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Abstract Huntington’s disease (HD) is an autosomal

dominant neurodegenerative disease caused by a CAG

trinucleotide expansion in the Huntingtin (Htt) gene. When

the number of CAG repeats exceeds 36, the translated

polyglutamine-expanded Htt protein interferes with the

normal functions of many types of cellular machinery and

causes cytotoxicity. Clinical symptoms include progressive

involuntary movement disorders, psychiatric signs, cogni-

tive decline, dementia, and a shortened lifespan. The most

severe brain atrophy is observed in the striatum and cortex.

Besides the well-characterized neuronal defects, recent

studies showed that the functions of mitochondria and

several key players in energy homeostasis are abnormally

regulated during HD progression. Energy dysregulation

thus is now recognized as an important pathogenic pathway

of HD. This review focuses on the importance of three key

molecular determinants (peroxisome proliferator-activated

receptor-c coactivator-1a, AMP-activated protein kinase,

and creatine kinase B) of cellular energy homeostasis and

their possible involvement in HD pathogenesis.

Keywords AMP-activated protein kinase � Brain-type
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Introduction

Huntington’s disease (HD) is an inherited autosomal

dominant neurodegenerative disease caused by a CAG

trinucleotide expansion in exon 1 of the Huntingtin (Htt)

gene, which is located on the short arm of human chro-

mosome 4 (4p63). Major symptoms include progressive

involuntary movement disorders, psychiatric signs, cogni-

tive decline, dementia, and eventual death [1]. When the

number of CAG repeats exceeds 36, the translated poly-

glutamine (polyQ)-containing Htt protein (mutant Htt)

alters many important physiological functions and several

types of cellular machinery, and causes cytotoxicity [2–4].

Accumulation of polyQ-expanded mutant Htt leads to

aggregate formation in neurons, astrocytes, microglia, and

many different types of peripheral cells (e.g., liver cells,

hair cell, adipocytes, and muscle cells) [2, 5–7].

Mutant Htt is known to impair the function of protea-

somes, interfere with normal transcription, elevate oxidative

stress, and cause energy dysfunction [5, 8–10]. In addition to

neuronal dysregulation, which has been extensively studied

and reviewed [11–16], metabolic abnormalities were

reported in patients with HD and have recently attracted

much attention [7, 17–26]. Specifically, hyperglycemia and

abnormal glucose metabolism were found in several mouse

models of HD and in HD patients [18, 19]. Contributions of

deficiencies of a few other metabolic pathways (e.g., cho-

lesterol biosynthesis and urea cycle metabolism) to the HD

pathogenesis are also well documented [7, 20–26].

At the cellular level, the major cause of energy defi-

ciency triggered by mutant Htt is mitochondrial

abnormalities [27–29]. The effects of mutant Htt on

mitochondria are likely to be direct because it exists in

mitochondrial membranes [30]. Expression of mutant Htt

leads to increased mitochondrial fragmentation, lower
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mitochondrial membrane potentials, poor mitochondrial

calcium handling, dysregulated mitochondrial biogenesis,

and impaired mitochondrial trafficking [30–34].

The production of adenosine triphosphate (ATP) by mito-

chondria is mediated by the mitochondrial oxidative

phosphorylation system (OXPHOS), which converts energy

released from the oxidation of nutrients to produce ATP. In

eukaryotes, the OXPHOS is composed of five protein com-

plexes: NADH-coenzyme Q oxidoreductase (complex I),

succinate-Q oxidoreductase (II), Q-cytochrome c oxidore-

ductase (III), cytochrome c oxidase (IV), and ATP synthase

(V). Deficiencies in the OXPHOS are observed in many

neurodegenerative diseases, including HD. A few studies

demonstrated that activities of oxidative phosphorylation

enzymes in the basal ganglia of HD patients [35, 36] and

striatal cells expressing mutant Htt [37] were lower than those

of controls, and thus contributed to the impaired production of

ATP. Because mitochondria are the main source of ATP and

free radicals, such mitochondrial impairment is critical for HD

and many other degenerative diseases. Indeed, treatments

with coenzyme Q10 or antioxidants (e.g., N-acetyl-L-cysteine,

a-lipoic acid, and tauroursodeoxycholic acid) can delay dis-

ease progression in HD mice [38–42].

