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Abstract The mechanisms by which a small percentage

of HIV-1 infected individuals known as elite suppressors or

controllers are able to control viral replication are not fully

understood. Early cases of viremic control were attributed

to infection with defective virus, but subsequent work has

demonstrated that infection with a defective virus is not the

exclusive cause of control. Replication-competent virus has

been isolated from patients who control viral replication,

and studies have demonstrated that evolution occurs in

plasma virus but not in virus isolates from the latent res-

ervoir. Additionally, transmission pair studies have

demonstrated that patients infected with similar viruses can

have dramatically different outcomes of infection. An

increased understanding of the viral factors associated with

control is important to understand the interplay between

viral replication and host control, and has implications for

the design of an effective therapeutic vaccine that can lead

to a functional cure of HIV-1 infection.

Keywords Viral fitness � Latency � Residual viremia �
Elite suppression � Viral factors of control � Viral escape

Introduction

Typically, Human Immunodeficiency Virus-1 (HIV-1)

infection is characterized by very high viral loads in acute

infection. During the chronic phase of infection, HIV-1

replication continues, concurrent with a progressive decline

in CD4? T cells counts. Without treatment, chronic pro-

gressors (CP) will typically progress to AIDS within

5–10 years. The patients who are placed on an effective

antiretroviral therapy (ART) regimen, however, will expe-

rience an increase in CD4? T cell levels and a reduction in

the HIV-1 plasma RNA level, usually to undetectable levels

(\50 copies/mL).

Long-term nonprogressors (LTNPs) are a subset of

HIV-1 infected patients who maintain stable CD4? T cells

counts greater than 500 cells/lL for longer than 7 years, in

the absence of ART. Once ultrasensitive assays to detect

the HIV-1 plasma RNA levels were developed, it became

clear that LTNPs were a phenotypically diverse population

comprised of individuals with varying HIV-1 plasma RNA

levels. Elite controllers (EC) or suppressors (ES) are dis-

tinct from LTNPs in that they are defined by the level of

HIV-1 RNA plasma levels rather than their CD4? T cell

counts. These remarkable individuals maintain HIV-1

plasma RNA levels below the limit of detection of standard

commercial assays (\50 copies/mL) in the absence of

ART, and represent less than 1 % of the total HIV-1

infected population [1].

It is now generally accepted that host factors play a

major role in elite control. The HLA-B*57 and B*27

alleles are over represented in EC [2–8], and these two

alleles along with a polymorphism in the promoter of

HLA-C have been associated with slow progression in

multiple GWAS studies [9–14]. HLA class I proteins are

involved in presentation of peptides to CD8? T cells, and
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this may explain why HIV-specific CD8? T cells from EC

are more effective at controlling HIV-1 replication in vitro

than CD8? T cells from patients with progressive disease

[2, 15–18]. These data complement studies in the SIV

model of elite control where depletion of CD8? T cells in

EC monkeys results in virologic breakthrough [19, 20].

The role of other host factors in elite control is more

controversial. EC do not have elevated titers of neutralizing

antibodies to autologous virus [21], but while one study

suggested that these patients may have higher levels of

antibody-dependant cell-mediated cytotoxicity (ADCC)

than CP [22], a recent study found no differences in ADCC

levels between EC and patients with progressive disease

[23]. Similarly, while some studies have suggested that

CD4? T cells from EC may be less susceptible to HIV-1

infection [24, 25], other studies have shown that CD4? T

cells from many EC are fully susceptible to infection

[26–28].

The viral factors that are associated with elite control are

poorly understood. Initial reports suggested that EC were

infected with defective virus, including viruses that har-

bored large deletions or difficult to revert polymorphisms.

