMT is the functional loss of the adherens

junction protein E-cadherin. Although transcriptional con-

trol of E-cadherin during EMT seems to be prevalent,

recent studies point to the existence of intricate relation-

ships between epigenetic, transcriptional and translational

mechanisms. Although E-cadherin expression is inhibited

by a number of transcription factors, only a small set are

known to regulate it directly. The main groups of tran-

scription factors that bind to the E-cadherin promoter and

directly repress its transcription—which will be referred to

hereafter as EMT-activating transcription factors, EMT-

ATFs—are the ZEB (ZEB1, ZEB2) and Snail (Snail1,

Snail2, Snail3) families of zinc finger proteins and the

Twist family of bHLH factors (Twist1, Twist2) [2, 3].

While E12/E47 and Tbx3 also bind to the E-cadherin

promoter [6, 7], the ability of Goosecoid and HMGA2 to

repress E-cadherin expression and induce an EMT seems to

be mediated by other EMT-ATFs [8, 9]. Most of these

transcription factors were originally identified as regulators

of embryogenesis and cell differentiation and only later

recognized for their role in cancer progression. Still, the

upstream regulatory signals and downstream targets of

EMT-ATFs in cancer largely concur with those during

embryogenesis [2, 3].

In addition to their now classical function as promoters

of tumor invasiveness, over the last few years EMT-ATFs

have gained new relevance in light of their role regulating

several other hallmarks of cancer. EMT endows cells not

only with greater ability to migrate but also with stem cell

characteristics that play a role in tumorigenesis and resis-

tance to chemotherapy. Recent evidence shows that EMT-

ATFs also participate in early stages of cancer develop-

ment cooperating in oncogenic transformation, overriding

safeguard programs against cancer like apoptosis and

senescence or promoting tumor angiogenesis. The

expanding portfolio of functions of EMT-ATFs in cancer

set them not only as important diagnostic and prognostic

biomarkers but also as potential therapeutic targets. This

article reviews the roles of EMT-ATFs in cancer and is

organized as follows: The next section summarizes the

EMT process in cancer. The following section reviews the

main regulatory pathways and mechanisms of action of

EMT-ATFs. Later sections describe the regulation of tumor

invasiveness and metastasis by EMT-ATFs and overview

their newly assigned roles in earlier stages of cancer pro-

gression. The final section concludes and presents EMT-

ATFs as multifunctional regulators of the hallmarks of

cancer.

EMT in cancer

E-cadherin mediates homotypic intercellular adhesion and

interacts with intracellular proteins to establish and coor-

dinate the morphology, polarity and function of epithelial

cells [10, 11]. The downregulation of E-cadherin is inher-

ent to EMT, but EMT also entails the downregulation of

other epithelial specification genes like components of tight

and gap junctions, desmosomes, cytokeratins, etc. [2, 3]. In

parallel, there is an induction of mesenchymal markers

(e.g., N-cadherin, cadherin-11), reorganization of the

cytoskeleton (e.g., switch from cytokeratins to vimentin),

and the synthesis of extracellular matrix components and

metalloproteases [2, 3].

Many signals unleashing an EMT during embryogenesis

are also active in cancer. Thus, stimuli such as TGFb, FGF,

EGF, IGF, HGF, PDGF, estrogens, Wnt, Shh, inflamma-

tory cytokines or hypoxia as well as oncogenes like RasV12,

ErbB2 or mutant p53 may be involved in EMT during

cancer progression (reviewed in [3]). Triggering and

maintenance of the mesenchymal state requires coopera-

tion between several of these pathways through autocrine

signaling loops [12].
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These growth factors, inflammatory, hypoxic and

oncogenic signals, along with an increasing number of

microRNAs, converge in the induction of EMT-ATFs

either at the transcriptional level or by increasing their

protein or mRNA stability. E-cadherin expression and

function could be downregulated by loss-of-function

mutations, but modulation of EMT during embryogenesis

and cancer progression mostly involves the participation of

EMT-ATFs providing a high degree of functional redun-

dancy and plasticity. E-cadherin has also been found to be

silenced by promoter hypermethylation in a number of

carcinomas. Some of the signals triggering EMT activate or

repress the expression of non-coding microRNAs (miRs),

which in turn modulate tumor invasion and metastasis by

regulating EMT-ATFs transcripts (see below), targeting

E-cadherin itself, or altering the expression of small

GTPases or extracellular matrix receptors (reviewed in

[13]).

Downregulation of E-cadherin is a critical initial step in

EMT, not only because of the disruption of adherens

junctions but also because loss of E-cadherin reinforces the

EMT process by inducing the expression of Twist1 and

ZEB1 in a feed-forward loop [194]. EMT-ATFs do not

simply repress E-cadherin but are able to orchestrate the

entire EMT program, inhibiting and activating a wide array

of epithelial and mesenchymal genes, respectively [14–21].

Expression of EMT markers by primary human tumors

correlates with enhanced invasiveness and poorer clinical

prognosis. Cancer cells at the tumor invasive edge that

have transitioned through an EMT secrete cytokines and

proteases that promote angiogenesis, remodel the peritu-

moral extracellular matrix, and activate non-neoplastic

stromal cells. In turn, stromal cells release factors that

reinforce the EMT in cancer cells and foster survival,

growth, and invasiveness of the tumor, thus creating a

reciprocal influence between the tumor and its microenvi-

ronment [22, 23]. EMT is required for cancer cells to shift

from a collective type of invasion—where cells retain

E-cadherin and some intercellular adhesions—to an indi-

vidual mesenchymal type of invasion, a change that

depends on TGFb signals at the tumor–host interface [24,

25]. While both models of invasion allow cancer cells to

reach the lymphatic circulation, optimal hematogenous

dissemination only occurs in EMT-mediated individual

invasion [22, 25].

In addition to the mesenchymal switch, the molecular

reprograming encompassed by the EMT also endows

cancer cells with stem-like characteristics [12, 26]. Many

of the signals controlling normal stem cell homeostasis are

inducers of EMT and seem to contribute to the generation

and maintenance of cancer stem cells (CSCs). In an

influential article, Brabletz and colleagues [27] proposed a

model of tumor progression where only cancer cells at the

tumor–host interface, the ‘‘migrating CSCs’’, undergo

EMT and acquire mesenchymal and stem-like character-

istics and therefore migratory and self-renewal capacities.

CSCs are thought be important in the genesis of primary

tumors and metastasis and could also be at the root of

tumoral chemoresistance and recurrence [28].

As in embryogenesis, the EMT occurring during cancer

progression is a reversible process. At the site of micro-

metastasis, epigenetic changes and the absence of

EMT-inducing signals in the microenvironment lead to the

re-expression of particular sets of microRNAs and the

downregulation of EMT-ATFs (see below), allowing can-

cer cells to regain the epithelial characteristics of the

primary tumor, through a mesenchymal-to-epithelial tran-

sition (MET), and grow to form a secondary tumor [29,

30]. In fact, recent evidence also indicates that EMT and

metastatic dissemination of cancer cells may in fact occur

from very early in tumor progression [31].

Regulation and mechanisms of action of EMT-ATFs

ZEB1 and ZEB2

The ZEB family comprises zinc finger/homeodomain pro-

teins that are highly conserved across species (see an

excellent review in [32]). In higher organisms, the family is

constituted by two members: ZEB1 and ZEB2. ZEB factors

contain multiple independent domains to interact with

other transcriptional regulators (Fig. 1) (reviewed in [32]

and [33], see also [34–41]). ZEB proteins bind to CtBP

corepressors that in turn recruit histone deacetylases and

methyltransferases, polycomb, and coREST [37–43].

Transcriptional repression by ZEB1 is also mediated

through recruitment of the histone acetyl transferase Tip60,

the SWI/SNF chromatin remodeling ATPase BRG1 and the

histone deacetylase SIRT1 [44–46]. Meantime, in addition

to CtBP, ZEB2 interacts with the NuRD remodeling and

deacetylase repressor complex [47]. On the other hand,

ZEB factors can also activate transcription through binding

to histone acetyltransferases p300/pCAF ([48–50],

reviewed in [33]). ZEB1 and ZEB2 repressor activities are

modulated by post-translational modifications. SUMOyla-

tion by Pc2 or acetylation by p300/pCAF disrupt ZEB

factor binding to CtBP [48–51]. Although its transcrip-

tional significance remains unclear, phosphorylation of

ZEB1 varies widely among cell types [52].

ZEB1 and ZEB2 trigger an EMT by repression of epi-

thelial markers and activation of mesenchymal ones ([14–

16], [20] and reviewed in [33, 53, 54]). ZEB1 and ZEB2

could also regulate EMT through their repressor effect on

miRs (see below). ZEB2 mRNA also functions as a com-

petitive endogenous RNA (ceRNA) squelching miRs

EMT-activating transcription factors and cancer 3431
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targeting other transcripts, thus activating their expression

[55].

ZEB1 and ZEB2 have overlapping, but still distinct,

patterns of expression that result from their regulation by

classical signaling pathways and an expanding set of mi-

croRNAs (see excellent reviews in [53, 54, 311] and

below). In most cell types, TGFb factors induce both ZEB

proteins that in turn modulate TGFb signaling in opposing

ways with ZEB1 synergizing with R-Smads and ZEB2

repressing their activity. In fact, ZEB factors mediate some

TGFb functions during development, cell differentiation,

and proliferation [48, 49, 56–58]. ZEB1 and ZEB2 are

induced by HIF-1a in hypoxic conditions, inflammatory

cytokines, and by ligand-mediated activation (e.g., FGF,

IGF-1, PDGFR) of receptor tyrosine kinases [59–66]. ZEB

factors are directly activated by downstream signals fre-

quently activated in tumors like Ras-ERK2-Fra1, NFjB,

and JAK/STAT3 [61, 67, 68].

