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Abstract The primary cilium protrudes from the cell

surface and acts as a sensor for chemical and mechanical

growth cues, with receptors for a number of growth factors

(PDGFa, Hedgehog, Wnt, Notch) concentrated within the

ciliary membrane. In normal tissues, the cilium assembles

after cells exit mitosis and is resorbed as part of cell cycle

re-entry. Although regulation of the cilium by cell cycle

transitions has been appreciated for over 100 years, only

recently have data emerged to indicate the cilium also

exerts influence on the cell cycle. The resorption/protrusion

cycle, regulated by proteins including Aurora-A, VHL, and

GSK-3b, influences cell responsiveness to growth cues

involving cilia-linked receptors; further, resorption liber-

ates the ciliary basal body to differentiate into the

centrosome, which performs discrete functions in S-, G2-,

and M-phase. Besides these roles, the cilium provides a

positional cue that regulates polarity of cell division, and

thus directs cells towards fates of differentiation versus

proliferation. In this review, we summarize the specific

mechanisms mediating the cilia-cell cycle dialog. We then

emphasize the examples of polycystic kidney disease

(PKD), nephronopthisis (NPHP), and VHL-linked renal

cysts as cases in which defects of ciliary function influence

disease pathology, and may also condition response to

treatment.
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Introduction

The primary cilium is a microtubule-based organelle that

extends from a modified centriolar anchor, termed the basal

body, which is located below the surface of the plasma

membrane. Although related to the motile flagella found in

lower eukaryotes and specialized cell types such as sperm,

in mammals most cilia are non-motile. Non-motile or

‘‘primary cilia’’ are organized around a central cytoskeletal

core termed the axoneme, composed of nine microtubule

doublets arranged in a ring (a 9?0 configuration) [1]. The

axoneme is coated with a lipid bilayer and typically pro-

trudes 3–10 lm from the cell surface [2]. Ultrastructural

features of the cilium have recently been reviewed in detail

by Ishikawa and Marshall [3]. In humans, cells in the

majority of tissues have a single non-motile cilium pro-

truding; lymphocytes have none, while a small number of

specialized cell types, such as the lung epithelial lining and

the reproductive tract, have motile cilia [4, 5].

In tissue culture, the primary cilium is readily observed

in non-transformed cells that are serum-starved and con-

fluent, in the stationary (G0) phase of the cell cycle. A

number of early studies noted the consistent absence of

cilia in mitotic cells, with resorption occurring around the

G2/M boundary [6–8]. More recent work, including

investigation of the ciliary cycle in many cell types, indi-

cates that ciliary resorption sometimes occurs at earlier

stages in the cell cycle, prior to S phase [9–12]. Subsequent

studies demonstrated that ciliary resorption occurs in two

waves in quiescent cells stimulated to reenter cycle, with a

first wave occurring within 1–3 h during G1, and a second
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wave occurring after *18 h, as cells enter mitosis [10, 13].

This dynamic profile of ciliary resorption and protrusion

led to early debate as to whether the ciliary cycle passively

reflected or actively contributed to cell cycle [14]. This

debate was given fuel by the observations that oncogeni-

cally transformed cancer cell lines and cells in primary

tumors, which have deregulated cell growth, commonly

lack cilia [15–20], and that mutations eliminating proteins

such as IFT88 both eliminate ciliary assembly and are

associated with deregulated cell growth [21, 22]. Defects in

cilia are now appreciated as contributing to numerous

pathological conditions involving cell growth deficiencies,

with these including not only cystic kidney diseases but

also retinal degeneration, obesity, mental retardation, and

developmental malformation [23–28]. For these reasons,

understanding the function of cilia is now appreciated to

have high medical relevance.

The past decade has been marked by enormous growth

in studies of cilia, with the net benefit of elucidating

multiple discrete mechanisms for bidirectional signaling

between cilia and cell cycle. The field has become too large

to summarize in a single review; recent relevant reviews

addressing different aspects of ciliary formation and

function include Refs. [3, 23]. In this article, we first briefly

summarize mechanisms by which cell cycle cues regulate

the ciliary cycle, and, reciprocally, mechanisms by which

the presence or absence of cilia may influence the cell

cycle and oriented cell division. As our main focus, we

then describe the relevance of these mechanisms to path-

ological conditions, focusing in particular on the numerous

diseases of the kidney in which a ciliary role is well doc-

umented [29–32]. We then summarize the current status of

clinical management for these diseases, and explore the

hypothesis that defects arising from compromised ciliary

function may specifically influence response to treatment.

Regulation of ciliary protrusion and resorption

during cell cycle

Cilia extend from the cell surface soon after completion of

cytokinesis. As protrusion commences, the centrioles

undergo specialized differentiation to become basal bodies.

There is a fundamental asymmetry in the age of centrioles

in individual post-mitotic cells, arising from the mother–

daughter relationship in centriolar duplication [33]. Former

mother centrioles are morphologically distinct, containing

distal and subdistal appendages, while the daughter does

not. After cytokinesis, cilia arise more rapidly in cells

inheriting a former mother centriole, and these cells are

initially more responsive to Sonic Hedgehog (Shh), which

binds receptors displayed on the cilia [34], although this

asynchrony is lost over time. Distal appendages contain

CEP164, a protein that accumulates at the centrosome at

G2/M and has been functionally defined as required for

ciliary formation [35], suggesting a role for marks placed

on the centriole prior to M phase as contributing to ciliary

emergence in G0/G1. The process of protrusion involves

the interaction of the interflagellar transport (IFT)

machinery with polarized protein secretion, coupled with

modification of the ciliary axonome by acetylation [36],

and has been thoroughly reviewed [37–39]. As a number of

the proteins that have been shown to trigger ciliary

resorption (e.g., AURKA, NDE1, discussed below) are

abundant in mitosis but inactivated or degraded at cytoki-

nesis, and removal of these proteins is a likely prerequisite

of effective ciliogenesis.

Quiescent (G0) cells maintained in culture or organized

in tissues, and cells transitioning through G1, retain cilia.

Depending on cell type, cilia are preferentially resorbed

either at G1/S transition, or prior to mitotic entry, with the

latter pattern more commonly reported [9–13] (Fig. 1). In

studies with deciliation induced in G0-synchronized

hTERT1-RPE1 cells, resorption occurred in two waves,

with the loss of *20 % of cell cilia in late G1, and the

remainder during G2/M transition [13]. While serum is

commonly used to induce cell cycle reentry, a number of

studies have parsed out serum components that are suffi-

cient to trigger ciliary resorption. Among those tested to

date, the most critical growth factor for induction of

resorption is platelet-derived growth factor (PDGF) [40],

which can independently trigger ciliary resorption, and

which is required for the process. Insulin growth factor

(IGF), epidermal growth factor (EGF), and fibroblast

growth factor (FGF) lack this capacity when applied

independently, but augment PDGF activity, as can treat-

ment of cells with calcium ionophores to increase

cytoplasmic Ca2? levels [40].