Another important function of mitochondria is the reg-

ulation of intracellular calcium homeostasis. Mitochondria

are major organelles that mediate the uptake and release of

calcium. Expression of mutant Htt interferes with the

mitochondrial calcium-handling ability, and leads to defi-

cient respiration, a lower mitochondrial Ca2? capacity,

increased sensitivity to calcium, Ca2?-induced cellular

dysfunctions, and neuronal toxicity [such as NMDA

receptor-mediated excitotoxicity and overactivation of

AMP-activated protein kinase (AMPK)] [32, 43, 44].

Given the importance of mitochondria in generating ATP

and controlling calcium homeostasis, mitochondrial traf-

ficking is crucial for neuronal functions and survival [45,

46]. Formation of mutant Htt aggregates interferes with the

trafficking of mitochondria and is recognized as an early

pathogenic event of HD [47].

Besides mitochondrial abnormalities, regulation of several

major players in energy homeostasis by mutant Htt was

reported. This review focuses on recent findings of several key

molecular determinants of cellular energy homeostasis and

their possible involvement in HD pathogenesis.

Peroxisome proliferator-activated receptor-c

coactivator-1a (PGC-1a)

Basic properties and functions of PGC-1a

The best-characterized regulator of mitochondrial biogen-

esis is PGC-1a. It is a transcriptional co-activator that

controls the expression of genes involved in mitochondrial

biogenesis, cellular respiration, and glucose/fatty acid

metabolism [7, 48, 49]. Specifically, PGC-1a stimulates

mitochondrial biogenesis via enhancing the expression and

functions of uncoupling protein (UCP)-2 and nuclear

respiratory factors (NRFs), and thus increases the expres-

sion of mitochondrial transcription factor A (mtTFA),

which controls the replication and transcription of mito-

chondrial DNA [50].

Importantly, PGC-1a also regulates many transcriptional

regulators that are not directly involved in mitochondrial

biogenesis. Partners of PGC-1a include peroxisome pro-

liferator-activated receptors (PPARa, -b/d, and -c), nuclear

receptors [estrogen receptor, estrogen-related receptors,

thyroid hormone receptor, retinoid receptors, glucocorti-

coid receptor, mineralocorticoid receptor, sterol-

regulatory-element-binding protein-1 (SREBP1), and

hepatic nuclear factor (HNF)-4a], and several non-nuclear

receptors [forkhead box O1 (FOXO1) and myocyte

enhancer factor 2 (MEF2)] [51–57]. These proteins are also

important in metabolism regulation. For example, FOXO1

and HNF-4a modulate genes of gluconeogenesis [55, 58].

MEF-2 is critical for glucose transport [56, 59]. SREBP1

regulates genes involved in lipid and cholesterol metabo-

lism [56, 59]. Moreover, PPARa promotes insulin

resistance in the liver [60]. Besides controlling mitochon-

drial energy metabolism, PGC-1a also modulates multiple

metabolic pathways.

The function of PGC-1a can be regulated by post-

translational modifications (including acetylation, phos-

phorylation, methylation, and sumoylation). Acetylation of

PGC-1a is critical for its localization within the nucleus

and transcriptional activity [61]. Phosphorylation of PGC-

1a by several kinases [e.g., AMPK and p38 mitogen-acti-

vated protein kinase (MAPK)] enhances the function of

PGC-1a [62, 63]. Methylation of PGC-1a at several argi-

nine residues in its C-terminal region by a protein arginine

methyltransferase potentiates its co-activator activity [64].

On the contrary, sumoylation of PGC-1a by small ubiqui-

tin-like modifier 1 protein suppresses its translational

activity without altering its cellular localization [65].

PGC-1a in HD

Recent studies showed that the expression of PGC-1a is

downregulated in mice and patients with HD. This sup-

pression of PGC-1a by mutant Htt is mediated by

interfering with the function of the CREB and TAF4 on the

PGC-1a promoter [66]. Consistent with the above findings,

many PGC-1a target genes in the caudate nucleus of HD

patients were lower than those in non-HD subjects [67].