Aberrant activation of the canonical Wnt pathway by

loss-of-function mutation of APC gene, as occurring in

most colorectal carcinomas, induces ZEB1 [69]. ZEB1

expression is also induced by COX2/PGE2, which can

activate Wnt signaling by inhibiting GSK3b [70]. The

Notch pathway, deregulated in many cancers, also activates

ZEB1 expression [71, 72]. In turn, ZEB1 enhances Notch

activity by indirectly increasing Jag1 and its coactivators

Maml2/Maml3 [72]. ZEB factors are also upregulated by

growth and steroid hormones [73–75]. Hippo/YAP signal-

ing and the tumor suppressor Rb/E2F pathway activate and

repress ZEB1 transcription, respectively, without affecting

ZEB2 levels [76, 77]. SIRT1 is recruited by ZEB1 to repress

the E-cadherin promoter but SIRT1 itself also induces ZEB

and Snail factors but not Twist [46]. Interestingly, SIRT1

and miR-200a—a microRNA that inhibits ZEB factors (see

below)—are involved in a reciprocal negative feedback loop

[78]. ZEB1 is repressed at the promoter level by Grainyhead-

like 2, a transcription factor tightly co-regulated with

E-cadherin [79]. Finally, ZEB1 and ZEB2 are downstream of

Snail and Twist factors (see below).

In addition to transcriptional regulation by these

upstream signals, ZEB factors expression is also controlled

at the mRNA and protein level. They are regulated by a

complex network of microRNAs (see below). Furthermore,

YB-1, a protein associated with increased invasiveness in

breast carcinomas, activates the mRNA of ZEB2 without

affecting ZEB1 [80]. ZEB2 is also controlled at the protein

level, and its binding to F-box FBXL14 targets it for

ubiquitin-proteasome degradation [81].

1214 aaZEB2 

Zinc Finger 

Homeodomain

CtBP binding site

SNAIL1 264 aa

HLH domain 

basic domain 

Slug domain 

TWIST1 202 aa

160 aaTWIST2

SNAIL3 292 aa

ZEB1 1124 aa

SNAIL2 268 aa

SNAG domain 

Nuclear export sequence 

Serine-rich domain 

Twist box

Fig. 1 Domain structure human EMT-ATFs: human ZEB1 (Gen-

Bank reference sequence AAA20602.1), human ZEB2 (AAI27103),

human Snail1 (NP_005976.2), human Snail2 (NP_003059.1), human

Snail3 (NP_840101.1), human Twist1 (NP_000465.1), and human

Twist2 (NP_476527.1)
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Snail1, Snail2 and Snail3

The Snail family comprises three members: Snail1 (origi-

nally identified as Snail), Snail2 (Slug), and Snail3 (Smuc)

(Fig. 1). All three contain a single C-terminal zinc finger

cluster that bind to E-boxes in the regulatory regions of

target genes. At the N-terminal end, they share a SNAG

(Snail-Gfi1) domain that mediates binding to Sin3A/

HDAC1/HDAC2 and Ajuba-PRMT5-PRC2 and LSD1-

coREST complexes [82–85]. Only Snail2 maintains the

central CtBP binding motif present in Drosophila that has

also been implicated in recruitment of HDAC and coREST

[86]. A recent report shows the recruitment of NCoR and

CtBP1 to the SNAG and SLUG domains of Snail2,

respectively, with the former being essential for Snail2-

mediated EMT [87]. The precise mechanism by which

Snail-mediated histone modifications (deacetylation,

H3K27 and H4R3 methylation, H3K4 demethylation)

cooperate to repress E-cadherin has not been fully eluci-

dated. Snail1 also represses epithelial specification genes,

including E-cadherin, by interacting with Smad3/Smad4

[88]. Overexpression of Snail1 decreases binding of AKT1

to the E-cadherin promoter in favor of AKT2 on which

Snail1 depends for its repressor activity [89]. Conversely,

activation of mesenchymal genes by Snail factors seems to

be, at least in part, indirect, via E-cadherin downregulation.

Snail1 and Snail2 transcriptional activities are also

modulated by post-transcriptional modifications that alter

their protein stability and intracellular localization. Thus,

binding of Snail1 to Sin3a is strengthened by PKA and

CK2 phosphorylation [90]. In a similar manner, phos-

phorylation of Snail2 modulates its ability to

transcriptionally repress E-cadherin [87]. Phosphorylation

of Snail1 by GSK3b functionally inactivates it through

both CRM1-dependent export to the cytoplasm and SCF/

b-TrCP ubiquitin-mediated proteasome degradation [91].

Interaction of Snail1 with LOXL2 and LOXL3 prevents

GSK3b-induced degradation [92], which is, however, fos-

tered by phosphorylation by CK1e [93]. Snail factors are

also targeted for degradation in a GSK3b-independent

manner by binding to FBXL14 [81, 94, 95] or, in the case

of Snail2, through Mdm2 ubiquitination [222]. In addition,

the intracellular localization of Snail factors is also con-

trolled through import and export signals [96, 97]. In

addition to GSK3b, phosphorylation of Snail1 by PKD1

also triggers its nuclear export [98]. On the other hand,

phosphorylation by PAK1 promotes its nuclear localiza-

tion, which is also dependent on the breast cancer-

associated zinc transporter protein LIV1 [99, 100].

As with other EMT-ATFs, signals regulating Snail pro-

teins in cancer parallel those operating during development.

Snail factors are induced by TGFb, Notch, TNFa, EGF,

FGF, Wnt, Shh, SCF/c-kit, hypoxia, and estrogens [3].

Transcriptional activation of Snail1 by TGFb requires

interaction of R-Smads with HMGA2 [101]. In some

cancer cell types, induction of Snail1 by TGFb requires

simultaneous oncogenic Ras signaling [102]. On its part,

TGFb-mediated induction of Snail2 depends on the

downregulation of KLF4 and FOXA1 that, interestingly,

form a double repressor loop with Snail2 [103]. Notch

signaling induces Snail1 through direct and indirect

mechanisms. In addition to direct activation of the Snail1

promoter, Notch stabilizes Snail1 through HIF-1a-medi-

ated activation of LOX [104]. NFjB signaling by AKT,

hypoxia or inflammatory cytokines transcriptionally acti-

vates Snail1. Induction of NFjB by inflammatory

cytokines also stabilizes Snail1 by inhibiting GSK-3b-

mediated ubiquitination [105]. Engagement of receptor

tyrosine kinases signaling and COX2/PEG2 also

induces expression of Snail1 by inhibition of GSK3b [70].

Snail1 is also able to repress its own transcription [106].

Finally, Snail1 is activated at the translational level by

YB-1 [80].

Twist1 and Twist2

Twist1 and Twist2 share a basic/helix-loop-helix (bHLH)

domain that mediates their binding to DNA and homo/

hetero-dimerization (Fig. 1). At the C-terminal end, there is

a ‘‘Twist box’’ that has been implicated in both transcrip-

tional activation and repression (reviewed in [107] and

[312]). Regulation of gene expression by Twist factors

depends on their binding to other transcriptional regulators,

post-translational modifications, and choice of partner for

dimerization. Binding of Twist proteins to E-boxes in the

promoters of target genes could either activate (e.g.,

N-cadherin, AKT2 or Gli1) or repress (e.g., E-cadherin)

transcription [108, 109]. In some cases, Twist-mediated

repression involves binding to other transcription factors

and cofactors to inhibit their activity (e.g., Runx2, myo-

genic bHLH, NFjB, and p300/pCAF). Direct repression of

E-cadherin by Twist1 entails recruitment of multiple

chromatin remodeling complexes, whose composition and

dynamics is currently being uncovered. Twist1 activates

transcription of the PRC1 component Bmi1 and binds to

polycomb repressor complexes PRC1 and PRC2 at the

E-cadherin promoter [310]. Twist1 interaction with com-

ponents of the NuRD complex is also required for

E-cadherin repression [110], a result in line with the finding

that recruitment of PRC2 is specified by NuRD histone

deacetylation [111]. In addition, it was recently reported

that binding of Twist1 to the H4K20 methyltransferase

SET8 could simultaneously contribute to repression of

E-cadherin and activation of N-cadherin [112].

Gene regulation by Twist factors is also modulated by

control of their intracellular localization and the identity of

EMT-activating transcription factors and cancer 3433
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their dimerization partner. Nuclear/cytoplasm shuttling of

Twist factors is modulated by integrin-mediated adhesion

to the extracellular matrix, post-translational modifications,

and partner dimerization [108]. In Drosophila, Twist

homodimers activate transcription whereas heterodimers

with Daughterless function as repressors. However, in

mammalian systems, Twist/E12 heterodimers can both

activate and repress transcription [107, 312]. Homo- or

heterodimerization of Twist proteins is determined by

availability of E12. Likewise, Twist can titrate away E12

from other bHLH proteins thus inhibiting their function.

Phosphorylation of the bHLH domain of Twist alters not

only dimerization partner choice but also binding affinity

for DNA [107].

Understanding the signaling pathways upstream of

Twist1 and Twist2 is not as complete as for ZEB and Snail

factors. Still, Twist factors are upregulated by classical

EMT-inducing pathways during development, inflamma-

tion, and cancer, such as TGFb, Wnt, hypoxia, and ligand-

binding activation of receptor tyrosine kinases and

inflammatory cytokines receptors [107, 312]. EGF and IL6

induce Twist1 via activation of JAK/STAT signaling and

direct binding of STAT3 to the Twist1 promoter [113,

114]. Twist1 and Twist2 form a negative loop with

inflammatory cytokines, as Twist factors are transcrip-

tionally induced by NFjB and in turn bind to the TNFa and

IL1b promoters blocking NFjB transcriptional activity

[115]. As discussed below, upregulation of Twist1 by HIF-

1a during hypoxic conditions has significant implications

in tumor invasion and angiogenesis [116].

Twist factors are also regulated at the mRNA and pro-

tein level as well by their intracellular localization. As with

other EMT-ATFs, YB-1 fosters cap-independent transla-

tion of Twist1 [80]. Twist1 is also controlled post-

translationally by cytoplasmic polyadenylation sites in its

3’UTR [117]. Heterodimerization of Twist1 with E12 and

Hand2, fostered by phosphorylation by PKA, stabilizes

Twist1 protein that is, on the other hand, targeted for

degradation upon binding to FXBL14 [81, 118].