However, many of these studies looked at sequence anal-

ysis of proviral genes alone, and so the effect that these

mutations or deletions had on the overall viral fitness was

unclear [29–38]. Additionally, it was not clear whether the

observed replication defects were due to infection with a

defective virus, or whether the reduction in fitness was a

result of a highly active immune response in patients that

controlled viral replication. Using chimerical virus sys-

tems, individual HIV-1 viral genes were cloned from

patients and the genes isolated from EC were seen to be

less fit compared to those from CP [29, 34, 39]. Subse-

quently, replication-competent virus was successfully

isolated from EC, indicating that some EC were, in fact,

infected with virus that replicated effectively in vitro [26,

40, 41]. Full genome sequence analysis also indicated that

the replication-competent virus isolated from some patients

contained no large-scale deletions or gross mutations [40],

and transmission pair studies have demonstrated that

infection with genetically similar, replication-competent

viruses can result in drastically different clinical outcomes

of infection [42, 43]. The data indicate that infection with

defective virus is not the exclusive cause of elite control

and that some EC are infected with virus that is able to

cause pathogenic disease in vivo. This has been shown

definitively in the macaque model of elite control [44],

where some monkeys control fully pathogenic laboratory

SIV isolates through CD8? T cell responses [19, 20].

Here, we will discuss key viral factors that are associ-

ated with the control of HIV-1 viral replication in LTNPs

and EC. We will focus on the fitness of the infecting virus

(summarized in Table 1), latency, and residual viremia,

and the implications these factors have on the host response

to infection. Additionally, we will review the understand-

ing of latency and residual viremia in EC. An increased

understanding of the viral factors of elite control has

important implications about the nature of the host control

Table 1 Implication of viral fitness on EC: historically, a defective

infecting virus was hypothesized to result in control of viral

replication, but more recent studies have suggested that, in some

EC, viral fitness was not the determining factor in control. A summary

of previously reported studies that summarize the debate about the

fitness of the infecting virus in EC are shown, and the implication of

the studies are presented

Viral

characteristic

Evidence Implications

Defective virus Blood transfusion transmission of HIV-1 in the Sydney Blood Bank Cohort:

common deletion in nef, no AIDS-defining symptoms [2]

Infection with a defective virus can

increase the likelihood of control of

HIV-1 infectionMutation in nef in a majority of 5 LTNPs studied [10]

Asymptomatic LTNP, infected for 20 years with a virus with a defect in nef [9]

Rare, difficult to revert polymorphism in LTNPs identified by sequence analysis

[3]

Reduced replication capacity of chimeric rev, vif, and gag-pol, RT-integrase from

EC [2, 7, 12]

Attenuated

virus

Escape mutations and drug resistance mutations frequently seen in plasma in

primary infection in patients who controlled viral replication [21]

Attenuated virus may either be the cause or

a consequence of host immune pressure

in ECPlasma Gag clones in EC found to be less fit than gag clones from CP [11];

plasma Env clones from EC less efficient at entry than Env clones from CP [48]

Escape mutants found in the plasma but not significantly represented in the

proviral compartment [23]

Replication-

competent

virus

Detection of HIV-1 or HIV-1 protein products when CD4? T cells from EC

were stimulated [13–15]

Some EC are able to suppress fully

pathogenic HIV-1

Transmission pair studies indicate viral fitness is not a determining factors for

control of HIV-1 replication [16, 17]
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of replication, the design of a therapeutic vaccine, and the

development of effective eradication strategies.

Viral fitness: cause or effect of elite control?

Initially, it was believed that LTNPs were infected with a

defective viral strain. The earliest evidence to support this

hypothesis was described in the Sydney Blood Bank

Cohort. In this cohort, 7 patients were infected via blood

transfusion-transmission of HIV-1 from a single infected

blood donor. All patients were observed to have no decline

in CD4? T cells counts and none had classical, AIDS-

defining symptoms. Full genome sequencing was per-

formed on viruses that were isolated from each patient, and

a large deletion in nef and the U3 region of the long ter-

minal repeat was identified in the viruses from all the

patients [32]. nef has been shown to be important for HIV-1

replication in vitro and was shown to be required for pro-

gression in SIV monkey models of disease [35].

Subsequently, various studies identified defects in nef and

other HIV-1 genes from EC and LTNPs [36, 37]. In one

study, mutations in nef were identified in the majority of

the five LTNPs that were studied [37]. Another case study

also documented an LTNP who has been asymptomatic for

20 years and harbored a virus with a large deletion in nef

[36]. These studies and others provide evidence for the

importance of nef in HIV-1 pathogenesis and clearly

indicate that deletions in nef can increase the likelihood for

elite control.

Mutations and defects in other genes have also been

implicated in control of HIV-1. In one such study, rare,

difficult to revert polymorphisms in key genes were

hypothesized to result in control of HIV-1 replication [30].