Likewise, expression of mutant Htt is also associated with
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impairment of PGC-1a in the striatum and soleus muscle of

HD mouse models (N171-82Q and NLS-N171-82Q,

respectively) [67, 68]. In oligodendrocytes, suppression of

PGC-1a by mutant Htt leads to inhibition of genes involved

in myelination and causes aberrant myelination in HD

brains, further supporting a pathogenic role of the impair-

ment of PGC-1a in HD [69]. In addition, genetic removal

of PGC-1a in mice leads to defects similar to several

clinical features (e.g., impaired mitochondrial functions,

hyperkinetic movement disorder, and striatal degeneration)

of HD patients [66, 70–72]. Conversely, exogenous

expression of PGC-1a rescues the mitochondrial membrane

depolarization evoked by 3-NP in striatal cells expressing

mutant Htt [67], and prevents neurodegeneration in HD

mice (R6/2) [66]. Similarly, activation of PGC-1a using a

well-characterized PPARc agonist (thiazolidinedione)

enhances mitochondrial biogenesis in the brain and

peripheral tissues, reduces mutant Htt aggregate formation,

and rescues motor deterioration of HD mice (R6/2 mice)

[73–75]. In addition, deacetylation of PGC-1a by overex-

pression of Sirtuin-1 (SIRT1) was shown to protect neurons

from mutant Htt-induced toxicity in a mouse model of HD

(N171-82Q) [76, 77]. Those studies collectively suggest

that PGC-1a is an attractive drug target for HD.

AMPK

Basic properties and functions of AMPK

AMPK is a major energy sensor that maintains cellular

energy homeostasis [78]. It is a Ser/Thr kinase that stim-

ulates pathways that promote energy production or inhibit

energy expenditure [78, 79]. For example, activation of

AMPK is known to enhance glucose uptake and glycolysis,

increase fatty acid oxidation, and promote mitochondrial

biogenesis [80, 81]. Ample evidence suggests that AMPK

regulates cellular energy homeostasis by multiple mecha-

nisms including the induction of PGC-1a [68], activation of

FOXO3 transcriptional activity [82], and promotion of

SIRT1 and its downstream signaling pathways [83].

AMPK comprises three subunits (a, b, and c) [84, 85]

(Fig. 1). The a subunit of AMPK is the catalytic subunit

and has two different isoforms (a1 and a2) [86]. AMPK-a1

is widely expressed in the entire body and is predominantly

expressed in the cytoplasmic region, while AMPK-a2 is

mainly expressed in nuclei of liver, heart, and skeletal

muscles [87, 88]. Recent studies showed that AMPK can be

directly activated by many upstream kinases, such as liver

kinase B1 (LKB1), calmodulin-dependent protein kinase

kinase (CaMKK), ataxia telangiectasia mutated (ATM),

and TGF-b-activated kinase 1 (TAK1) via phosphorylating

threonine172 within the catalytic domain of the a subunit

(Fig. 1). Activation of AMPK by LKB1, a tumor-sup-

pressor kinase, is mainly triggered by an increase in the

cellular ratio of adenosine monophosphate (AMP)/ATP

[89]. Activation of AMPK by CaMKK is triggered by

stimulation of intracellular calcium signals [90, 91].

Based on pharmacological analyses using inhibitors of

calcium/calmodulin-dependent kinases, Ca2?/calmodulin-

dependent protein kinase II (CaMK II) might also lie

upstream of AMPK and positively regulate its phosphor-

ylation and activation [44, 92]. It remains to be

determined whether CaMK II regulates AMPK by direct

phosphorylation. ATM is a serine/threonine protein

kinase. Purified ATM from insulin-like growth factor

(IGF)-1-treated cells was shown to phosphorylate and

activate AMPK in vitro [93]. Activation of AMPK by

TAK1 was first reported in the cardiac system with little

knowledge of the detailed mechanism [94]. Conversely,

phosphorylation of AMPK-a1 at Ser173 and Ser485 by

cAMP-dependent kinase (PKA) leads to inhibition of

AMPK [95, 96]. Most interestingly, AMPK can be acti-

vated or inhibited by a few hormones (such as adiponectin

and leptin) in a tissue-specific manner [97].

In addition to regulating cellular energy metabolism,

AMPK also phosphorylates many other proteins involved

in a wide variety of cellular functions, including tran-

scription, insulin secretion, formation of reactive oxygen

species (ROS), and apoptosis/survival [98–101]. For

example, AMPK-a1 phosphorylates importin-a1 and con-

trols the nuclear-cytoplasmic shuttling of an RNA-binding

protein (HuR) [102]. In addition, AMPK phosphorylates a

motor protein (Kif5), and interferes with the interaction

between Kif5 and phosphatidylinositol 3-kinase (PI3 K),

which subsequently blocks the targeting of PI3 K to the

tips of axons and suppresses axonal polarization and

growth [103].