Regulatory networks between EMT-ATFs

and microRNAs

In recent years, a plethora of publications have identified

miRs regulating each and every step during cancer pro-

gression, from cell proliferation, cancer cell stemness, and

apoptosis to angiogenesis or tumor invasiveness (reviewed

in [13]). miRs regulate invasiveness and metastasis by

targeting the transcripts of a large number of genes

involved in EMT/MET regulation, including those of

EMT-ATFs (Fig. 2).

Members of the miR-200 family (miR-200a/b/c, miR-

141, and miR-429) maintain an epithelial status and

prevent EMT through inhibition of ZEB1 and ZEB2

(reviewed in [54], see also [119–121], and other references

in [54]). In turn, miR-200 members are transcriptionally

repressed by ZEB factors—as well as Snail1—thus form-

ing a double-negative loop that maintain cells in either an

epithelial or mesenchymal state [54, 122–124]. Expression

of miR-200 and ZEB factors presents an inverse pattern in

a number of human cancers. Invading mesenchymal-like

cancer cells that extravasate and metastasize eventually

need to revert to an epithelial phenotype for the metastatic

colony to grow into a secondary tumor. Cancer cells that

form macroscopic metastasis have higher levels of miR-

200 compared to those that invade but are not able to

colonize and, paradoxically to their roles as EMT repres-

sors: overexpression of miR-200 in mouse breast cancer

isogenic cell lines fosters lung and liver mestatasis by

inhibition of Sec23a, a component of the tumor secretome

that blocks metastatic colonization [125–313]. The 50CpG

islands of miR-200 loci are also subjected to dynamic

epigenetic regulation [126]. In epithelial cell lines, miR-

200 expression is silenced by hypermethylation during

TGFb-induced EMT but reverted by demethylation in

MET. Likewise, 50CpG islands of miR-200 loci are

hypermethylated in cancerous cells of primary colorectal

carcinomas but remain unmethylated in epithelial cells of

the normal colonic mucosa.

miR-200 members mediate the anti-EMT activities of

other factors and signaling pathways. For instance, Six1

induces ZEB1 and EMT through transcriptional repression

of miR-200 [127]. By contrast, the tumor suppressor p53

inhibits a mesenchymal and stem cell phenotype and/or the

invasive capacity of mammary and pancreatic epithelial

cells and hepatocarcinoma cell lines by upregulating miR-

200—as well as miR-192—to repress ZEB1 and ZEB2

[128–130]. Conversely, oncogenic mutant forms of p53

decrease miR-200 and increase ZEB1 expression [128].

ZEB1 and ZEB2 participate in other miR regulatory

networks. ZEB factors repress miR-183 and miR203,

which together with miR-200, inhibit the expression of

stemness factors Bmi1, Sox2 and KLF4 [131, 132]. ZEB1

and ZEB2 are also targets of miR-205 [13]. In aggressive

basal-like breast carcinomas, but not the luminal type, Fra-

1 activates miR-221 and miR-222 [133], miRs that have

been associated with EMT and tumor invasiveness and are

downregulated by EGFR inhibitors. miR-221 and miR-222

downregulate TRPS1, a GATA-like repressor, that in turn

inhibits ZEB2 [133]. In contrast, in endothelial cells, ZEB2

is a direct target of miR-221 [134], confirming evidence

elsewhere that miR may have different, even opposing,

functions depending on the cell type.

Contrary to its inhibitory effect on E-cadherin in breast

epithelial cells [135], miR-9 downregulates Snail1

expression in melanoma cells by targeting NFjB, thus
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inhibiting proliferation and invasiveness [136]. p53 also

downregulates Snail1 and Snail2 via induction of miR-34a/

b/c. Conversely, Snail1 and Snail2 (and ZEB1) transcrip-

tionally repress miR-34a/b/c, thus forming a double-

negative loop similar to the one between ZEB factors and

miR-200 [137, 138]. As with miR-200, miR34a inhibits

stem cell-related factors Bmi1, CD44, and CD133 [137].

Members of the miR-30 family also target Snail1 [139,

140] and, as with miR-200, overexpression of either miR-

30 and miR-34 prevents TGFb-induced EMT. It is worth

noting here that miR-34 also targets several Wnt signaling

genes like Wnt1, Wnt3, LEF1 and b-catenin, suggesting

that loss of p53 tumor suppressor activity could be

accompanied by activation of b-catenin/TCF signaling,
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Fig. 2 Regulatory networks between microRNAs and EMT-ATFs of

the ZEB (a), Snail (b) and Twist (c) families. For simplification, some

relationships have been consolidated or are not shown. Double color

identification refers to miRs that have been described as having both

pro- and anti-invasion/metastatic roles depending on the context and/

or cell system analyzed. See text for discussion and references
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which may reinforce EMT and stemness programs [141].

Snail1 is also repressed by let-7d and miR-29b, microR-

NAs that block EMT and invasiveness in HNSCC and

prostate carcinomas, respectively [142, 143].

Snail2 participates in yet another double-negative loop

with miRs: miR-1 and miR-200 inhibit Snail2 expression

and are repressed by binding of Snail2 to their promoters

[144]. Snail2 transcript is also inhibited by miR-203, which

is upregulated in primary tumors and hypermethylated and

silenced in metastatic cell lines [145].

To date, fewer miRs have been linked to Twist factors.

Overexpression of let-7d inhibits Twist1 expression in oral

squamous cell carcinomas [142]. Twist1 is also inhibited

by miR-29b, miR-580, and miR-214, but it is not clear

whether downregulation of Twist1 by miR-29b is mediated

by inhibition of Snail1 [117, 143, 146]. In turn, Twist1

activates the expression of miR-10b, miR-199a, and miR-

214 genes through direct binding to E-boxes in their pro-

moters [147, 148]. miR-10b is expressed in metastatic

breast cancer cells and induces cell motility and migration

by indirectly inducing RhoC.

The emergence of all these new regulatory loops

between miRs and EMT-ATFs provides evidence of

dynamic epigenetic silencing of miR-200 (and likely other

miRs) during cancer progression, which endows cancer

cells with enhanced plasticity to reversibly switch between

EMT and MET during tumor invasiveness and metastasis.

Cross-regulation among EMT-ATFs

Previous sections have highlighted the existence of significant

overlap among EMT-ATFs in their regulatory signals, target

genes, and mechanisms of action, raising the question of what

is the specific contribution of each factor in the regulation of

EMT and cancer. Recent evidence indicates that ZEB factors

are downstream of the Snail and Twist families in the EMT

interactome [149] (Fig. 3). The hierarchical Snail–Twist/ZEB

relationship supports earlier evidence of the strongest corre-

lation of ZEB factors, especially ZEB1, with E-cadherin loss

and EMT across cancer cell types [150].

Snail1 increases ZEB1 protein levels through both

transcriptional and post-transcriptional mechanisms [57,

151, 152] (Fig. 3). Snail1 also enhances the stability of

Twist1 and triggers nuclear translocation of Ets1, both

directly activating the ZEB1 promoter. Additionally,

Snail1 not only represses miR-200, thus derepressing

ZEB1 mRNA, but also stabilizes ZEB1 protein through

still undefined mechanisms. Snail2 also activates ZEB1 by

direct binding to its promoter [308].

ZEB2 expression is also regulated by Snail1 through

several mechanisms. Repression of miR-200 by Snail1

upregulates ZEB2 mRNA (Fig. 3). In addition, Snail1

induces a natural antisense transcript (NAT) that overlaps

with an internal ribosomal entry site in the 50 UTR of

ZEB2, preventing its splicing and increasing ZEB2 [153].

Twist1 mediates some of its EMT-activating effects

through Snail2 by binding to its promoter and activating its

transcription [154]. Expression of Twist1 and Snail1 are

also mutually dependent although in different directions,

depending on the cell system. Knock-down of Snail1

downregulates Twist1 protein and mRNA, while knock-

down of Twist1 interferes with TGFb-mediated induction

of Snail1 [152]. Alternatively, it has also been reported that

Snail1 transcriptionally represses Twist1, which only

increases as Snail1 declines in later stages of EMT [155].

Microarray gene expression signatures of human mam-

mary epithelial cells (HMEC) driven towards EMT have

confirmed this hierarchical/network relationship among

EMT-ATFs. HMEC that have been either treated with

TGFb or subjected to overexpression of Snail1, Twist1, or

Goosecoid, or knock-down for E-cadherin, display an

overlapping gene signature characterized by the induction

of ZEB1, ZEB2, and FOXC2 [149]. In any case, several of

the signaling pathways (e.g., TGFb, Wnt, Notch, TNFa/

IL1b, receptor tyrosine kinase, etc.) inducing Snail and

Twist factors also activate ZEB1 and ZEB2 expression

directly. There is also considerable cross-talk among many

of the upstream signals regulating all three EMT-ATF

families. For instance, besides regulation of ZEB factors

via TGFb/Snail1-mediated inhibition of miR-200 [152],

ZEB1 

Snail1 

Twist1 ZEB2 

Snail2 NAT miR-200 

Fig. 3 Cross-regulation among

EMT-ATFs. Dashed lines
indicate that different

relationships have been reported

depending on the cell system

analyzed. See text for discussion

and references
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ZEB1 induction by Notch involves NFjB [71] and growth

hormone induces ZEB2 via NAT [75]. TrkB induces EMT

through a ZEB1-dependent mechanism that requires the

cooperation of Snail1 and Twist1 [63].

Expression and functional redundancy among EMT-

ATFs suggests that their specificity could occur at the

spatial and temporal level, with Snail1 being required to

initiate the EMT and, subsequently, Twist and ZEB factors

to consolidate it [57, 152, 155].