Furthermore, chimeric viruses containing rev, gag-pol, and

vif genes from EC viral isolates were observed to have a

reduced replication capacity compared to similar viruses

with viral genes isolated from CPs [29, 34, 39]. More

recently, it was demonstrated that some EC/viremic con-

trollers (VC) were infected with virus containing drug

resistance mutations and/or escape mutations implying that

patients were more likely to control viral infection if they

were infected with an attenuated viral variant [45].

These data suggest that infection with defective virus,

due to mutations or deletions in key genes, can increase the

likelihood of elite control. However, studies that have

sequenced proviral genes from EC have reached different

conclusions. In a cohort of 95 EC, plasma and proviral

clones were amplified from a majority of the patients, and a

high incidence of drug resistance mutations was not

reported [46]. In other studies, escape mutations were

rarely seen in proviral gag [47] and nef [48] clones. Fur-

thermore, another study demonstrated that the presence of

escape mutations could not explain control in patients with

low level viremia [49]. Therefore, while, in some cases,

infection with attenuated isolates can lead to control of

HIV-1 replication, it appears that this is not the cause of

elite control in many patients.

More recently, studies have suggested that some EC are

not infected with defective virus. Using a highly sensitive,

limiting dilution co-culture assay, replication-competent

virus was isolated from a cohort of EC. These viral isolates

were shown to replicate as well as laboratory X4 and R5

benchmark replication strains [40]. This study demon-

strated, for the first time, that some EC were infected with

full replication-competent virus. Full genome sequence

analysis identified no deletions or mutations that were

associated with elite control [40]. In another study, repli-

cation-competent virus was isolated from EC CD4? T cells

after mitogen or IL-7 stimulation and subsequent sequence

analysis indicated no deletions or insertions in the vpr, vpu,

or nef genes [41]. A recent study demonstrated that stim-

ulation of CD4? T cells from EC rarely resulted in viral

outgrowth, but viral outgrowth was robust in many cases

were it occurred. Viral outgrowth was more commonly

observed in ART-treated patients and CP when compared

to EC [26], which is consistent with studies showing that

the frequency of infected CD4? T cells was much lower

than the frequency usually seen in CP [40].

Most convincingly, studies that analyzed HIV-1 trans-

mission pairs have supported the hypothesis that, in some

cases, host factors predominately dictate control of viral

replication [42, 43]. In these transmission pair studies,

individuals were observed to transmit highly similar viru-

ses to their partner, yet each patient had strikingly different

clinical outcomes of infection. In a transmission pair study

that analyzed two HLA-B*57 positive patients, fitness of

the virus isolated from the EC was observed to be reduced

compared to the isolates from the CP transmission partner.

While the reduction in fitness was hypothesized to be a

result of escape mutations that had an attenuating effect on

viral fitness [42], it was also possible that the virus trans-

mitted to the EC contained the T242N escape mutation that

has previously been reported to result in a reduction in viral

fitness [50, 51]. Infection with this attenuated isolate may

have contributed to elite control. However, in two other

cases where virus was transmitted between a patient who

controlled viral replication and a CP, viral fitness was

observed to be the same between all patients [43]. Thus,

deficiencies in viral replication were not the root cause of

control of viral replication in these cases. This suggests that

fully replication-competent virus can sometimes be con-

trolled by the immune system, and, in some cases, selective

pressure from HIV-specific CD8? T cells forces and

maintains attenuating escape mutations that may be playing

a significant role in the control of infection.
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Latency, residual viremia, and evolution in elite

controllers

As a consequence of the normal physiology of CD4? T

cells, latency is established early in viral infection. These

latently infected cells represent a major barrier to eradi-

cation in HIV-1 infected individuals using current

strategies for treatment of infection [52]. A limiting dilu-

tion, co-culture assay that approximates the number of

infectious, resting CD4? T cells in a patient likely reflects

the most accurate measure to quantify latently infected

cells [53]. Using this assay, EC were observed to have a

one and a half log lower median infectious units per mil-

lions cells (IUPM) compared to CP [40]. EC have been

shown to have significantly lower levels of integrated

proviral DNA [54] compared to CPs, and a recent study

that looked at four unique EC with weakly reactive western

blots, found that these patients had markedly lower levels

of total and integrated proviral DNA compared to con-

ventional EC. These data suggest that the control of HIV-1

replication varies between EC [55]. One study used a

transcription-mediated amplification assay to assess cell-

associated RNA in PBMCs and found detectable levels of

RNA in 25 out 29 EC. This suggests that some level of

HIV-1 transcription may be occurring in EC [56]. The

reduction in the frequency of resting CD4? T cells in EC

may be a result of lower levels of HIV-1 RNA during the

acute phase of infection [57, 58], which could limit the

seeding of the latent reservoir (Fig. 1).