The role of AMPK in controlling cell survival during

stresses was actively investigated. In pancreatic b cells,

prolonged stimulation of AMPK causes activation of c-Jun-

N-terminal kinase (JNK) and caspase-3, and leads to

apoptosis in pancreatic b cells [100, 101]. Such detrimental

effects of AMPK activation can be prevented by stimula-

tion with Akt, which enhances the mammalian target of

rapamycin (mTOR)-translation pathway [104]. In the brain,

overactivation of AMPK suppresses the expression of a

survival gene (Bcl-2) in striatal neurons and accounts for

neuronal atrophy in HD mice [44]. Activation of AMPK

was also found to cause apoptosis by induction of p53 at

the transcription level and promotion of p53 phosphoryla-

tion at Ser46 [105]. Interestingly, elevated expression of

AMPK-b1 (the regulatory subunit that targets the AMPK

holoenzyme to the appropriate cellular location) is closely

associated with the suppression of cell growth in carcinoma

cell lines through a p53-independent pathway [106],
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suggesting that specific localization of AMPK might play a

critical role in regulating AMPK-evoked death signaling.

On the contrary, AMPK activation is also known to be

associated with a pro-survival role against certain stresses,

such as chronic hypoxia in a carcinoma cell line [107] and

glutamate-induced excitotoxicity in primary hippocampal

neurons [108]. Recent studies demonstrated that AMPK-a1

directly binds and phosphorylates the GABA(B) receptor,

which enhances the function of GABA(B) and reduces

excitotoxicity during ischemia [109, 110]. In spite of those

extensive studies in recent years, the complex roles of

AMPK in controlling cell death and survival remain to be

further explored.

Given the importance of AMPK in regulating stress

responses, it is not surprising to find that dysfunctions of

AMPK signaling are associated with several brain diseases

and traumas including stroke, HD, Alzheimer’s disease

(AD), Parkinson’s disease (PD), and amyotrophic lateral

sclerosis (ALS) [44, 111–118]. The pathophysiological

roles of AMPK in regulating neuronal survival during

neurodegenerative disorders are currently being actively

investigated. For example, abnormal activation of AMPK

was observed in cortical and hippocampal neurons of

stroke patients. Inhibition of AMPK pharmacologically or

by hypothermia treatment significantly reduced the size of

the damaged area [112, 119, 120]. Interestingly, deletion of

AMPK-a2 (but not AMPK-a1) is neuroprotective in the

mouse brain undergoing ischemia [121], while activation

of AMPK using metformin worsened stroke damage [122].

Those findings suggest a detrimental role of AMPK in

ischemic brains. In addition, AMPK was implicated in

amyloid precursor protein (APP) processing, tau phos-

phorylation, and enhanced autophagy in AD [123]. Chen

and colleagues [124] demonstrated that an activator of

Fig. 1 Potential pathophysiological roles of AMP-activated protein

kinase (AMPK) in the brain. AMPK can be activated by multiple

pathways mediated by Ca2?/calmodulin-dependent protein kinase

kinase b (CaMKKb) [90, 91], Ca2?/calmodulin-dependent protein

kinase II (CaMK II) [44, 92], liver kinase B1 (LKB1) [89], ataxia

telangiectasia mutated (ATM) [93], and transforming growth factor-

b-activated protein kinase 1 (TAK1) [94]. Solid lines mark direct

phosphorylation of AMPK by the indicated upstream kinases. The

dotted line denotes that CaMK II is proposed to lie upstream of

AMPK and might be involved in AMPK activation [44, 92].

Conversely, phosphorylation of AMPK-a1 by cAMP-dependent

kinase (PKA) leads to inhibition of AMPK [95, 96]. Ample evidence

suggests that AMPK has a number of downstream molecular targets,

which can directly or indirectly regulate specific events involved in

brain pathogenesis as detailed in the text. The a subunit of AMPK is

the catalytic subunit and has two different isoforms (a1 and a2) [86].

Blue arrows indicate pathways regulated by AMPK-a1 and/or

AMPK-a2. Brown arrows and lines mark pathways regulated by

AMPK-a1. The purple arrow indicates the pathway regulated by

AMPK-a2
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AMPK (metformin) induced the expression of b-secretase

(BACE1), promoted the biogenesis of amyloid peptides,

and potentially worsened AD progression. In addition,

exposure to amyloid b peptides (Abs, the key components

of senile plaques in AD) led to activation of AMPK, which

phosphorylates tau at Thr231 and Ser396/404, and might

contribute to AD tauopathy [115, 116]. These observations

suggest a pathological role of AMPK activation in AD

because hyperphosphorylation of tau is a hallmark of AD.