EMT-ATFs in EMT and tumor invasiveness

ZEB1 and ZEB2

Expression of ZEB factors drives an EMT by repressing

and activating epithelial and mesenchymal specification

genes, respectively (reviewed in [33, 53, 54]). ZEB1 and

ZEB2 both bind to E-box sequences in the E-cadherin

promoter but recruit different set of corepresors: CtBP and

SWI/SNF in the case of ZEB1, and CtBP and NuRD by

ZEB2. ZEB proteins bind and repress the promoters of

other epithelial markers such as P- and R-cadherins, cell

polarity markers (Crumbs3, Pals1-associated tight junction

protein, lethal giant larvae homologue 2), components of

tight junctions (occludin, claudin 7, junctional adhesion

molecule 1, zonula occludens protein 3), gap junctions

(connexins 26 and 31), and desmosomes (desmoplakin,

plakophilin 3) (reviewed in [53] and see also [14–16, 20]

Conversely, ZEB proteins activate mesenchymal markers

such as vimentin and N-cadherin. Although the mechanism

of ZEB1- and ZEB2-mediated induction of mesenchymal

genes has not been fully elucidated, in some cases (e.g.,

vimentin) it involves direct binding of ZEB proteins to the

promoter regions of mesenchymal genes and transcrip-

tional activation [156, 157]. ZEB1 and ZEB2 also repress

epithelial splicing regulatory proteins-1 and -2 (ESRP-1

and -2) that coordinate the epithelial pattern of alternative

splicing of FGFR2 and whose overexpression inhibits EMT

[158].

Breakdown of the basement membrane, that separates

the epithelial compartment from the surrounding stroma, is

considered a key step in the progression from in situ to

invasive carcinoma. Interestingly, ZEB1 regulates the

expression of several components of the epithelial base-

ment membrane (e.g., a3 chain of laminin 5, a2 chain of

collagen IV, c2 chain of laminin 5), although in a tissue-

specific manner [69, 159, 160]. In colorectal carcinomas,

the c2 chain of laminin 5 coexpresses with MT1-MMP in

cancer cells at the tumor invasive edge and cleavage of the

former by the latter promotes cancer cell migration [69,

161].

As an inhibitor of the epithelial phenotype, ZEB1 is not

expressed in normal epithelium, although it is found in

isolated fibroblasts and immune cells in the interstitial

stroma (Fig. 4). ZEB1 expression is also absent at the

center of relatively well-differentiated carcinomas

expressing E-cadherin [29, 159]. However, ZEB1 is highly

expressed in invading dedifferentiated cancer cells of many

tumors including colorectal, breast, liver, endometrial,

lung, prostate, and pancreatic carcinomas (Table 1). Like

ZEB1, ZEB2 is expressed by stroma cells in epithelial

tissues (Fig. 4), but, interestingly, is also detected in nor-

mal E-cadherin-positive epithelial cells in several organs

[162]. Nevertheless, upregulated expression of ZEB2 at the

invasive front has been reported in most carcinomas

expressing ZEB1, such as colorectal, breast, gastric, blad-

der, liver, and pancreatic (Table 1). In most of these

tumors, there is also an increase in the number of ZEB1-

and ZEB2-positive cells (fibroblasts, macrophages, and

endothelial cells) in the peritumoral stroma—often at

higher levels than in invading cancer cells—representing

both tumoral cells that have undergone an EMT and acti-

vated stromal cells (Table 1; e.g., [16, 31, 159, 163–166]).

It has been postulated that ZEB-dependent paracrine sig-

naling from the stroma could cooperate in E-cadherin

repression in other parts of the tumor [163].

Expression of ZEB proteins by both cancer and stromal

cells at the invasive front of carcinomas translates into

increased tumor invasiveness: ZEB proteins promote

ZEB1 ZEB2 Fig. 4 ZEB1 and ZEB2 are

expressed in stromal cells of

normal colonic mucosa.

Immunohistochemistry of colon

samples from normal

individuals stained by the

3,30-diaminobenzidine (DAB)

method with ZEB1 (H-102;

Santa Cruz Biotechnology) and

ZEB2 (H-260; Santa Cruz

Biotechnology) as described in

[69]. Scale bars 25 lm
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metastasis in xenograft models [131, 167] and associate

with increased aggressiveness and higher metastatic

capacity in a wide range of primary human carcinomas

(e.g., [65, 70, 131, 164, 168–171]). ZEB factors have been

shown to have an independent prognostic value for nodal

dissemination, metastasis, response to treatment, and/or

survival in multiple carcinomas, inter alia, of the ovary,

bladder, colorectal, gastric, pancreas, and hepatocarcinoma

[164, 166, 169, 171–176] (see representative entries with

superscript letter in Table 1).

Snail1, Snail2 and Snail3

Independently of their inductive effects on ZEB1 and

ZEB2, Snail factors also directly regulate epithelial and

mesenchymal markers ([21, 177, 178] and references

therein). In fact, the emerging consensus in the literature

points to Snail1 as the factor responsible for the initiation

of EMT in response to inducing signals [152, 155]. In

addition to direct binding to the E-cadherin promoter and

inhibition of its transcription, Snail factors repress other

epithelial markers independently of their effect on E-cad-

herin—e.g., desmoplakin, adherens junction (claudin-1, -3,

-4, -7), tight junctions (occludins), cytokeratins, and

Mucin-1. On the other hand, Snail factors activate the

expression of mesenchymal-like and pro-invasive genes

(e.g., vimentin, fibronectin MMP1, MMP2, MMP7, MT1-

MMP) that promote cell migration. While the epithelial

and mesenchymal genes controlled by Snail1 and Snail2

overlap to a great extent, there is also evidence of some

level of differential regulation in the degree of induction or

repression and even in its direction [21]. For some genes,

regulation requires cooperation between Snail1 and Snail2

or between Snail1 and Twist1: for example, Snail1 and

Snail2 cooperate to transcriptionally repress the vitamin D

receptor by which engagement by vitamin D3 promotes

cell differentiation which is associated with a good prog-

nosis in colorectal carcinomas [179, 180].

Snail factors are not present in normal epithelial cells

but their expression is evidenced, usually higher for Snail1,

Table 1 Upregulated expression of EMT-ATFs in selected human
cancers

EMT-
ATF

Human cancer Reference

ZEB1 Bladder [164, 284–286]

Breast [165, 287]

Digestive tract (colorectal) [16, 69, 159]

Digestive tract (esophagus
squamous cell carcinoma)

[288]

Digestive tract (gastric) [171]a

HNSCC [289]

Hepatocarcinoma [174]a

NSCLC [70, 163]

Pancreas [131], [176]a, [273]

Prostate [65]

Uterus (leiomyosarcoma,
endometrial adenocarcinoma)

[168, 170]

ZEB2 Bladder [164]a, [284, 286]

Breast [169]

Digestive tract (colorectal) [173]a

Digestive tract (gastric) [175]a, [290]

HNSCC [291]a, [292]

Hepatocarcinoma [166]a, [293]

Ovarian [169, 172]a

Pancreas [176]a, [294]

Snail1 Breast [165], [169]a, [182,
192, 295, 296]

Digestive tract (colorectal) [181]a, [184, 297]

Digestive tract (gastric) [290]

HNSCC [292, 298]

Hepatocarcinoma [185], [187, 191]a

NSCLC [254]a

Ovarian [169, 189]a

Pancreas [299]

Snail2 Breast [182, 192]

Digestive tract (colorectal) [189]

Digestive tract (esophagus) [188]a

Digestive tract (gastric) [300]

HNSCC [292]

NSCLC [253]a

Ovarian [169]

Pancreas [299]

Snail3 Lung [301]

Melanoma [301]

Twistl Bladder [201]

Breast [19], [165]a, [192,
248, 255]

Digestive tract (colorectal) [248, 302]a

Digestive tract (esophagus squamous cell
carcinoma)

[200, 207]a, [248]

Digestive tract (gastric) [206, 290]

HNSCC [199, 292]

Hepatocarcinoma [191, 205]a, [303]

Ovarian [203, 204]a

Pancreas [304]

Prostate [282, 309]

Table 1 continued

EMT-
ATF

Human cancer Reference

Twist2 Breast [202]

Digestive tract (esophagus) [248]

HNSCC [305]a

Uterus (cervical intraepithelial neoplasia,
cervical squamous cell carcinoma)

[306]

Only some representative publications are included
a Studies demonstrating prognostic value of EMT-ATFs expression
(correlation with metastasis, recurrence and/or survival)
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in cancer cells at the invasive front of carcinomas of the

breast, digestive tract, liver, pancreas, ovary ,and lung

among others (Table 1). Characterization of Snail3 lags

behind, but ESTs have been identified in melanomas and

lung carcinomas. In addition to the tumor front, Snail1 is

found at areas of inflammation in colorectal carcinomas

[181]. Tumor progression correlates with increasing

nuclear expression of Snail1, but Snail1 can also be aber-

rantly detected in the cytoplasm of cancer cells of several

carcinomas. Additionally, strong Snail1 staining is found—

often at a higher percentage than in tumor cells, when not

even exclusively—among fibroblast-like cells, macro-

phages, and endothelial cells at the peritumoral stroma

[181–184].

Expression of Snail factors correlates with malignancy

and less differentiated tumors, lymph node invasion, and

metastasis, and Snail1, but not always Snail2, is consid-

ered an independent prognostic factor of worst evolution

and poorer survival in a large number of carcinomas [182,

185–189] (Table 1). Snail1 promotes the recurrence of

Her2/neu-induced primary breast tumors in mice, and

recurrent human carcinomas tend to display mesen-

chymal-like characteristics [186]. Thus, Snail1 is

spontaneously induced in recurrent breast carcinomas and

high levels of Snail1 are an independent predictor for

decreased relapse-free survival in breast cancer patients.

At least in head and neck carcinomas, only Snail1 nuclear

staining, but not cytoplasmic, is associated with a worse

clinical outcome [190]. Interestingly, reactivity for Snail1

in stromal but not in cancer cells correlates with distant

metastasis and lower survival in early stage colorectal

carcinomas [181].

Up to now, evidence for differential roles of Snail1 and

Snail2 in cancer progression is scarce. In hepatocarcino-

mas, only Snail1 but not Snail2 correlates with E-cadherin

loss [191], whereas another study reported that Snail2 but

not Snail1 is associated with a poorer outcome in breast

carcinoma patients [192].