Several studies have used highly sensitive RT-PCR

assays to quantify the level of HIV-1 RNA in the plasma

of CP and EC. While EC are typically thought to have

undetectable levels of HIV-1 plasma RNA, the use of

single copy assays to quantify down to 1 copy of HIV-1

RNA per mL of plasma has allowed a better understanding

of the level of residual viremia in these patients. Incredibly,

in multiple studies, EC were seen to have levels of virus in

the plasma that were equal to those seen in ART-treated

individuals [2, 56, 59, 60]. Remarkably, a significant

number of patients had less than 1 copy of HIV-1 RNA per

mL of plasma. An analysis of the residual viremia in EC

can provide information about the nature of elite control

and the effect that immune pressure has on the virus.

In comparison to ART-treated patients, who were not

observed have ongoing rounds of replication in multiple

phylogenetic studies [61, 62], evidence for ongoing repli-

cation has been documented in EC [63–65]. Using a highly

sensitive RT-PCR-based assay, O’Connell and colleagues

amplified and sequenced gag clones from the proviral and

plasma compartments at multiple time points. After phy-

logenetic analysis, a clear discordance between the plasma

and proviral sequences was observed (representative data

in Fig. 2) [64]. All the plasma sequences were observed to

have mutations in HLA-B*57 restricted epitopes, whereas

these escape mutations were rarely observed in the proviral

compartment. Additionally, the proviral sequences were

Fig. 1 Models to explain the seeding of the latent reservoir:

comparison between EC and CP. Top panel CP natural history:

HIV-1 infection is typical characterized by robust viral replication

during acute infection. As HIV-1 plasma RNA levels increase (blue
line), there is a parallel increase in the number of latently infected

cells (infectious units per million, IUPM; red line). A drop in both the

HIV-1 plasma RNA levels and IUPM occurs with the initiation of the

acquired immune response, likely due to CTL pressure. Without

ART, viral replication continues, and escape mutations occur early

(dotted red and blue lines). High levels of replication result in an

equilibrium between seeding of the latent reservoir and reactivation of

the latent reservoir (red and blue solid arrows), thus resulting in the

reseeding of the latent reservoir with mutated virus. Upon the

initiation of ART therapy, HIV-1 plasma RNA levels fall to

undetectable levels, in concert with a decline in IUPM. ART halts

ongoing replication, but reactivation of the latent reservoir results in

the release of low levels of virus with escape mutations (red dashed
arrow). Bottom panel EC natural history. During acute infection,

HIV-1 plasma RNA level increases, but has been documented to be

lower in EC compared to CP (blue line). The frequency of latently

infected CD4? T cells increases in parallel, but to levels that are

lower compared to CP (red line). CTL pressure reduced viral

replication to below the limit of detection, and there is limited seeding

of the latent reservoir, resulting in a reduced IUPM in EC compared

to CP. Escape occurs early in infection in EC, but there is limited

seeding of the latent reservoir due to CTL pressure (blue dashed
arrow). The majority of sequences in the latent reservoir do not

contain escape mutations, as the seeding of the latent reservoir is

limited by CTL pressure
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ancestral to the plasma sequences. While there was evi-

dence of synonymous evolution of clones that were ampli-

fied from the plasma, there was no evidence of evolution in

the proviral gag clones that were amplified from resting

CD4? T cells. [64]. This argues that, while ongoing viral

replication occurs in the compartment that produces the low

levels of virus present in the plasma, the plasma virions are not

reseeding the latent reservoir of EC to a significant degree

(Fig. 1).