Consistently, inhibition of AMPK by treatment with either

leptin or an inhibitor of AMPK (compound C) suppresses

the production of Ab and tau phosphorylation [124, 125].

Those studies suggest that activation of AMPK in AD

might contribute to neurodegeneration in AD. Nonetheless,

results from a few other studies argue for a beneficial role

of AMPK in AD because its activity was negatively

associated with amyloidogenesis [126, 127]. Moreover,

activation of AMPK using an activator (5-aminoimidazole-

4-carboxamide-1-d-ribofuranoside, AICAR) in primary

cortical neurons reduced Ab production, while genetically

removing AMPK-a2-enhanced Ab production [128].

Considering the seemingly contradictory effects of AMPK

activation in brain diseases and trauma, future investiga-

tions of AMPK-a isoform-specific regulation and

substrates deserve high priority.

AMPK in HD

The roles and regulation of AMPK in HD pathogenesis are

complex (Table 1). Overactivation of AMPK-a1 was

found in brains of both human HD patients and HD mice

(R6/2) [44, 129]. In contrast, AMPK activity in muscles

was greatly reduced [130]. In the muscle and striatum of

another mouse model of HD (NLS-N171-82Q HD), levels

of AMPK-a2 transcripts were slightly lower than those of

WT mice [68, 131]. Those findings are important because

AMPK-a2 was suggested to regulate gene expression in

skeletal muscle by directly by directly phosphorylating

PGC-1a at Thr177 and Ser538 [62]. Chronic energy depri-

vation of NLS-N171-82Q mice using a catabolic stressor

b-guanidinopropionic acid (GPA) failed to elevate the

expression of AMPK-a2 and mitochondrial biogenesis in

their muscles, as would have been observed in WT mice,

due to the deficiency of PGC-1a [68, 131].

To assess the effects of AMPK activation in HD path-

ogenesis, Ma and colleagues showed that systemic

activation of AMPK by metformin (2 mg/ml in drinking

water) extended the shortened lifespan and reduced hind-

limb clasping in male R6/2 mice. Although increased

activation of AMPK in the striatum of R6/2 mice was

observed, those authors stated that the site of metformin’s

action remained unclear. Additional experiments are nee-

ded to evaluate whether the beneficial effects of metformin T
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were due to AMPK activation in the brain or peripheral

tissues [132]. This is an important issue because AMPK

activation may provide distinct functions in different tis-

sues. Similar to what was reported by Ma and colleagues

[132], we found that daily intraperitoneal injections of an

AMPK activator (AICAR, 400 mg/kg body weight) for

5 weeks significantly enhanced motor functions in R6/2

mice (Ju et al., unpublished data). Note that the level of

phosphorylated/activated AMPK in skeletal muscles of R6/

2 mice was significantly lower than that of WT mice [130];

activation of AMPK using metformin or AICAR therefore

might improve the dysregulated functions caused by infe-

rior AMPK activity in skeletal muscles of R6/2 mice, and

ameliorated the motor deterioration of R6/2 mice as

described above. On the contrary, an intrastriatal infusion

of AICAR (3 lg/animal/day) for 7 days worsened the

motor impairment and neurodegeneration of R6/2 mice,

suggesting a detrimental effect of AMPK activation in the

striatum [44]. In the striatum of HD mice and striatal cell

lines expressing mutant Htt, activation of AMPK using

AICAR or exogenous expression of the dominant positive

AMPK-a1 mutant (AMPK-a1-T172D) potentiated mutant

Htt-induced cell death by suppressing a survival gene (Bcl-

2). Consistent with the alteration of gene expression by

AMPK-a1, its detrimental effect requires the nuclear

enrichment of AMPK-a1 [44]. Blocking the activation and

nuclear enrichment of AMPK-a1 using an adenosine 2A

receptor (A2AR)-selective agonist (CGS21680) via a

cAMP/PKA-dependent pathway was associated with the

rescue of brain atrophy [44, 129], further strengthening the

involvement of AMPK-a1 in HD pathogenesis in the stri-

atum. Note that the role of AMPK-a2 in the brain of HD

patients has not been extensively investigated yet. Those

studies prompted us to hypothesize that different tissues

(the brain vs. muscles) might have different AMPK iso-

forms, which target distinct downstream pathways. Such

tissue-specific regulation of AMPK and the pathophysio-

logical consequences are of great interest and require

further investigation. Those studies also call for the

development of isoform-selective AMPK activators and

inhibitors with specific designs on their chemical properties

to control blood–brain barrier (BBB) permeability, so that

these AMPK drugs can be used to treat disorders in the

brain and peripheral tissues.