Twist1 and Twist2

Twist factors induce EMT directly and indirectly through

their effect on other EMT-ATFs. Thus, Twist1 has been

shown to repress E-cadherin by binding to its promoter

[19], but also through induction of Snail1 [193] or Snail2

[154]. In HMEC, Twist1 overexpression yields a similar

gene signature than Snail1 with repression of E-cadherin

and other epithelial specification genes and induction of

mesenchymal markers [149]. Several array studies found

that overexpression of Twist1 also upregulates the

expression of cytoskeletal and extracellular matrix genes

involved in cell motility. However, the extent to which

induction of mesenchymal genes by Twist is dependent on

E-cadherin repression is less clear [194]. Twist1 induces

N-cadherin via directly driving its transcription [108] and/

or through post-transcriptional mechanisms [195]. Never-

theless, in glioblastoma cells, Twist1 promotes expression

of mesenchymal markers without eliciting an E-cadherin/

N-cadherin switch [196]. Likewise, Twist1 induces fibro-

nectin in gastric and ovarian cancer cells [195] but not in

breast cancer cells [109]. In ovarian carcinoma cells,

Twist1 also activates MMP2 and MT1-MMP, and its

knock-down reduces cell adhesion to extracellular matrix

components in parallel with a decline in several adhesion

molecules (e.g., b1 integrin, CD44) [197].

A role for Twist1 in cancer was first evidenced by its

ability to promote greater invasiveness and metastasis in

xenograft models [19]. Like other EMT-ATFs, Twist1 and

Twist2 are absent in normal epithelium but are induced in a

number of human carcinomas, including those of the

digestive tract, breast, liver, prostate, endometrium, and

ovary (Table 1). Interestingly, the Twist1 gene has also

been found to be deleted or amplified in some osteosar-

comas [198]. Again, mirroring ZEB and Snail factors,

Twist1 and Twist2 are not only upregulated among cancer

cells at the invasive front of carcinomas but also in stromal

cells. Likewise, upregulation of Twist factors is not limited

to the nuclei of cancer cells but, in many cases, also in their

cytoplasm (e.g., [199–202]).

Twist factors are not only upregulated in human cancers

but their reactivity increases during tumor progression

from being mostly negative in benign neoplasias to be

highly overexpressed in carcinomas of a wide range of

tissue origins (Table 1). Knock-down of Twist1 in breast

cancer cells inhibits their ability to metastasize in xenograft

models but not the formation of primary tumors [19]. Twist

factors also correlate with higher tumor grade, invasive-

ness, and metastasis, being independent prognostic factors

for enhanced tumor aggressiveness, tumor recurrence, and

poorer patient survival (e.g., [155, 191, 197, 199, 203–

207]). Interestingly, in hepatocarcinomas, expression of

either Twist1 or Snail1 is associated with shorter survival,

and their simultaneous presence has an additive negative

effect, suggesting that they somehow play distinct but

collaborative roles in cancer progression [191]. In that line,

another study in hepatocarcinomas found that Twist1

associates with increased tumor angiogenesis and metas-

tasis but not with downregulation of E-cadherin [205].

Differential expression of Twist and Snail factors in some

studies suggests a division of labor among EMT-ATFs.

Breast carcinomas with lymph node involvement and poor

clinical outcome display high levels of Twist1 and Snail2

while, contrary to other reports, expression of Snail1

declined [192].
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Other transcription factors inducing EMT and tumor

invasiveness

Like the ZEB, Snail, and Twist factors, E12/E47 binds

directly to E-cadherin promoter [6] and induces an EMT by

regulating an overlapping—but still distinct—set of epithe-

lial and mesenchymal markers compared to Snail1 and

Snail2 [21]. E12/E47 complexes not only promote tumor

invasiveness and growth but injection of Madin–Darby

Canine Kidney (MDCK) cells overexpressing E47 into nude

mice generates tumors with higher invasiveness, growth, and

vascularization than those formed by MDCK cells over-

expressing Snail1 [177]. T-box transcription factor Tbx3 also

binds directly to the E-cadherin promoter and inversely

correlates with E-cadherin in human melanomas [7].

The homeobox factor Goosecoid also induces a full EMT

by repressing epithelial markers (including E-cadherin) and

activating mesenchymal genes [8]. Goosecoid is induced by

TGFb in adult breast epithelial cells and, compared to normal

breast tissue, is significantly overexpressed in atypical ductal

hyperplasia and ductal breast carcinomas [8].

FOXC2 also induces a mesenchymal phenotype but,

departing from the rest of EMT-inducing factors reviewed

here, FOXC2 does not alter E-cadherin mRNA levels but

rather delocalizes E-cadherin protein from the plasma

membrane to the cytoplasm [208]. FOXC2 is induced by

TGFb, and in response to overexpression of Snai1, Twist1,

and Goosecoid, and has been suggested to mediate activation

of mesenchymal genes by these other EMT-ATFs. FOXC2 is

not expressed in normal epithelium but is overexpressed in

basal-like breast and esophageal squamous cell carcinomas

where it correlates with adverse prognosis [208, 209].

Other roles of EMT-ATFs: beyond EMT and tumor

invasiveness

In addition to promoting tumor invasiveness, over the last

few years a number of works have demonstrated that EMT-

ATFs are also critical during earlier stages of cancer

development, collaborating with oncogenes in malignant

transformation, inducing tumor formation, contributing to

bypass failsafe programs against cancer, and determining

resistance to chemotherapy. While these additional cancer

hallmarks are not necessarily dependent on EMT, they are

jointly regulated with the EMT by EMT-ATFs. While

many of these functions are interconnected, they will be

addressed here in turn.

EMT, cancer stem cells, and tumorigenesis

The great level of heterogeneity displayed by most human

tumors led to the formulation in the 1990s of a hierarchical

model of cancer initiation where a small subpopulation of

cells in a tumor—referred to as cancer stem cells (CSCs)—

retain the capacity for self-renewal and tumor initiation

(tumorigenesis) (reviewed in [28]). CSCs have been iden-

tified in a number of human cancers including colon,

breast, pancreas, ovary, prostate, and brain tumors.

As indicated earlier, Brabletz and coworkers [27] pos-

tulated that invading carcinoma cells that have undergone

an EMT could function as ‘‘migrating CSCs’’. Later studies

by the Weinberg group and others confirmed that forcing

an EMT in non-tumorigenic, immortalized HMECs—by

treatment with TGFb or overexpression of EMT-ATFs—

concurrently confers on cells a phenotype similar to breast

CSCs (CD44high/CD24low, miR-200low), along with the

capacity to form mammospheres, self-renewal, and

increasing tumorigenecity in xenotransplants [12, 26, 132,

202]. The ability of miR-200 to suppress colony formation

in vitro and tumorigenesis in vivo depends on their

repressor effect on Bmi1 and ZEB1 [132].

Signaling pathways that control stem cell homeostasis

during embryogenesis and later in adults (e.g., Wnt, Shh,

Notch) are active in cancer and trigger—via induction of

EMT-ATFs—not only EMT but also stem-like properties

[3]. Acquisition and maintenance of stemness by EMT-

ATFs could explain the capacity of these factors to induce

tumorigenesis and promote recurrence and metastasis.

Isolation of stem-like (CD44high/CD24low) and non-

stem-like (CD44low/CD24high) populations from resected

primary breast tumors identified high levels of mesenchy-

mal markers (N-cadherin, vimentin, fibronectin) including

EMT-ATFs (ZEB2, Snail1, Snail2, Twist1 and Twist2) in

the first set but not the second [26]. While ZEB1 did not

show up in this study, ZEB1 was found to be uniquely

required to maintain the viability and stem-like phenotype

of spheres—a property classically linked to stem cells—

formed from mouse embryo fibroblasts (MEFs) with tar-

geted deletions of Rb1 and Rb family members [210]. In

pancreatic carcinomas, ZEB1 determines stemness in

cancer cells by direct repression of several miRs (miR-200,

miR-183, miR-203) targeting stemness regulators Bmi1,

KLF4, and Sox2 [131]. By contrast, activation of miR-200c

by p53 reduces ZEB1 expression and suppresses both EMT

and stemness, while downregulation of miR-200c—upon

loss of p53 or overexpression of oncogenic p53 mutants—

increases ZEB factors and stem cell markers in mammary

and pancreatic acinar epithelial cells [128, 130] (Fig. 2).

Similar results have been obtained in other models.

Spheres formed out of primary colorectal cancer cells also

express high levels of Snail1, whose overexpression

upregulates stem cell markers [211]. Another study found

that overexpression of Snail1 or Snail2 in ovarian cancer

cells derepresses a stemnes gene signature (e.g., Nanog,

KLF4, Oct4, Bmi1, Nestin) and increases the number of
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CSC-like CD44?/C117? cells, suggesting that CSCs orig-

inate from the dedifferentiation of non-stem cancer cells

rather than proliferation of existing CSCs [212]. In that

line, oncogenic transformation of mammary stem-like cells

produces more aggressive tumors than transformation of

differentiated mammary epithelial cells and enhances the

conversion of non-CSCs into CSCs [213].

The capacity of EMT-ATFs to generate CSCs is

important to explain some other EMT-ATFs functions, like

enhanced survival, tumor recurrence, and metastasis. The

possibility that cancer cells could transition between

tumorigenic and non-tumorigenic states [213], and that

EMT-ATFs expression could modulate this balance, rep-

resents an important avenue in therapy. In the same line,

the association between expression of EMT-ATFs by

cancer cell lines and primary tumors and resistance to DNA

damage and chemotherapy may also be related to EMT-

ATFs’ capacity to generate CSCs (see below). It remains to

be firmly established whether, in line with the migrating

CSC model [27], the joint induction by EMT-ATFs of a

proinvasive/metastatic phenotype and a tumorigenic/stem-

ness capacity in cell systems and xenograft models also

occurs in human tumors.

EMT-ATFs in resistance to apoptosis and anoikis

EMT allows cancer cells to overcome safeguard mecha-

nisms and become more resistant to signals triggering

programmed cell death. Aberrant expression of EMT-

ATFs by tumors may thus promote tumorigenesis and

tumor growth through increased resistance to apoptosis.