Similar results were obtained in both a companion study

that focused on analyzing the evolution of the nef gene [65]

and a study that analyzed the evolution of clonal sequences

of RT-pol and env genes from EC [63]. Interestingly, viral

evolution was observed in patients with and without pre-

viously described protective HLA alleles, and evolution

was found to be significantly lower in EC compared to CPs

who were not on ART [63]. In the context of low level

ongoing viral replication, the fact that synonymous changes

were commonly observed over time in the plasma virus

suggests that the virus achieved an optimal balance

between immune evasion and fitness [63, 64, 66]. The

discordance between escape mutations in the plasma virus

in comparison to the proviral clones suggests that many EC

are infected with virus that contains a wild-type sequence

in many epitopes, and this virus seeds the latent reservoir

early in infection. Selective pressure from CTL results in

the development of escape mutations, but this occurs when

the viral load is too low to lead to efficient entry into the

latent reservoir. While there is minimal ongoing replication

in the latent reservoir, there are probably other compart-

ments where low level viral replication occurs. The source

of this ongoing replication is unknown, but a recent study

demonstrated that monocytes are not an important reservoir

in EC [67].

The level of viral replication in EC is much lower than

the levels seen in viremic CPs. Therefore, the virus in EC

does not evolve to achieve similar levels of fitness in EC.

This is best illustrated by a longitudinal study of viral fit-

ness in HLA-B*57 LTNPs and CPs. Shortly after infection,

virus isolated from PBMCs in both groups of patients had

Free Plasma Virus
Resting CD4+ T Cells

                  1                   2                     3                   4                   5                 6Time Post Entry
        (Years)
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89

60
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   EC9

61

99

Activated CD4+ T Cells

Outgroup

Fig. 2 Discordance between plasma and proviral sequences: evi-

dence for ongoing replication in EC. Representative phylogenetic data

from an EC demonstrating the discordance between plasma and

proviral sequences as identified by limiting dilution PCR to obtain

clonal gag sequences. All sequences were estimated using a classical

approach using the maximum likelihood analysis. Clonal sequences

from resting CD4? T cells, activated CD4? T cells, and plasma

sequences were amplified [64]. A clear discordance between the

proviral compartments in resting CD4? T cells (circles) and activated

CD4? T cells (squares) can be observed compared to the plasma viral

sequences (triangles) over a period of 6 years. The proviral

compartment cluster together, with the plasma virions showing

evidence of ongoing replication
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attenuating escape mutations that were present in gag and

resulted in low viral fitness. While this low fitness virus

was maintained during chronic infection in LTNPs, the

fitness of the virus increased significantly over time in CPs.

These data could explain why plasma gag clones from

HLA-B*57 CPs are more likely to contain compensatory,

fitness-restoring mutations compared to gag clones ampli-

fied from HLA-B*57 EC [68]. Thus, the maintenance of

attenuating mutations that have a significant reduction in

viral fitness early in infection coupled with the lack of

compensatory mutations due to limited viral evolution may

partially explain the control of viral replication in EC.

However, unlike viremic LTNPs and CPs, HLA-B*57 EC

also maintain virus that does not contain attenuating escape

mutations in the latent reservoir. Thus, EC maintain control

over two distinct types of virus; replication-competent

0.1

1

10

1000

A

B

BaL Reference Strain
Latent Isolate
Escape Mutant

100

1 3 5 7

Fig. 3 Understanding the relationship between the latent reservoir

and the plasma virus in EC. a The latent reservoir represents a major

barrier to eradication, and resting CD4? T cells remain in a resting

quiescent state. Integrated provirus remains silenced by poorly

understood mechanisms, but minimal evolution occurs within this

compartment. Upon immune activation, virus is released from these

latently infected cells, and nonsynonymous mutations likely result in

virions that escape immune pressure. Continuous, ongoing replication

occurs in EC, the location of the replication is unknown but may be

represented by either activated CD4? T cells, the gut-associated

lymphoid tissue or other lymphoid organs, or the central nervous

system. Plasma virions with escape mutations are not commonly

represented in the latent reservoir, thus the source of these viruses are

currently unknown. It has been shown that evolution occurs during

low level ongoing replication, but is most commonly characterized by

synonymous changes. The production of virus from this unknown

compartment results in low level viremia that may re-infect the latent

reservoir at very low levels or contribute to ongoing replication.

b Representative data showing that there are clear differences in

fitness between isolates cultured from resting CD4? T cells contain-

ing wild type sequence and escape mutants cultured from activated

CD4? T cells [71]. Primary CD4? T cells were infected, and viral

production was measured by p24 ELISA. These data indicate that the

latent virus (blue) is more fit compared to the escape mutant (red
line), likely due to the attenuating effect of the escape mutations.