The action of a number of proteins has been more

proximally linked to the regulation of ciliary resorption

G0/G1 G1-S transition S-G2 Early prophase 

Fig. 1 Primary cilia disassembly prior to mitosis. The primary cilium

present in G0/G1 phase starts to disassemble at G1-S transition, and is

completely resorbed at early prophase. In some descriptions of

quiescent cultured cells stimulated to reenter cell cycle by adminis-

tration of serum, the primary cilium reassembles after disassembly at

G1-S and is present during DNA and centriole duplication at S phase,

and centriole maturation at G2 phase. Other reports describe two

waves of deciliation, with some cells losing cilia prior to G1/S

transition and the remainder losing cilia at the end of G2 phase
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(Fig. 2). Tctex-1 is a light chain of cytoplasmic dynein

complex, which participates in intraflagellar transport (IFT)

[41] but also has dynein-independent functions [42]. Two

hours following serum-treatment of quiescent, ciliated

cells, Tctex-1 is phosphorylated and targeted to the ciliary

base, at the transition zone [12]. Although Tctex-1-defi-

cient cells are able to generate primary cilia, these cells are

unable to resorb cilia. Tctex-1 is phosphorylated on T94

during the resorption process; a non-phosphorylatable

mutant cannot resorb cilia, while overexpression of a T94E

phosphomimic accelerates ciliary disassembly. Although

Tctex-1 action is not yet well understood, at least part of its

activity involves integrity of the actin cytoskeleton, as

cytochalasin-D, which inhibits actin polymerization, blocked

Tctex-1-dependent disassembly.

Aurora-A (AURKA) in mammals and CALK, an AU-

RKA-like kinase in Chlamydomonas, are each activated at

the ciliary basal body immediately prior to ciliary (flagellar)

resorption [13, 43]. Experiments involving measurement of

ciliary resorption following treatment of mammalian cells

with small molecule inhibitors or siRNAs to deplete AU-

RKA, or microinjection of inactive or constitutively active

mutants of AURKA, demonstrated that AURKA activity

was necessary and sufficient to induce ciliary resorption,

paralleling genetic experiments performed in Chlamydo-

monas. AURKA activity in resorption was reported to

involve the phosphorylation and activation of HDAC6,

leading to deacetylation and destabilization of the ciliary

axoneme. AURKA expression and activity in ciliary

resorption are based on interactions with NEDD9, a multi-

functional scaffolding protein [44, 45]. AURKA was

recently defined to function in some contexts as a Ca2?-

regulated kinase [46], although the relationship of this acti-

vation mechanism to ciliary resorption has not yet been

addressed. More recently, Pitchfork (PIFO) was identified as

expressed in the embryonic node, and found to accumulate at

the basal body during the disassembly process. Haploinsuf-

ficiency of PIFO causes left–right asymmetry and other

developmental defects associated with ciliary anomalies.

Providing one mechanistic explanation for these defects, a

naturally occurring pathogenic R80K mutation of PIFO was

found to be unable to activate AURKA, and cells expressing

this mutation failed to resorb cilia during cell cycle [47].

Balancing the action of these proteins that promote

resorption, other proteins act as brakes on the disassembly

process. The tumor suppressor encoded by the von Hippel–

Lindau (VHL) locus interacts with glycogen synthase kinase-

3 beta (GSK-3b) to support ciliary maintenance [48]. Inter-

estingly, mutation-induced loss of VHL induces the

expression of the AURKA-NEDD9 complex [49], and

destabilizes cilia. The lipid phosphatase INPP5E, mutated in

MORM syndrome, also stabilizes cilia during the disassem-

bly process. Pathogenic mutants of INPP5E both inhibit the

ciliary localization of INPP5E and influence ciliary stability

during disassembly [50, 51]. There is growing evidence that

genes controlling the length of cilia thereby affect the timing

of ciliary resorption, given a cell cycle cue. Proteins in this

category include members of the NIMA kinase family [52,

53] and the centrosomal protein NDE1 [11].

Influence of ciliary dynamics on cell cycle progression

Whether the presence or absence of a primary cilium

controls cell cycle entry, or instead passively reflects cell

cycle progression, has long been a topic of discussion [54–

57]. This issue is difficult to resolve, because many pro-

teins shown to influence ciliary dynamics have complex

functions that might independently explain concurrent

changes in cell cycle.

Several studies suggest that the forced retention of cilia

imposes a brake on cell cycle progression [11, 12, 58]. For

example, the NDE1 phosphoprotein localizes to the mother

centriole [11, 59]. The expression of NDE1 is high in M

phase but low after cytokinesis, timing which coincides

with the burst of primary cilium formation in G0/G1 phase.

Following the depletion of NDE1 in hTERT-RPE1 cells,

cells have longer cilia, and cell cycle re-entry is delayed.

Importantly, abrogation of ciliogenesis by knocking down

expression of IFT88 or IFT20 genes was sufficient to

reverse this delay in cell cycle re-entry, suggesting the

ciliary function of NDE1 was an essential cell cycle

determinant [11]. On the other hand, NDE1 also functions

cytoplasmically, with roles in mitosis, organellar posi-

tioning, and other processes; potentially, knockdown of the

IFT genes counteracts a non-ciliary NDE1 function.

In a separate study, knockdown of Tctex-1 expression

blocked ciliary resorption and cell cycle progression in G1

upstream of the phosphorylation and inactivation of pRb

Tectex-1

Nde1

G0/G1 G1-S transition

Aurora A

Rb pRb

PIFO

INPP5E

NIMA

VHL

Fig. 2 Cilia disassembly at the G1-S transition. Activation of Aurora

A, NIMA kinases and phosphorylation of Tectex-1 induces cilia

resorption, whereas activity of Nde1 and INPPE5 blocks this process.

The disassembly of cilia triggers phosphorylation and inactivation of

pRb leading to cell cycle progression. Aurora A can be activated by

PIFO and by inactivation of VHL to regulate cilia disassembly
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[12]. This block was seen in the ciliated NIH3T3 or RPE1

cell lines, but not in non-ciliated HeLa cells, and not in

RPE1 cell lines with IFT20 or IFT88 knocked down. The

authors of this study further showed that knockdown of

AURKA or HDAC6 not only blocked Tctex-1-associated

ciliary resorption but also blocked new DNA synthesis; as

AURKA is not known to have any other essential functions

in G1 phase, this suggested the role of AURKA in ciliary

resorption was the critical limit on DNA synthesis. As with

NDE1, these results may suggest cilia disassembly is a

prerequisite for G1-S transition, or alternatively indicate a

cytoplasmic action of Tctex-1. Certainly, a mechanistic

explanation for how the presence of cilium would con-

straints activation of G1-S transition is not currently

available. Potentially, cilia or the ciliary basal body have

the capacity to sequester proteins or other factors that

activate G1-S transition, and the resorption of cilia and

differentiation of basal body to centrosome releases and/or

activates these factors.