EMT triggers pro-survival programs in response to mul-

tiple apoptotic stimuli through mechanisms closely linked

to the cell cycle. For instance, in an hepatocyte cell line

TGFb triggers an EMT when cells are in G1/S but

apoptosis during G2/M [214]. Both Twist1 and Twist2

inhibit myc- and p53-dependent apoptosis by repressing

p19ARF [215, 216]. Twist1 also inhibits p53 targets by

direct interaction and blocking of the DNA binding

domain of p53 [217]. Overexpression of Snail1 induces an

EMT at the same time as suppressing TGFb-induced

apoptosis of non-transformed hepatocytes and hepatocar-

cioma cell lines [218]. Snail1 also protects cells against

cell death caused by TNFa or growth factor withdrawal by

activating MEK and PI3K signaling [219]. Direct repres-

sion by Snail factors of the promoters of p53 and pro-

apoptotic target genes protects cells against apoptosis

induced by DNA damage in response to genotoxic stress

(e.g., BID, PIG8, caspase 6, DFF40) [212, 220]. In

hematopoietic progenitors, Snail2 is induced by p53 in

response to DNA damage and protects against apoptosis

by repressing p53-mediated induction of Puma, an

inhibitor of Bcl2 [221]. By contrast, mutant p53 in

NSCLC cells results in low Mdm2 and stabilization of

Snail2 [222]. In neuroblastomas, overexpression of Snail2

induces Bcl2 [223], and cancer cells with mutant K-Ras

that have undergone EMT require Snail2 expression for

their survival [224]. In different cell systems, ZEB1

directly inhibits pro-apoptotic TAp73 but also anti-apop-

totic DNp73 and DNp63 [225, 226]. The pro-survival

effect of ZEB2 is, however, independent of cell cycle

arrest and intercellular adhesion and is mediated through

inhibition of cleavage of PARP and pro-caspase 3 and

phosphorylation of ATM/ATR substrates [164].

As cancer cells detach from the tumor, start migrating

across the stroma, and intravasate into the circulation, they

lose most (if not all) of their intercellular contacts and

adhesion to the original extracellular matrix. Just like

migrating progenitors during development, metastatic

cancer cells are able to survive in this new environment, a

condition that in normal cells triggers a caspase-dependent

apoptosis program known as anoikis or anchorage-depen-

dent cell death (recently reviewed in [227]). Acquisition of

resistance to anoikis is therefore a critical cancer cell

capability during tumor invasion and metastasis. Down-

regulation of E-cadherin expression is sufficient to

determine resistance to anoikis [14, 194, 228]. ARF indu-

ces apoptosis and anoikis, and downregulation of ankyrin

G—a binding partner of E-cadherin that concentrates it at

sites of cell–cell contact—during EMT promotes the for-

mation of NRAGE–Tbx2 complexes that represses ARF

[229]. Several EMT-inducing pathways (e.g., receptor

tyrosine kinase, oncogenic Ras, hypoxia) trigger resistance

to anoikis through activation of PI3K-AKT and ERK sig-

naling and regulation of Bcl2 family members. Likewise,

in different cell systems and conditions, expression of

ZEB, Snail, and Twist factors induces anchorage-inde-

pendent cell growth [14, 64, 194, 230]. In a seminal

contribution by Frisch’s group, the capacity of ZEB1

conferring resistance to anoikis was shown to be dependent

on the formation of ZEB1/CtBP E-cadherin repres-

sor complexes, in a process reversed by E1a [14]. Snail1

expression promotes resistance to anoikis by activation of

the MAPK and PI3K cascades [219]. The tyrosine kinase

receptor TrkB, overexpressed in many human cancers, is a

known inducer of both EMT and anoikis resistance [63].

Ligand activation of TrkB activates MAPK signaling

leading to direct induction of Snail1, Twist1, and ZEB1,

but with ZEB1 as the ultimate effector in TrkB-mediated

resistance to anoikis. It is of note that TrkB is also a direct

target of miR-200 in endometrial and breast carcinoma

cells [231], forming yet another miR-regulated regulatory

loop, this time for the control of anoikis resistance

(Fig. 2a).
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EMT-ATFs in regulation of cell cycle, senescence

and transformation

Like apoptosis, cell cycle arrest by senescence represents a

crucial safeguard mechanism against cancer. In addition to

telomerase shortening during replicative senescence,

oncogenic transformation and DNA damage can trigger

cell cycle arrest and senescence through induction of the

p53 and p16INK4a/Rb pathways [232]. Oncogene-induced

senescence has been identified in precancerous lesions and

needs to be overcome for progression to full tumorigenic

status [232, 233]. Evidence accumulated in recent years

shows that EMT-ATFs allow cancer cells to bypass

senescence thus contributing to the continuous prolifera-

tion of immortalized cells. In the same line, an

inflammatory environment in the tumor area not only

drives cancers cells into an EMT program but also over-

rides oncogene-induced senescence [234].

ZEB1 transcription, but not ZEB2 or Snail1, is inhibited

by the p16INK4a/Rb1 tumor suppressor pathway and in turn

represses p15INK4b, p19ARF, and p21CIP/WAF1 ([48], [76],

[235]; see [236] for a comprehensive review). Loss of Rb1

is not only involved in tumor initiation but has been

reported to also induce EMT [237], and may contribute to

overexpression of ZEB1 in proliferating cells and in many

primary tumors. MEFs from ZEB1 (?/-) and ZEB1 (-/-)

mice undergo premature replicative senescence in a dose-

dependent manner compared to wild-type MEFs [235].

Likewise, progenitors in the palate, skeleton, and nervous

system in the ZEB1 (-/-) mice display decreased prolif-

eration [235]. Oxidative stress induces senescence through

miR-200-mediated inhibition of ZEB1 [224]. As indicated

earlier, p53 represses ZEB1 expression through induction

of miR-200, [128, 129]. However, while ZEB1 represses

DNp63 and both isoforms of p73, it does not affect TAp63

or p53 [225].

Evidence for ZEB2 points in both directions—promot-

ing and reverting senescence—perhaps reflecting cellular

background differences. ZEB2 induces a G1 arrest in epi-

dermoid and bladder carcinoma cell lines by direct

transcriptional repression of cyclin D1 [164, 238]. Over-

expression of cyclin D1 uncouples ZEB2-mediated cell

cycle arrest from EMT [238]. Contrary to other EMT-

ATFs, ZEB2 induces senescence in hepatocarcinoma cells

by inhibiting hTERT [239]. However, overexpression of

ZEB2 in lung epithelial cells raises the concentration of

TGFb needed to trigger growth arrest [48], and conditional

targeted deletion of ZEB2 (-/-) in the developing cerebral

cortex decreases proliferation of neural precursor cells

[240]. Expression of both ZEB1 and ZEB2 has been shown

to abrogate EGFR-induced senescence while their knock-

down induces p15INK4b and p16INK4a, thus reactivating the

senescence program [241]. In this direction, miR-200

induces senescence in endothelial cells by inhibiting ZEB1

[224]. The regulatory loop between p53/miR-200 and

ZEB1/ZEB2 therefore seems to also be involved in control

of senescence (Fig. 2a). The ability of ZEB factors to

override senescence is closely tied to their activation of

EMT: triggering of senescence by knock-down of ZEB1

and ZEB2 (or p53) makes cells insensitive to the EMT-

driving effects of TGFb [241].

In the developing embryo, Snail1 inversely correlates

with areas of proliferation and cyclin D2 expression, results

confirmed in canine kidney epithelial cells where Snail1

transcriptionally represses cyclin D2 and associates to high

levels of p21CIP/WAF1 and G1 arrest [219, 242]. In this line,

knock-down of Snail1 drives prostate cancer cells into

senescence [243]. Snail2 is also excluded from areas of

proliferation in the neural tube of the developing chick

[219], and its overexpression in prostate cancer cells

represses cyclin D1 [244]. However, other groups have

reported opposite results, suggesting that, as in the case of

ZEB2, the role of EMT-ATFs in cell cycle arrest and

senescence may be cell type-dependent. Thus, in osteo-

sarcoma cells, Snail1 inhibits E12/E47 transcriptional

activation of the p21CIP/WAF1 promoter, cooperating in this

function with Twist1 [245]. Likewise, in breast cancer

cells, Snail2 upregulates cyclin D1 and fosters proliferation

by forming a complex with CtBP and transcriptionally

repressing UbcH5c, an ubiquitin that targets cyclin D1

[246].

Growth arrest and senescence is also achieved by

knocking down Twist1 in immortalized non-malignant

prostate cells, while its overexpression inhibits p53-

dependent senescence via inhibition of ARF [247].

Repression of p14ARF also results in inhibition of Chk1/2

phosphorylation in response to DNA damage [247]. Twist1

and Twist2 override RasV12-induced senescence of cell

lines, and of breast cancer cells in MMTV-Erb2/Neu

transgenic mice, by inhibition of p16INK4a and p21CIP/WAF1

[248]. This study also found that Twist factors cooperate

with RasV12 in the transformation of MEFs, an effect that

was abolished when Ras-induced senescence was inhibited.

Twist1 cooperates with N-myc in the transformation of

wild-type but not INK4a/ARF (-/-) MEFs, confirming

that Twist activity involves inhibition of the ARF/p53

pathway [216]. As in the case of ZEB proteins, Twist1/2-

mediated override of senescence is linked to their ability to

induce an EMT and promote tumor invasion.