Thus, it is likely that plasma virions that contain similar escape

mutations do not accurately reflect the fitness of the infecting virus

that is archived in the latent reservoir
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wild-type virus that is archived in a low frequency of

latently infected CD4? T cells, and attenuated escape

mutants that can be found at very low levels in plasma.

These attenuated plasma virions in EC have been ana-

lyzed in several studies where either the RT-pol [69], gag

[38, 45] or env clones [70] from EC were isolated and

cloned into an NL4-3 backbone. The relative replicative

capacity of these clones was found to significantly lower

than chimeric clones from CPs. Attenuating mutations

were correlated with protective HLA epitopes [69].

These studies are limited by the fact that they look only

at single viral genes in isolation. Thus, compensatory or

detrimental mutations elsewhere in the genome are unac-

counted for, and complete viral variants are not compared.

More importantly, plasma viruses are subject to selective

pressure and may not be representative of the original

infecting virus. Mutations in plasma viruses in gag [47],

nef [48], and env [21] have been identified that are very

rare in the CD4? T cell proviral compartment. For exam-

ple, the attenuating T242N mutation was found in almost

all plasma sequences from EC, but was not equally

reflected in the proviral compartment [47]. A similar dis-

cordance was observed in nef in another study [48]. Most

convincingly, in a recent study, replication-competent virus

was isolated from activated and resting CD4? T cells. The

isolate from the activated CD4? T cells resembled plasma

virus and contained multiple escape mutations in gag. In

contrast, the virus cultured from resting CD4? T cells

resembled proviral clones and did not contain escape

mutations. In a fitness assay, the virus containing the

escape mutants was significantly less fit than a reference

laboratory strain, whereas the archived virus from resting

CD4? T cells had no evidence of attenuation (Fig. 3) [71].

These data indicate that the virus that this patient was

infected with did not possess escape mutations or viral

attenuation, instead these mutations were acquired over

time as a result of selective pressure exerted by HIV-spe-

cific CTL. Therefore, while informative, the analysis of

plasma clones alone may not provide conclusive evidence

to support or refute the relationship between viral fitness

and elite control, and nor do they represent an accurate

representation of the original infecting virus. Studies

looking at replication-competent virus isolated from resting

CD4? T cells are needed for this purpose.

Concluding remarks

An increased understanding of the viral factors that influ-

ence elite control is still necessary to provide information

on the nature and mechanisms of control of HIV-1 repli-

cation. While it is clear that, in some cases, EC are infected

with defective viral strains, there is abundant evidence to

suggest that this is not the sole explanation for elite control.

Infection with an attenuated virus can increase the likeli-

hood of control of viral replication, but it is probable that,

in some cases, a combination of host and viral factors are

required to fully suppress viral replication and, in others,

host factors alone lead to the control of fully pathogenic

virus. Comparing EC with chronically infected and ART-

treated patients is informative, but it is clear that differ-

ences in the levels of viral replication early in infection

may result in irrevocable alteration in both the host

response to viral infection and the replicative capacity of

the infecting virus. Thus, comparisons made between these

patient populations are imperfect and must reflect these

limitations. It is clear that the analysis of plasma virions

and relying on sequence analysis alone are not sufficient.

The isolation and amplification of replication-competent

viruses from EC is paramount in furthering our under-

standing of viral factors of control.

Ultimately, EC represent a unique model system where

the host immune response to HIV-1 infection can be

studied. This is not a perfect model for control of HIV-1

replication since, in some cases, immune activation [72,

73], declining CD4? T cells counts [59, 72–75], and

spontaneous virologic breakthrough [76] have been repor-

ted; however, it appears that the majority of EC have

maintained stable CD4? T cell counts and control of viral

replication for more than 20 years. Because of the inability

of the host response to eliminate latently infected HIV-1

cells, EC can and should be used as model system for a

functional cure where the latent reservoir is contained

rather than eradicated. Additionally, because it has been

shown that some, if not a majority, of EC are infected with

fully replication-competent virus, the study of host factors

and their contributions toward an effective immune

response can lead to the development of novel strategies

for an effective HIV-1 therapeutic vaccine.
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