Indirect regulation of cell cycle progression

through ciliary signaling: growth factor receptors

and mechanosensation

Under normal conditions of organismal growth, the pri-

mary cilium serves as a unique platform for sensory

functions in many organs, including the kidney, eye, nose,

and brain. The signaling pathways mediated by cilia are

summarized in Fig. 3. Stimulation of cilia-localized

receptors by diffusible cues, and mechanical stimulation of

the cilia by fluid flow, activate a number of effector path-

ways that independently or cooperatively contribute to cell

cycle control. Some of the better studied of these pathways

include receptor tyrosine kinases (RTKs) such as PDGFR,

cAMP/mTOR, polycystin/Ca2?, Hedgehog, Wnt, and

Notch [60–65].

PDGF signaling

PDGF (platelet-derived growth factor) regulates cell

growth and proliferation for many cell types [66]. In

NIH3T3 cells and in vitro culture of mouse embryo

fibroblasts (MEFs), serum starvation concurrently induces

primary cilium formation and expression of PDGFRa, the

receptor for the PDGFaa ligand isoform in this signaling

pathway, predominantly within the nascent primary cilium.

Ligand binding to PDGFRa activates downstream ERK

signaling within the cilium and at the basal body [67], and

triggers cells to re-enter cell cycle, as demonstrated by

protein phosphorylation of the G1-S checkpoint protein

retinoblastoma (Rb). The evidence for the importance of

ciliary location for this receptor–ligand interaction is

robust. In serum-starved mutant MEF cells derived from

the Tg737 mouse, which has no or stumpy cilia due to

deficiency in the intraflagellar transport protein ift88,

PDGFRa is instead localized in the basal body region. In

these cells, addition of ligand does not induce protein

PDGFRα

Mechanical flow

PDGF

 Raf-ERK 
 pathway

Lkb1

AMPK

mTOR1

PC1, PC2

Calcium

PC1-CT

PC2

Id2

AC

cAMP

 PKA
AKAP

   Cell Cycle Progression

JAK2

p21

CDK2

PDE

    Wnt 
signaling

Hedgehog
 signaling

Fig. 3 Ciliary signaling pathways implicated in control of cell

proliferation. Mechanical sensation of cilia induced by fluid flow

activates the LKb1-AMPK pathway in a calcium independent manner

and inhibits mTOR1 pathway. Mechanical flow induces activation of

PC1 and PC2 and results in elevation of internal calcium level, which

suppresses cAMP signaling. In addition, calcium is required for PC1-

CT targeting into the nucleus. PC1 also activates JAK2, which

induces gene expression that promotes cell cycle progression. Ligand

binding of PDGFRa in the cilia activates Raf-ERK pathway.

Activation of cAMP signaling promotes PKA and AKAP activity,

triggering cell cycle progression, whereas calcium inhibits this

pathway. In addition, aberrant activation of wnt or hedgehog pathway

stimulates cell cycle progression
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phosphorylation of MEK, and cells remain in growth arrest.

Ongoing work in normal MEFs and the ift88 model has

shown PDGFRa also acts at the cilium to activate the Na?/

H? exchange protein NHE1 to control growth factor-

induced chemotaxis [68, 69], implying an organization

function for the cytoskeleton that may also support cell

cycle signaling.

Polycystins, mechanosensation, and calcium signaling

In the kidney, the cilium serves as a flow sensor in the

kidney tubules, with flow-induced ciliary bending causing

a transient increase in intracellular calcium [70]. Polycys-

tins (PC) 1 and 2, gene products of PKD1 and PKD2, are

large multi-pass transmembrane proteins of the TRPC

family of calcium transporters [71]. PC1 and PC2 hetero-

dimerize in the primary cilium to mediate flow-induced

calcium flux, with the large extracellular domain of PC1

receiving mechanical cues, then triggering the activity of

the PC2 calcium ion channel [72, 73]. Inhibition of PC1

and PC2 activity either by gene mutation (as discussed

below) or experimentally through use of antibodies inter-

rupts the calcium flux generated by fluid flow [74]. Because

mutations of PKD1 and PKD2 induce cyst formation in the

kidney, and cyst formation in part arises because of de-

restricted cell proliferation, PC1 and PC2 at least indirectly

participate in cell cycle control. Signaling downstream of

PC1 and PC2 is complicated. In normal cells, these pro-

teins negatively regulate the cAMP and Raf-MEK-ERK

signaling pathways [75], both of which are hyperactivated

in renal epithelial cysts [76–78].

Interestingly, it was recently shown that loss of cilia is

sufficient to increase intracellular cAMP levels [78]. This

was observed when cilia were lost due to null mutation of

the IFT motor protein KIF3a, due to maintenance of cells

in non-confluent growth conditions, or following other

stimuli, specifically linking the phenotype to ciliary loss.

The mechanism involved requires further investigation.

However, adenylyl cyclases (AC) 5 and 6, the A-kinase

anchoring protein AKAP150, and phosphodiesterase (PDE)

4C, a negative regulator of cAMP, are all localized in the

cilium and form a complex [78], implying cilia-dependent,

spatially localized regulation of cAMP levels. Supporting

the relevance of this pathway to disease, the transcription

factor HNF-1b regulates PDE4C transcription, and muta-

tion of HNF-1b results in kidney cysts [79]. It is known that

calcium regulates AC5/6 activities [80]. Further, the PC2

calcium channel directly interacts with AC5/6, and regu-

lates AC activities [78]. In PC2 mutant mice, the cAMP

level in kidney cysts increases, and phosphorylation of the

cAMP responsive transcription factor CREB is detected.

AC5/6 is not detected in renal cilia expressing a mutant,

inactive form of PC2, indicating that AC5/6 requires PC2

for ciliary localization [78]. Assembling this information,

the primary cilium constrains cAMP signaling by tethering

AC5/6 and regulating PDE4C in the cilium, with AC5/6

activation suppressed by calcium flux mediated by PC2

under fluid flow. The loss or dysfunction of cilia may

abrogate calcium signaling to allow activation of cAMP

pathway, which promotes cell cycle progression.

Actions of PC1 and PC2 at the cilium do not only

involve controlling activity of cAMP. For example, under

some conditions, PC1 interacts with PC2 and JAK2 to

positively regulate the JAK-STAT pathway; this induces

p21, which inhibits Cdk2, leading to cell cycle arrest [81].