EMT-ATFs and angiogenesis

Snail1 is required for proper vascular development during

embryogenesis, and its overexpression in embryonic stem

cells induces the formation of VEGFR-2-positive endo-

thelial cells through downregulation of miR-200 [249].
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The growth of a tumor from an avascular hyperplasia

into a larger mass requires the formation of new vessels

through a process known as the angiogenic switch, which

involves the production of angiogenic factors and proteases

by tumor and stromal cells. Loss of E-cadherin is sufficient

to trigger this angiogenic switch. Conditional knock-down

of E-cadherin in mouse models of NSCLC promotes the

development of tumor vasculature and growth through

upregulation of vascular growth factors VEGF-A and

VEGF-C and its receptor Flt-4 [250]. Angiogenesis is

classically triggered by inflammation and hypoxia, condi-

tions that are also known inducers of EMT [116]. Hypoxic

conditions also increase the population of cancer cells with

stem-like phenotype [251]. Stabilization of HIF-1a in

response to hypoxia or its overexpression promotes inva-

sion and metastasis by directly activating Twist1 and

inducing an EMT [116]. Likewise, knock-down of HIF-1a
or overexpression of the VHL gene—whose product targets

HIF-1a for ubiquitin-mediated degradation—downregu-

lates expression of ZEB1, ZEB2, and Snail1 [60, 252].

Additionally, HIF-1a feeds into upstream EMT-inducing

signals (e.g., Notch, NFjB) [104]. Twist1-mediated

induction of EMT by HIF-1a is not redundant with Snail1,

suggesting that both factors have distinct but complemen-

tary roles in the pro-invasive and pro-angiogenic response

to hypoxia. In that line, joint expression of HIF-1a, Twist1,

and Snail1 in primary HNSCC associates with poorer

prognosis [116].

Most EMT-ATFs promote tumor angiogenesis in vivo.

ZEB, Snail, and Twist factors are often overexpressed by

endothelial cells in the peritumoral stroma. Expression of

Twist1 also associates with enhanced tumor microvessel

vasculature and VEGF expression in hepatocarcinomas

[205]. In mice, injection of lung adenocarcinoma cell lines

overexpressing Snail1 or Snail2 generated tumors with

enhanced vasculature compared to control cells [177, 253,

254], that in the case of Snail1 is accompanied by higher

levels of proangiogenic factors CXCL5 and CXCL8 [254].

Likewise, compared to control cells, xenotransplant of

breast cancer cell lines overexpressing Twist1 generate

tumors with higher tumor angiogenesis and upregulated

expression of several key vascular growth factors and

receptors (e.g., VEGF, VEGFR2/KDR, Angiotensin-2,

chemokine GRO-a, and CD31) [255, 256]. ZEB2 also

promotes angiogenesis by direct transcriptional repression

of the anti-angiogenic homeobox GAX factor [134].

However, and contrary to what would be expected from its

induction by HIF-1a and its role as promoter of tumor

progression, ZEB1 can also function as a negative regu-

lator of angiogenesis in vivo. Xenotransplanted melanoma

cells develop larger tumors with more developed vascu-

larization in mice with a haploinsufficient ZEB1

background [257].

EMT-ATFs in oncogenic addiction and resistance

to therapy

Activation of oncogenic pathways (or loss/inactivation of

tumor suppressor signals) induces pro-survival and pro-

growth signals on which tumors can become dependent.

This dependency of cancer cells on oncogenes—referred as

‘‘oncogenic addiction’’—has been exploited in the devel-

opment of new chemotherapy drugs [258]. The success of

antibodies and drugs targeting specific oncogenes in the

treatment of a number of solid and hematologic cancers in

mice models and humans has helped to reinforce the

oncogenic addiction concept.

EMT and EMT-ATFs allow cancer cells to overcome

their dependency on the oncogenic signals originally

involved in their transformation. Thus, the epithelial status

of pancreatic and lung cancer cells with activating muta-

tions of K-Ras determines their dependency on K-Ras for

their growth and survival [259]. Cancer cells that are

dependent on K-Ras exhibit epithelial characteristics, while

those independent of K-Ras have a mesenchymal pheno-

type. Induction of EMT by TGFb or ZEB1 overrides K-Ras

addiction protecting cancer cells from apoptosis following

K-Ras knock-down. Conversely, elimination of ZEB1 in

K-Ras-independent cancer cells restores K-Ras depen-

dency [261]. Snail2 is also required for the survival of

colorectal cancer cells with mutant K-Ras [260]. These

results support EMT as a mechanism for cancer cells to

escape from oncogenic addiction and highlight the poten-

tial of EMT-ATFs as therapeutic targets.

In the same line, and in parallel with the anti-apoptotic

role of EMT described earlier, a wealth of articles have

shown an association between EMT and chemotherapy

resistance. Cancer cell lines expressing E-cadherin are

more sensitive to chemotherapy drugs compared to those

displaying a mesenchymal phenotype [261–264]. Resis-

tance to chemotherapy and hormone therapy in patients

with breast carcinomas correlates with tumoral expression

of stem and mesenchymal markers. Poor response of

HNSCC and NSCLC to EGFR inhibitors gefitinib and

erlotinib in cell lines, human tumors, and xenograft mice

models is associated with expression of EMT and stem-like

cell markers [265–268]. Acquisition of resistance to oxa-

liplatin in colorectal carcinoma cells is also accompanied

by expression of mesenchymal markers [261]. Respon-

siveness to cetuximab (a chimeric mouse–human antibody

against EGFR) in Ras wild-type colorectal cancer cells

depends on high expression of epithelial markers and low

levels of ZEB1, Snail1, and Snail2, and of stem-like phe-

notype [269]. It is worth noting that the EMT-inducing

effect of some drugs is cell-cycle dependent: e.g., in breast

cancer cells, doxorubicin induces a mesenchymal pheno-

type during G1/S and apoptosis in G2/M [270]. The
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peritumoral stroma also plays an important role in che-

moresistance to EGFR inhibitors. Interestingly, in a

xenograft model of EGFR-resistant NSCLC, cancer-asso-

ciated fibroblasts derived out of tumor cells that have

undergone an EMT are not only EGFR-resistant but also

tumorigenic [268].

The association between EMT and drug resistance is

mediated, at least in part, by EMT-ATFs (Table 2).

Expression of different EMT-ATFs by cancer cell lines and

primary tumors confers tumor cells resistance to chemo-

therapy and radiotherapy. Resistance to doxorubicin in

breast carcinoma cell lines correlates with higher expres-

sion of ZEB1 and SIRT1 [271]. In NSCLC cell lines,

expression of ZEB1—but not of ZEB2, Snail1, or Snail2—

correlates with higher resistance to gefitinib [262]. ZEB1 is

also associated with resistance to erlotinib in HNSCC cell

lines, and its knock-down increases drug sensitivity with

the induction of E-cadherin expression [272]. Interestingly,

simultaneous knock-down of ZEB1 and E-cadherin cancels

out sensitization to erlotinib by ZEB1 elimination, sug-

gesting that sensitivity to this EGFR inhibitor requires

E-cadherin expression. Depletion of ZEB1 also sensitizes

pancreatic cancer cell lines to gemcitabine, 5-fluorouracil,

and cisplatin, and gemcitabine-resistant clones express

higher levels not only of ZEB1 but also of Snail1 and

Snail2 [71, 131, 273] (Table 2).

ZEB2 determines resistance to treatment independently

of ZEB1, protecting bladder and squamous carcinoma cell

lines against DNA damage-inducing agents such as cis-

platin or UV radiation [164]. Importantly, patients with

ZEB2-negative bladder carcinomas also exhibit better

response to radiotherapy [164].

Snail1 is upregulated in NSCLC xenotransplanted

tumors resistant to EGFR inhibitors [268] and determines

resistance to cisplatin in HNSCC primary tumors and

HNSCC and NSCLC cell lines [274, 275] (Table 2).

Snail1-related resistance to cisplatin in HNSCC cell lines is

mediated by activation of the DNA excision repair protein

ERCC1 [275]. Snail1 expression also confers resistance to

5-fluorouracil in breast carcinoma cell lines [276]. In

contrast, other studies have found that resistance to gefiti-

nib displayed by some NSCLC cell lines and developed by

primary lung adenocarcinomas associated with overex-

pressed Snail2—but not Snail1, Twist1, or ZEB1—being

reversed by Snail2 knock-down through a mechanism

involving upregulation of Bim and activation of caspase 9

[277]. In breast carcinoma cell lines refractory to doxoru-

bicin, knock-down of Snail1 and Snail2 have a synergistic

effect inducing drug sensitiveness, suggesting that Snail1

and Snail2 determine resistance through non-overlapping

mechanisms. Chemotherapy resistance induced by EMT-

ATFs is not only tightly linked to the induction of mes-

enchymal markers but also of stemness. Knock-down of

Snail1 and Snail2 in ovarian cancer cell lines increases

their sensitivity to cisplatin [278]. As noted earlier, Snail1-

and Snail2-induced resistance to paclitaxel and radiation in

Table 2 EMT-ATFs confer resistance to chemotherapy and radiotherapy

Evidence Resistance Reference

ZEB1 Breast carcinoma cell lines Doxorubicin 271

Head and neck squamous carcinoma cell lines Ertotinib 272

Non-small lung carcinoma cell lines Gefitinib 262

Pancreatic carcinoma cell lines Gemcitabine, 5-Fluorouracil, Cisplatin 71,131,273

ZEB2 Bladder and squamous carcinoma cell lines Cisplatin, UV radiation 164

Primary transitional cell carcinomas of the bladder Radiotherapy 164

Snail1 Breast cancer cell line 5-Fluorouracil 276

Lung carcinoma cell lines Cisplatin 275

Ovarian adenocarcinoma cell lines and primary tumors Cisplatin 278

Snail2 Malignant mesothelioma Doxorubicin, Paclitaxel, Vincristine 279

Non-small cell lung carcinoma cell lines and Primary lung adenocarcinoma Gefitinib 277

Ovarian adenocarcinoma cell lines and primary tumors Cisplatin 278

Twist1 Breast cancer cell lines Doxorubicin 270

Breast cancer cell lines Paclitaxel 109

Nasopharyngeal carcinoma cell lines Paclitaxel 283

Prostate carcinoma cell lines Daunirubicin, cisplatin 280

Prostate carcinoma cell lines Paclitaxel, Cisplatin 247, 282

Various carcinoma cell lines (bladder, nasopharyngeal, ovarian, prostate) Paclitaxel, Vincristine 281

Twist2 Prostate adenocarcinoma cell lines Daunirubicin, Cisplatin 280

Only some representative publications are included. See text for discussion
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ovarian cancer cells relates to the repression of pro-apop-

totic p53 targets and activation of stemness markers [212].

In malignant mesotheliomas, activation of SCF/c-kit sig-

naling by Snail2 induces multidrug resistance [279].

Twist proteins are also involved in drug resistance. In

breast carcinoma cells, Twist1 mediates resistance to pac-

litaxel via direct transcriptional activation of AKT2 [109].

Twist1 knock-down increases sensitivity of breast cancer

cells to doxorubicin—a drug that triggers a p53-dependent

DNA damage response—by disrupting p53-Mdm2 associ-

ation [270]. Independently of p53 and p19ARF pathways,

Twist1 and Twist2 block breast cancer cells death by

daunorubicin by suppressing daunorubicin-induced phos-

phorylation of Bcl-2 [280]. In nasopharyngeal, bladder,

ovarian, and prostate cancer cell lines, Twist1 increases

resistance to paclitaxel and/or vincristine by upregulating

Bcl2 and lowering Bax and Bak [281–283].

Concluding remarks

In the span of just a few years, EMT-ATFs have evolved

from simple repressors of E-cadherin to inducers of most of

the traits that cancer cells need to acquire for successful

tumor progresssion (Table 3). Cancer cells can acquire

these capabilities through overexpression, gain-of-function

mutations, or amplification of oncogenes and/or repression,

mutation or deletion of tumor suppressors [1], and

mounting evidence indicates that EMT-ATFs critically

regulate these cancer hallmarks. From participating only at

late stages in cancer (promoting EMT and metastasis),

EMT-ATFs are now known to be also involved in the

initial phases of tumor development. First, EMT and

metastasis may be a much earlier event in cancer pro-

gression than previously thought, playing an important role

in tumor formation itself [31]. But, more importantly, ZEB,

Snail and Twist factors regulate the acquisition of key early

cancer hallmarks: EMT-ATFs contribute to overriding

cancer safeguard programs (apoptosis, senescence), pro-

moting tumor angiogenesis, cooperating with (or

mediating) oncogenic signals (e.g., Ras), and antagonizing

tumor suppressor pathways (e.g., p53) (Table 3). In turn,

classical tumor repressors like Rb or p53 have recently

been shown to regulate EMT and tumor invasiveness [128,

237].

The attention of molecular oncologists is moving from

an early focus on the identification of irreversible mecha-

nisms of cancer initiation and progression (e.g., mutations/

deletions, amplifications) to the discovery of the dynamics

involved in reversible programs of gene regulation in

cancer cells (e.g., epigenetic/transcriptional, translational).

Human tumors display a great level of heterogeneity, not

only among patients but also within different areas and

stages in a given tumor. Dynamic regulated expression of

miRs and EMT-ATFs grants cancer cells with a great level

of functional plasticity [54]. These transcriptional and

translational regulatory networks allow cancer cells to

reversibly transition between different states as they adapt

to the environment during tumor progression, not only

between epithelial and mesenchymal phenotypes but also

between stemness and differentiation or between prolifer-

ation and growth arrest.

The data reviewed here attest to a significant level of

overlapping among EMT-ATFs in their pattern of

Table 3 EMT-ATFs regulate multiple hallmarks of cancer

Hallmarks of cancer ZEB1 ZEB2 Snail1 Snail2 Twist1 Twist2

Activating invasion and metastasis ?

[167]

?

[15]

?

[177]

?

[253]

?

[19]

Inducing angiogenesis -

[257]

?

[134]

?

[177]

?

[253]

?

[255]

Sustaining proliferative signaling ?

[235]

-

[238]

?

[215, 248, 307]

?

[248]

Evading growth suppressors ?

[215, 217, 248]

?

[248]

Resisting cell death ?

[230]

?

[164]

?

[219]

?

[219]

?

[215]

?

[215]

Enabling replicative immortality ?

[235, 241]

?

[241]

-

[239]

?

[243]

?

[244]

?

[247, 248]

?

[248]

Hallmarks of cancer refers to Ref. [1]. Only representative publication(s) were included. (?) represents activation of the cancer hallmark by the

EMT-ATF. (-) represents repression of the cancer hallmark by the EMT-ATF. See text for discussion and other references
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expression, mechanisms of action, target genes and regu-

lation of hallmarks of cancer. Increasing specificity and

temporal and spatial hierarchies among EMT-ATFs are

progressively being revealed with the identification of an

expanding set of upstream regulatory miRs and transla-

tional regulators [149, 152, 155]. Similarly, the discovery

of new cofactors and chromatin remodeling complexes

used by EMT-ATFs to transcriptionally regulate their tar-

gets also points to some divergence; even if several EMT-

ATFs are coexpressed, availability of these cofactors may

dictate the functional capabilities of the EMT-ATFs.

Codification of the hallmarks of cancer by Hanahan and

Weinberg [1] has helped researchers not only to systema-

tize their findings and current understanding of cancer but

has also contributed to guiding new therapy strategies.

Compared to the irreversible effects of mutations and

deletions, the dynamic regulation of miRs and EMT-ATFs

renders them attractive targets for personalized oncology

treatment. Incorporating the analysis of EMT-ATF

expression in primary tumors into routine pathology diag-

nosis could help to prospectively identify resistance to

particular chemotherapy. Since chemotherapies targeting a

single oncogenic signal or cancer cell trait are not failsafe

against resistance and tumor recurrence, a simultaneous

approach to several signaling pathways and cancer hall-

marks could be more successful. The highly modular

structure and complex transcriptional activities of EMT-

ATFs and their simultaneous regulation of multiple cancer

hallmarks makes them attractive therapeutic targets for

translational researchers.

On the other hand, reversibility of the EMT/MET bal-

ance and plasticity in its regulation represent adaptive

mechanisms developed by cancer cells. Reverting the

mesenchymal phenotype of invading cells by blocking the

expression and/or function of EMT-ATFs may attenuate

the ability of cancer cells to invade and increase their

sensitivity to chemotherapy. However, as metastatic cancer

cells need to regain an epithelial phenotype to grow into a

macroscopic tumor at the site of distant colonization,

reverting the mesenchymal status of tumor cells may

actually foster metastasis. This is illustrated by the some-

what paradoxical metastatic-enhancing effect of miR-200

[125, 313]. In this regard, if reversible and dynamic regu-

lation of miR and EMT-ATFs during cancer progression

offers new avenues for therapy, it also complicates their

manipulation. More information of the upstream regulatory

networks and mechanisms of transcriptional regulation by

EMT-ATFs is therefore needed before interference of their

expression/function can be considered in cancer treatment.

As far as we know, induction of EMT by EMT-ATFs

occurs along with their regulation of other hallmarks (e.g.,

apoptosis, senescence). It remains to be ascertained how

regulation of these hallmarks overlaps at the mechanistic

level. To the extent that separate mechanisms are discov-

ered, therapeutic approaches could be more precisely

targeted.

In sum, as our understanding on the expanding roles of

EMT-ATFs improves, these factors are likely to become

not only prognostic and predictive personalized biomarkers

in cancer but also important therapeutic targets in the near

future.

Acknowledgments We apologize to those researchers whose rele-

vant work was cited only indirectly through reviews because of space

limitations. Experimental work was conducted by E.S.T., Y.L., O.d.B.,

L.S. and L.F.. M.C. and A.C. identified tissue samples and/or advised

in the interpretation of immunostaining. A.P. wrote the article and all

authors contributed to its critical revision. Comments on the manu-

script by E.C. Vaquero are also greatly appreciated. Tissue samples for

Fig. 4 were obtained from IDIBAPS’ Tumor Bank. Work in A.P.’s

laboratory was funded by grants from Olga Torres Foundation, AVON

Cosmetics SAU, Spanish Association Against Cancer (AECC),

Spanish Ministry of Economy and Competitiveness (formerly of

Science and Innovation, BFU2007-60302, BFU2010-15163), La

Caixa Foundation, and the European Commission. E.S.T.’s salary is

funded by CIBERehd. O.d.B. and L.S. are recipients of PhD schol-

arships from the Spanish Ministry of Education, Culture and Sports

(FPU Program). L.S.’s salary was previously funded by AECC.

References

1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next

generation. Cell 144(5):646–674

2. Kalluri R, Weinberg RA (2009) The basics of epithelial-mes-

enchymal transition. J Clin Invest 119(6):1420–1428

3. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-

mesenchymal transitions in development and disease. Cell

139(5):871–890

4. Lee K, Nelson CM (2012) New insights into the regulation of

epithelial-mesenchymal transition and tissue fibrosis. Int Rev

Cell Mol Biol 294:171–221

5. Nieto MA, Cano A (2012) The epithelial-mesenchymal transi-

tion under control: Global programs to regulate epithelial

plasticity. Semin Cancer Biol. doi:10.1016/j.semcancer.2012.

05.003 (Ahead of print)

6. Perez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F,

Nieto MA, Cano A (2001) A new role for E12/E47 in the

repression of E-cadherin expression and epithelial-mesenchymal

transitions. J Biol Chem 276(29):27424–27431

7. Rodriguez M, Aladowicz E, Lanfrancone L, Goding CR (2008)

Tbx3 represses E-cadherin expression and enhances melanoma

invasiveness. Cancer Res 68(19):7872–7881

8. Hartwell KA, Muir B, Reinhardt F, Carpenter AE, Sgroi DC,

Weinberg RA (2006) The Spemann organizer gene, Goosecoid,

promotes tumor metastasis. Proc Natl Acad Sci USA

103(50):18969–18974

9. Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH,

Moustakas A (2006) Transforming growth factor-b employs

HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol

174(2):175–183

10. Baum B, Georgiou M (2011) Dynamics of adherens junctions in

epithelial establishment, maintenance, and remodeling. J Cell

Biol 192(6):907–917

11. Capaldo CT, Macara IG (2007) Depletion of E-cadherin dis-

rupts establishment but not maintenance of cell junctions in

3446 E. Sánchez-Tilló et al.
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