PC2 interacts directly with AURKA, which governs ciliary

resorption; the increase in cytoplasmic Ca2? mediated by

PC2 very transiently activates AURKA, while AURKA

phosphorylation of PC2 limits its Ca2? channel activity

[46, 82]. PC2 may also prevent cell proliferation by

physical interaction with the helix-loop-helix protein ID2,

an inhibitor of cell differentiation, and blocking its trans-

location into the nucleus [83]. Interestingly, NEDD9,

which supports the action of AURKA in ciliary resorption,

has separately been shown to interact with ID2 [84]. In

other work, PC1 was found to be cleaved in response to

changes in mechanical stimuli, generating a C-terminal

fragment that is translocated into the nucleus where it

activates AP-1 signaling [85], but also inhibits Wnt/TCF

signaling [86]. Apart from their well-described functions at

the primary cilium, PC1 and PC2 also localize to the

plasma membrane, with a large population of PC2 also

found in the endoplasmic reticulum (reviewed in detail in

[63]). Although it is clear that localization of a functional

PC1/PC2 heterodimer to the cilium is critical for prevent-

ing cystogesis, it is possible that roles in other

compartments are also important. Targeted experiments

blocking traffic of PC1 or PC2 to the primary cilium may

provide further insight [87, 88].

LKB1-AMPK-mTOR pathway

Although the mTOR (mammalian target of rapamycin)

pathway is well recognized for its role in metabolism, cell

cycle and size control, and cell polarity, it has only recently

been recognized that mTOR signaling may have an

important connection to cilia. A screen for yeast mutants

that escaped the cell cycle arrest induced by rapamycin, an

inhibitor of the yeast ortholog of mTOR [89, 90], led to the

initial identification of the yeast TOR gene [91, 92]. mTOR

forms two distinct complexes: the rapamycin-sensitive

mTORC1 complex and the rapamycin-insensitive

mTORC2 complex. mTORC1 predominantly regulates

metabolism and cell growth while mTORC2 regulates cell

polarity [89, 90]. Increased intracellular AMP levels acti-

vates AMPK to phosphorylate Raptor, which binds and

The role of the cilium in normal and abnormal cell cycles 1853
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inactivates mTORC1 signaling [93]. AMPK can also

indirectly suppress the mTORC1 pathway by phosphory-

lating the tuberous sclerosis complex (TSC) proteins TSC1

and TSC2, which also negatively regulate mTORC1 [94,

95].

The link of the mTOR pathway to cilia, and the

importance of this connection in ciliopathies, has been

suggested by several studies. Mutation of the TSC2 gene

induces a cystic kidney disease, among other symptoms

[96]. Hyperactivation of mTORC1 signaling is observed in

PKD-associated cysts, and treatment with rapamycin

reduces cyst formation [97]. In a recent study, it was shown

that the tumor suppressor LKB1 (also called STK11)

kinase phosphorylates AMPK and negatively regulates the

mTOR pathway [89]. Intriguingly, a genome-wide RNAi

screen identified loss of LKB1 as stimulating ciliary dis-

assembly [98]. Although a specific connection to mTOR or

cilia has not yet been explored, it is suggestive that, in lung

cancers associated with loss of LKB1, the AURKA acti-

vator NEDD9 is highly upregulated [99]. LKB1-deficient

MEFs double more rapidly than control MEFs [98, 100],

while activation [101] or overexpression [102] of LKB1

induces cell cycle arrest at G1.

The above data demonstrates the role of LKB1 in cell

cycle arrest and that LKB1 affects cilia maintenance.

Reciprocally, several studies suggest that changes in cilia

affect LKB1 functionality. Boehlke et al. [64] have

shown the LKB1-AMPK-mTOR pathway is regulated by

cilia. First, LKB1 is localized in the primary cilium.

Second, under fluid flow conditions, LKB1 activates

AMPK at the basal body to suppress the mTOR pathway

and downregulate cell size. Since fluid flow induces

calcium signaling through PC1 and PC2, but a PC2

mutant does not abrogate activity of the mTORC1

pathway [64], which suggests that calcium signaling is

not involved in LKB1 activation. How mechanical sen-

sation by the primary cilium triggered by fluid flow

activates LKB1 remains unclear. Collectively, the above

data show that the LKB1-AMPK-mTOR pathway is

mediated by the cilium and regulates both cell size and

cell cycle arrest; more studies of these signaling relations

are merited.

Hedgehog and Notch

Cilia control additional pathways with important roles in

regulation of cell cycle, cell differentiation, and organo-

genesis. The obligate existence of cilia for cellular

response to Hedgehog (Hh) family proteins was first

established by Huangfu and Anderson in 2005, following

their observation that mice with mutations in the IFT

proteins IFT172 or IFT88 lacked cilia and failed to respond

to Hh [103]. Hh is a soluble ligand for the transmembrane

receptor protein Patched (Ptc), which in its inactive state

localizes to the cilia. Upon Hh binding to Ptc, Ptc moves

out of the cilia and ceases to repress a third protein,

Smoothened (Smo), which now enters the cilia. Ciliary

Smo is then able to activate the Gli transcription factors,

allowing their translocation to the nucleus [104]. The Gli

transcription factors activate a suite of genes, including

cyclins D and E, that contribute to cell cycle transition

from G1 to S, and support cell survival [105]. Upregulation

of Hh/Gli signaling is observed in a number of forms of

cancer, and may be linked in part to the typical loss of cilia

in transformed cells. This upregulation, together with the

observation that Hh/Gli signaling collaborates with RTK

signaling to promote the malignant state, have caused some

to propose combination therapies targeting Hh and EGFR

[106]. The majority of studies of Hh signaling at cilia have

focused on clear developmental roles for these proteins at

the neural tube and in the central nervous system (reviewed

in [107, 108]), with the potential role of this pathway in

cystic kidney disorders not well addressed. Interestingly, a

recent RNA interference study identified LKB1 as essential

both for Hedgehog and for Wnt signaling (discussed in

‘‘Oriented cell division and planar cell polarity’’), empha-

sizing the coordinate regulation of these growth regulatory

pathways at intact cilia [98].

A role for the developmental regulator Notch in sup-

porting the differentiation of multiciliated cells was

initially established in studies of the development of

Xenopus skin and the zebrafish pronephros [109–111],

and subsequently shown to be important for the devel-

opment of the motile multiciliated cells in the mammalian

lung [112, 113]. In one recent study, microRNA (miR)-

dependent inhibition of Notch was necessary for the

emergence of multi-ciliated cells [114]. Notch receptors

and processing enzymes localize to the cilia during epi-

dermal differentiation. Cells with mutated IFT genes that

lacked cilia were deficient in Notch signaling, failed to

differentiate, and were hyperproliferative, with these latter

defects rescued by re-expression of pre-activated Notch

[62]. Notch represses Multicilin, a recently identified

nuclear coiled-coil protein that appears to be a key

inducer of a group of genes essential for the formation of

multiciliated airway epithelial cells [115]. While Notch is

emerging as an important ciliary regulator of the cell

proliferation versus differentiation in cell types relevant to

ciliopathies, particularly kidney [116], studies of the

Notch-cilia connection are at an early stage, with mech-

anistic details still to emerge. It is also important to note

that the Notch studies cited above are predominantly

performed in multiciliated cells of the lung epithelium,

rather than in cells with non-motile primary cilia: the

signaling in these two cell types is not necessarily

equivalent.
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Oriented cell division and planar cell polarity

During cytokinesis, the cleavage furrow forms in perpen-

dicular to the orientation of the spindle, determining the

outcome of the spatial arrangement of two daughter cells.

In multicellular organisms, appropriate orientation of cell

division is an essential determinant in the morphogenetic

process leading to the final architecture for many organized

tissues. The kidney, an organ often affected in ciliopathies,

is composed of a repeated unit in which a glomerulus (the

site of blood filtration) is connected by an extended tubular

structure (the proximal convoluted tubule, the loop of

Henle, the distal convoluted tubule) to the collecting duct.

During tubular development, the proliferation of tubular

cells must be precisely controlled to allow tubular length-

ening while maintaining a constant tube diameter. A

number of studies have suggested the idea that the enforced

orientation of cell division parallel to the tubular axis

supports normal morphogenesis, while misoriented cell

division may cause enlargement rather than lengthening of

the tubule [31]. Examination of kidney tubular develop-

ment in PKD models in the mouse reveals that the

orientation of mitotic spindles of tubular cells is parallel to

the tubular axis in normal tissues, but significantly distorted

in the context of mutations of Tcf2, associated with PKD.

Such mis-oriented mitoses appear to occur at an early step

in disease pathology, preceding tubular dilation and cyst

formation [117].

Defects involving the cilium can influence the orienta-

tion of the cell division plane in several ways. The first is

based on perturbation of the cilia-centrosome cycle. The

resorption of the primary cilium prior to mitosis seems to

be essential to release the centriole for maturation into a

centrosome capable of nucleating the bipolar mitotic

spindle [33]. Normally, the mother centriole that forms the

basal body is constrained to the apical cell surface based on

interactions of the ciliary distal appendages with the

membrane, as well as polarization of secretory apparatus in

support of the ciliary membranes [27]. These mechanical

constraints are reduced during the ordered disassembly of

the primary cilia as cells approach mitosis; nevertheless,

some cues governing the localization of the centrosomes

are maintained. The loss or structural defects in primary

cilia arising from many cyst-associated mutations may

result in uncontrolled centrosome positioning, thus

increasing randomness in orientation of cell division.

One important recent study has shown that the intrafla-

gellar transport protein IFT88 directly controls spindle

orientation through regulation of astral microtubule for-

mation [21]. Although IFT88 has long been known to

localize to cilia and basal bodies, it has now been recog-

nized as a constituent of spindle poles [21, 22]. Cells with

mutated or RNAi depleted IFT88 are characterized by

spindle misorientation, and spindle poles lacking the astral

microtubule arrays that interact with the cell cortex to

orient the spindle [118, 119]. The formation of astral

microtubule arrays requires the movement of peripheral

microtubule clusters, dependent upon formation of a large

protein complex containing cytoplasmic dynein1 and

IFT52. This complex is lost in the absence of IFT88. Thus,

IFT88 mediates orientation of cell division by controlling

formation of astral microtubules to ensure proper spindle

orientation (Fig. 4).

In contrast, another recent study has addressed function

of the IFT protein IFT140 [120]. This work found that,

although mutation of IF140 causes defects in cilia forma-

tion and formation of renal cysts, in this case pre-cystic

dilated tubules have normal orientation of cell division.

IFT140 has been much less studied than IFT88; how and if

it interacts with the mitotic spindle is not well understood.

However, in contrast to IFT88, which functions as a

component of IFT complex B, which controls anterograde

transport, IFT140 is a component of the IFT complex A,

which controls retrograde signaling [121, 122]. Other

studies comparing defects linked to mutation or depletion

of IFT complex members have indicated weaker pheno-

types associated with the targeting of complex A than with

the loss of complex B. For example, Tsujikawa and Mal-

icki found degeneration of sensory cells following

targeting of the IFT complex B proteins IFT88, IFT52, or

IFT57, but not after targeting IFT140 [123]. Earlier work

studying C. elegans formation of amphid cilia following

mutations of orthologs of IFT88 (osm-5), IFT52 (osm-6),

IFT57 (che-13) versus IFT140 (che-11) or IFT122 (daf-10)

also indicated greater ciliary defects among the complex B

mutants [124]. In this context, the difference between the

Fig. 4 Oriented cell division regulated by cilia. Ciliary protein IFT88

(red ball, semi-transparent) is localized at the basal body of the cilium

and at the centriole during spindle formation. Formation of astral

microtubules (green lines) requires IFT88, which is essential for

proper spindle orientation. Dysfunction of IFT88 results in malfor-

mation of astral microtubules leading to misoriented cell division
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phenotypes associated with IFT88 and IFT140 mutation for

cystogenesis either implies less severe consequences of

IFT140, or, alternatively, suggests that defects in cell

division orientation are sufficient, but not necessary, for

cyst formation.

Tissue architecture is also influenced by planar cell

polarity (PCP) controls, which provide an additional means

of regulating cell distribution relative to an axis within a

plane of growing cells. One mechanism by which this

regulation is accomplished is by influencing the migration

of cells during development, such that controlled, oriented

interdigitation of cells leads to elongation of a tissue along

a single axis. This process, termed convergent extension, is

important in the formation of multiple tissue types, and has

only recently been documented as important in kidney

morphogenesis, with defects in this process suggested as a

cause of cystogenesis [125–129]. A growing body of evi-

dence suggests that cilia and some cilia-associated proteins

are intimately involved in control of PCP, while some PCP

regulatory proteins reciprocally influence ciliogenesis and

ciliary orientation. This topic has recently been compre-

hensively reviewed by Wallingford and Mitchell [130].

Canonical [131] and non-canonical [132] signaling

downstream of the soluble factor Wnt has an essential role

in conditioning many aspects of cell growth and differen-

tiation. PCP signaling involves the activity of the non-

canonical Wnt/Frizzled (Fz)/Disheveled (Dvl1) signaling

pathway [133, 134]. Inversin, also known as NPHP2,

localizes to the cilia and basal body, and is mutated in the

cystic kidney disease nephronophthisis. Simons et al. [125]

first showed that a direct interaction between inversin and

Dvl1 promotes non-canonical Wnt signaling, with defects

in this pathway proposed to support the abnormal cell

growth that characterizes cyst formation. In contrast, cilia

downregulate the amplitude of canonical Wnt signaling, in

part through the action of the ciliopathy-associated protein

Jouberin in blocking nuclear entry of the canonical Wnt

effector b-catenin [135]. BBS-associated proteins are

associated with control of cilia; some BBS proteins interact

directly with and regulate the function of the PCP signaling

effector Vangl2 [136]. Conversely, PCP signaling proteins

can influence ciliary dynamics. For example, knockdown

of the PCP effector Fritz in Xenopus embryos brings about

defects in PCP-mediated convergent extension as well as

defects in ciliogenesis [137]. However, as discussed in

depth in Ref. [130], the interactions between PCP signaling

proteins and cilia are complicated, and in some cases do

not support crosstalk as a direct cause of cystogenesis.

Alternatively, defects in cilia may affect PCP down-

stream of non-canonical Wnt signaling, at the level of

control of the polarization of the cytoskeleton to support

directional movement. The centrosome has many functions

that impinge upon cell polarization in migration (reviewed

in [138]). A number of proteins that affect ciliary formation

and function have also been shown to affect placement of

the centrosome. Besides regulating Dvl1, loss of Inversin

also induces randomly oriented cell division prior to the

detection of increased rates of proliferation in nascent

kidney cysts [139]. Analysis of precystic tubules in Kif3a

mutant mice reveals that cells lacking primary cilia have an

abnormality in PCP that was suggested to initiate cyst

formation [140]. IFT20 [141] and IFT88 [142] have both

been shown to directly impact cell polarization in some

tissues. MKS1 and meckelin are essential for ciliogenesis,

but also influence centrosomal migration based on coor-

dinated interactions with the actin cytoskeleton [143].

Given the various roles of basal body/centrosomal struc-

tures in polarizing the mitotic plane, organizing polarized

cell migration, and providing a platform to integrate the

function of proteins that signal to indirectly influence these

processes, it is hard to prioritize which if any functions are

dominant.

We note that, in sum, the polarity controls discussed in

this section would seem to address the qualitative features

of cell organization rather than control of cell proliferation.

However, these qualitative changes result in dilated tubules

in which cells are exposed to different fluid pressures, and

have altered their ability to respond to chemotactic cues

because of defects in orientation of the internal cytoskel-

eton to the cilia, or in orientation of the cilia to the

direction of fluid flow. Hence, they ultimately have the

potential to support the abnormal proliferation that occurs

in cystic growth.

The contribution of ciliary defects to human renal

diseases

Given the dense web of connections between cilia and

control of cell growth described above, it is not surprising

that defects in cilia have been implicated in multiple

clinically significant pathologies, involving developmental

defects and later onset syndromes. Established ciliopathies

include Bardet–Biedl Syndrome (BBS), Joubert syndrome

(JBTS), Meckel–Gruber syndrome (MKS), polycystic

kidney disease (PKD), and nephronophthisis (NPHP) [32].

Many of these rare autosomal recessive diseases present

with phenotypes affecting multiple organs, with symptoms

that include renal cysts, neural tube defects, retinal

degeneration, obesity, and situs inversus. A recent proteo-

mic analysis of proteins co-purifying with 9 proteins

known to be mutated in NPHP, JBTS, or MKS syndrome

identified 850 interactive partners, with dense physical

connections to proteins functioning in cell polarity (apical

positioning) and centrosome control, and Hedgehog sig-

naling [144]. A targeted search for mutations affecting
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these genes in a first set of 250 patients with symptoms

associated with NPHP, JBTS, or MKS identified several

novel causative lesions [144]; it is likely that more will be

identified in the future. We here take cystic kidney diseases

as an example of how ciliary defects translate to patho-

logical response, and discuss how current approaches to

treatment align with what is known about ciliary biology.

PKD and NPHP

Cystic kidney diseases represent a significant group of

genetically inherited renal disorders [145]. A kidney cyst is

a sac-like structure comprised of a liquid-filled monolayer

of cells. Formation of a cyst represents the integrated

endpoint of multiple stimuli leading to abnormal cell

division among the epithelial cells lining the collecting

ducts and convoluted tubules of the kidney. The develop-

ment of cysts eventually leads to end-stage renal disease

(ESRD) [146], at which point patients afflicted with these

conditions must either undergo dialysis or receive kidney

transplants. The majority of cystic kidney diseases arise

from inheritance of mutations asociated with autosomal

dominant polycystic kidney disease (ADPKD), autosomal

recessive polycystic kidney disease (ARPKD), or NPHP,

with more sporadic linkage to BBS [145, 147].

Although the genetic deficiencies leading to formation of

kidney cysts are diverse, most mutated genes have a close

connection to control of ciliary structure and function [29,

145, 148, 149], and localization to the cilia or basal body [29,

31, 145, 150–153], although many also function at other

cellular locations (e.g., PC1 at cell junctions; [154]). Muta-

tions in the PKD1 or PKD2 genes cause ADPKD, which is

the most common cystic kidney disorder, affecting approx-

imately 1 in 500. The PKD1 and PKD2-encoded protein

products (polycystins 1 and 2) heterodimerize on cilia to

integrate growth-limiting signals initiating from fluid pres-

sure; defects in cilia impair this function [74]. Reciprocally,

mutations in these genes have recently been found to cause

defects in formation of cilia and/or centrosomes [155–157].

ARPKD and NPHP are much less common than ADPKD,

with incidence estimated at around 1 in 5,000 for ARPKD

and less than 1 in 50,000 for NPHP. ARPKD arises from

mutations in the PKHD1 gene, which encodes the ciliary

protein fibrocystin [158]. Mutations in at least 11 indepen-

dent genes of the NPHP group have been found to lead to

NPHP. Many of these proteins have already been shown to

localize to cilia or centrioles, and to contribute to signaling at

these structures [159].

von Hippel–Lindau (VHL) disease

VHL disease, caused by germline mutation in the VHL

tumor suppressor gene, is an autosomal dominant genetic

disease that has in the past been thought of predominantly

in terms of hereditary cancer. The most clinically signifi-

cant manifestation of the disease includes tumors in the

central nervous system, retina, and kidney, including he-

mangioblastomas, pheochromocytomas, and renal cell

carcinomas [160]. Interestingly, around 70 % of VHL

patients also develop renal cysts [161, 162], a fact that has

more recently led to targeted investigations of whether

VHL might have a specific function at cilia, as with other

cyst-associated proteins. Indeed, pVHL localizes to cilia

[48, 163]. Further, both the kidney cysts found in VHL

patients, as well as renal clear cell carcinoma cell lines

lacking pVHL, have either no cilia or sparse, rudimentary

cilia [164]. Importantly, ectopic expression of VHL gene in

renal clear cell carcinoma cell lines restored cilia formation

[163–165], implying that pVHL might directly support

ciliogenesis.

In one elegant study, combined inactivation of VHL and

GSK-3b was required to allow loss of cilia, based on

cooperative function of these proteins in ciliary mainte-

nance [48]. Although the mechanism by which these

proteins interact is not yet clear, VHL normally promotes

the proteasomal degradation of HIF-1a, a protein that

activates transcription in hypoxic cells. Maxwell and col-

leagues showed that suppression of HIF-1a in VHL-

deficient cell lines restored cilia [164]; separately, GSK-3b
triggers HIF-1a degradation [166]. The absence of cilia

mediated by pVHL may be due to loss of cilia maintenance

or defects in ciliogenesis. Benzing and colleagues found

that pVHL regulates microtubule orientation during cilio-

genesis and also interacts with the Par3-Par6-atypical PKC

complex, which supports ciliogenesis [163, 167]. pVHL

also associates with kinesin 2, allowing pVHL to influence

microtubule dynamics in support of cilia [168, 169]. Some

evidence suggests that pVHL also negatively regulates

ciliary disassembly. AURKA and its homologue CALK in

Chlamydomonas are necessary and sufficient for cilia dis-

assembly [13, 43]. Loss of VHL activates HIF signaling to

increase the expression of AURKA and its activating

partner NEDD9 [170]; suppression of this pathway

improves formation of cilia [49].

Cilia and cysts

Cementing the requirement for intact ciliary signaling in

cystic disease, cyst formation can be experimentally

induced by mutation of genes that are essential for cilia

assembly and maintenance, such as IFT88 [22] and the

cilia-associated kinesin II, KIF3A [171]. Subsequent

investigation of the consequences of the inactivation of

KIF3A in young versus adult mice emphasized the

requirement of kidney injury as a co-factor, and suggested

an important consequence of ciliary inactivation was loss
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of PCP controls rather than a change in proliferation [140].

As noted above, one consequence of mutations relevant to

clinically significant human cystic diseases is to impair

ciliary function, and by extension to influence all of the

cilia-associated, cell division regulating processes sum-

marized throughout this review. In spite of the complexity

this already invokes, it is important to note that proteins

such as the polycystins, targeted in PKD, also have well-

documented functions in cellular compartments other than

cilia, acting at the endoplasmic reticulum, the plasma

membrane, and at focal adhesions [63, 172]. The inevitably

pleiotropic consequences of mutations eliminating poly-

cystins makes it essential to move cautiously in assigning

proliferation defects solely to ciliary deficiency, when

considering the clinical management of ‘‘ciliary’’ diseases.

Certainly, much more careful study is required to dissect

relevant functions.

Targeted treatments

With the above cautions in mind, it is instructive to con-

sider how the rapidly increasing knowledge of the root

causes of diseases such as renal cysts impacts their man-

agement in the clinic, taking PKD as primary example. For

additional perspective, recent reviews addressing this topic

at length include Refs. [173–175]. For many years, the

standard of care has been primarily management of the

symptoms associated with the disease, rather than

addressing the root causes. As of 2012, the patient-directed

description of treatment options assembled by the National

Kidney and Urologic Disease Information Clearinghouse

(NKUDIC), managed by the US National Institute of

Diabetes and Digestive and Kidney Diseases (NIDDK),

suggested to patients that they manage pain associated with

growing cysts by using aspirin or acetaminophen; control

associated urinary tract infections with antibiotics; control

high blood pressure by lifestyle changes or standard med-

ications; and prepare for ultimate ESRD, which will require

dialysis or kidney transplant (http://www.kidney.niddk.nih.

gov/kudiseases/pubs/polycystic/#dominant).

In contrast, Table 1 summarizes clinical and preclinical

evaluation that have either recently been completed or are

currently in progress, and Table 2 summarizes rodent

models used for preclinical work. Beginning with the more

advanced clinical studies, a first theme has been to continue

to address the symptoms, but with a more advanced

underpinning of molecular biology. For example, the

HALT-PKD study evaluates efficacy of the angiotensin-

converting enzyme (ACE) inhibitor lisinopril alone or in

conjunction with the angiotensin II receptor antagonist

Telmisartan, to more efficiently lower blood pressure

(described in [176]).

Other studies have addressed signaling effects classi-

cally associated with PKD. Deficient activity of the PC2

Ca2? channel at the cilia reduces intracellular Ca2? levels

in PKD. Reduced Ca2?-dependent inhibition of adenylate

cyclase (AC) helps elevate intracellular levels of cAMP;

see also direct activation of AC through interaction with

the AKAP150 complex and phosphodiesterase, discussed

in [78] and above. In turn, elevation of cAMP contributes

to activation of PKA signaling, which supports SRC and

other RTK-dependent signaling effectors, and stimulates

activity of the Cl- efflux channel CFTR, among other

consequences [177]. A number of studies experimentally

limit AC activity by targeting proteins associated with the

AC-activating complex, using therapies such as somato-

statin [178, 179] and vasopressin V2R antagonists [180–

183]. For the trials with somatostatin, a significant decrease

in the rate of kidney growth was observed, but only limited

efficacy in improving kidney function. PKA effector lim-

itation is also the theme of more recent pre-clinical studies,

in which the point of intervention is inhibition of CFTR

[184]. Triptolide, the active ingredient of an ancient Chi-

nese medicine known as Lei Gong Teng, enhances PC2

channel activity, potentially restoring normal homeostasis

in cases of PKD not directly associated with inactivating

mutations of PC2 [185]; a clinical trial of triptolide is in

progress.

An alternative approach in designing trials has been to

target signaling pathways canonically associated with the

proliferative state of the cell, which are active in cysto-

genesis, and for which the degree of connection to cilia has

been discussed above. Bosutinib inhibits multiple tyrosine

kinases, including SRC [186]; a trial is ongoing. Sirolimus

and everolimus inhibit mTOR, which is essential for pro-

tein synthesis, and known to be regulated by PC1 and TSC,

which have cilia-linked functions, making it natural to

evaluate these compounds in PKD [187–189]. Disap-

pointingly, although some activity was seen in reducing

kidney growth, there was no significant change in kidney

function; one study found an increased level of proteinuria

and albuminuria in sirolimus-treated patients, and

increased adverse events were reported with treatment. It

has been suggested that a longer time of treatment would

be beneficial; alternatively, this may increase the side

effects of mTOR inhibitors in non-renal cells. mTOR-

directed therapies are discussed at length in Refs. [190,

191]. For all the advanced or completed trials, an emergent

theme is the non-congruence between results in reducing

the rate of kidney or cystic growth, which can often be

partially achieved, and results in improving renal function,

which is clearly harder to achieve. Identifying the reasons

for these differences requires more study.

As is clear from Table 1, a number of other pathway-

directed therapies are now being pre-clinically evaluated
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Table 2 PKD mouse models

Genotype description Phenotype Reference

Dominant cystic kidney disease model

Pkd1flox/-;

Ksp-Cre

mouse

Kidney-specific inactivation of Pkd1 (in distal nephron

segments including medullary thick ascending loop

of Henle and collecting duct)

Rapidly progressive cysts in the neonatal period,

resulting in renal failure and death by age 20 days

[140,

223]

Pkd1flox/flox;

Pkhd1-Cre

mouse

Kidney-specific inactivation of Pkd1 (primarily in the

collecting ducts)

Similar to Pkd1flox/-; Ksp-Cre mouse but with longer

survival of cystic mice

[140,

223]

Pkd1flox/-;

pCX-CreER

mouse

Tamoxifen-inducible inactivation of Pkd1 Inactivation before day P13 leads to rapidly progressive

cyst formation with severe disease at 3 weeks of age.

In contrast inactivation after day P13 shows slow cyst

progression with cysts starting to develop at about

4 months of age

[224]

Pkd1flox/flox;

Mx1Cre

mouse

IFN- inducible inactivation of Pkd1 Progression of cyst formation dependent on time of

inactivation (see Pkd1flox/-; pCX-CreER mouse)

[225]

C57/Pkd1?/-

mouse

Heterozygous for null mutation in Pkd1 Adult onset of cystic kidney disease with cysts

developing as early as 2.5 months of age

[226]

Pkd1-/- mouse Homozygous for null mutation in Pkd1 Aggressive embryonal cyst progression starting at E15.5 [226]

Pkd1cond/cond:

NestinCre

mouse

Mosaic inactivation of the Pkd1 gene (predominantly in

collecting duct/distal tubules)

Development of highly cystic kidneys within less than

2 months with elevated apoptosis, proliferation, and

fibrosis

[208]

iKsp-Pkd1del

mouse

Tamoxifen inducible kidney specific inactivation of

Pkd1

Progression of cyst formation dependent on time point

of inactivation (see Pkd1flox/-; pCX-CreER mouse)

[227,

228]

Pkd2-/tm1Som

mouse =

Pkd2WS25/-

mouse

Targeted mutation of Pkd2 resulting in a hypomorphic

allele

Development of renal cysts within 3 months [229]

Han: SPRD-

Cyiu mouse

Missense mutation in Anks6 (also called Pkdr1) Slowly progressive PKD [230]

Recessive cystic kidney disease model

Pcy mouse Spontaneous missense mutation in NPHP3 Late onset of PKD, equivalent to adolescent

nephronophthisis

[231,

232]

Jck mouse Spontaneous mutation in Nek8 (NPHP9) Slowly progressive renal cystic disease resembles

human ADPKD phenotypically, despite its autosomal

recessive mode of inheritance; gender dimorphism

(males more severe) and cysts in multiple parts of the

nephron

[233,

234]

PCK rat Splicing mutation, which leads to a framshift in pkhd1 Renal cysts derived from collecting ducts and

congenital hepatic fibrosis associated with biliary

cysts. Life span is 1 year in males and 1.5 year in

females

[235]

Bpk mouse Spontaneous mutation in bicaudal C (Bicc1) Model for ARPKD: Homozygous animals typically die

1 month postnatal due to renal failure with

progressively enlarged kidneys

[236]

Orkp-rescue

mouse

(Tg737orpk/
orpk;TgRsq)

Homozygous mutation in the poaris/IFT88 gene;

hemizygous for the transgene expressing wild-type

polaris

Develops an adult-onset form of ARPKD [237]

Cpk mouse Spontaneous recessive mutation (cpk locus on

chromosome 12) in the C57BL/6 J strain, disrupting

the cystin gene

Aggressive PKD with cysts becoming apparent by

8–9 days of age, resulting in renal failure and death

by age 4–5 weeks

[238,

239]

ADKPD autosomal dominant polycystic kidney diseasse, ARPKD autosomal recessive polycystic kidney disease

The role of the cilium in normal and abnormal cell cycles 1867

123



for action in PKD, and may lead to trials in coming years.

These generally follow the same approach as more

advanced studies. Targets of therapies include: metformin,

targeting AMPK [192]; roscovitine, targeting CDK kinases

[193]; STAT6 [194]; the PPAR-c receptor [195–197];

HDACs [198, 199]; MEK [200]; Raf [201]; Cdc25A [202];

and other agents. A number of these agents were previously

developed for other disease indications, such as treatment

of cancer, and are being explored based on their ability to

inhibit cell proliferation. Given the discussion above as to

whether it is proliferation per se, or qualitatively altered

cell growth associated with ciliary defects (e.g., PCP

changes), that is the predominant cause of PKD, it is cur-

rently an open question as to how well these compounds

will work.

Another pragmatic issue is how patients will respond to

long-term treatment with powerful agents that interfere

with cell growth controls. Much care will be necessary to

prevent compensatory changes that lead to severe adverse

events, such as induction of cancer. Use of therapies tar-

geted at proteins that specifically act in the kidney would

reduce this last concern; as proteomic studies of cilia-

associated proteins [144, 203–205] and tissue-specific

protein expression and activation [206] advance, these data

may help guide target selection. On the other hand, because

PKD arises from an autosomally inherited dominant

mutation, the mutant allele for PKD is found in every cell

of the body, and some recent studies have documented

striking cell cycle defects in non-renal cells associated with

PKD lesions. For instance, endothelial cells from humans

and mice with PKD were characterized by abnormal cilia

and deficient cytokinesis [174, 207]. Based on these recent

findings, it is plausible that the hypertension associated

with PKD may not just be a secondary consequence of

aberrant cell growth and signaling in the kidney but may

arise directly from cilia-associated defects in the vascula-

ture. If so, a kidney-focused therapeutic strategy would be

inadequate. A potentially promising approach would be to

try to correct the deficient function of PC2 specifically at

the cilium. For instance, the observed AURKA activation

in cysts is predicted to help suppress PC2 calcium channel

activity [82]; inhibition of AURKA might be expected to

enhance PC2 activity. Alternatively, as discussed at length

above, cilia coordinate signaling of PDGFa, Wnt, Hedge-

hog, Notch, and other pathways; to date, there has been

little effort to explore the consequences of manipulating

these pathways for therapeutic gain in PKD. There is

clearly much room for investigation of potential strategies.
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