Creatine kinase (CK) system

Basic properties and functions of

the CK/phosphocreatine (PCr) system

The CK/PCr system is one of the major machineries con-

trolling proper energy utilization in cells (Fig. 2). CKs

regulate ATP regeneration via the transfer of high-energy

phosphate from PCr to adenosine diphosphate (ADP) [133,

134]. There are two cytosolic CKs [brain-type CK (CKB)

and muscle-type CK (CKM)] and two mitochondrial CKs

(the ubiquitous mtCK (uMtCK) and the muscle-specific

sarcomeric mtCK) [135]. Tissues, which require large

amounts of energy for normal functioning such as the brain

and heart, usually express high levels of CKs [136]. In

specialized and polarized cells (e.g., the retina, spermato-

zoa, and cochlear hair cells), the CK/PCr system plays a

even more-important role due to differential distribution of

mitochondria commonly observed in those cell types [137–139].

In addition, two creatine synthesis enzymes [L-arginine:glycine

amidinotransferase (AGAT) and guanidinoacetate methyl-

transferase (GAMT)] and a creatine transporter (SLC6A8)

are also critical for proper functioning of the CK/PCr system

[135].

CKB is the cytosolic CK in the brain. A few CKB-

interacting proteins that contribute to the function of CKB

in the brain were identified. For example, CKB binds to the

cytosolic tail of the protease-activated receptor (PAR)-1 (a

seven-transmembrane G protein-coupled receptor) and

positively regulates PAR-1-mediated signal transduction

and Rho-A-dependent cell shape changes in astrocytes

[140, 141]. It was interesting to note that activation of

PAR-1 by thrombin is also known to regulate neurite

extension and retraction in neuronal cell lines [142, 143],

and to protect both astrocytes and neurons from elevated

oxidative stresses [144]. The PAR-1/CKB complex thus

might have a protective role in the brain.

Earlier studies showed that CKB directly interacts with

two K–Cl cotransporters (KCC2 and KCC3), which are

major routes through which K? and Cl- exit from mam-

malian cells [145, 146] (Fig. 2). KCC2 is neuron-specific

and is highly enriched in GABAergic neurons [147]. The

expression of KCC3 is more ubiquitous, and can be found

in the heart, kidneys, placenta, liver, and lungs [148].

Although the function of KCC3 is largely unclear, it was

implicated in the hereditary motor and sensory neuropathy

with agenesis of the corpus callosum (HMSN/ACC,

Table 2), probably due to loss of interactions between

KCC3 and CKB [146, 149, 150]. CKB therefore might

regulate Cl- homeostasis, neuronal excitability, and the

cell volume by interacting with KCCs [145, 146, 151, 152].

Dysregulation of the CK/PCr system in HD

Downregulation of CKB was reported in numerous neu-

rodegenerative disorders, such as AD, Pick’s disease,

diffuse Lewy body disease, and HD (Table 2) [153–156].

Oxidation, reduced activity, and decreased protein levels of

CKB were reported in brains of mice (R6/2, 140 CAG

full-length HD, and HdhCAG150) and patients with HD
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[157–160]. Downregulation of CKB transcripts in the brain

and muscles of HD mice (R6/2) was also demonstrated

by a microarray analysis [161], suggesting that mutant

Htt might also regulate CKB at the transcriptional level.

Moreover, increased PCr concentrations and decreased CK

activities were demonstrated in brains of HD mice (R6/2,

N171-82Q, and HdhQ111) and HD patients [162, 163].

Those studies strongly argue for a poor CK/PCr system in

HD brains, which is expected to be associated with a

reduced ATP-to-ADP ratio and impaired energy homeo-

stasis. Using a microwave fixation method, accumulation

of PCr and depletion of ATP were demonstrated in brains

of HD mice at an early disease stage. In addition, down-

regulation of CKB is correlated with AMPK activation in

the brain of HD mice, which might trigger a series of

pathophysiological events during HD progression [163].

Those findings collectively suggest a potential cross-regu-

lation between the CK/PCr system and AMPK, and warrant

future studies on the link between these two energy-regu-

lating systems in HD and other neurodegenerative diseases.

Besides affecting cellular energy homeostasis, suppres-

sion of CKB in HD might also compromise functions of its

interacting proteins. One intriguing example is that KCC2,

which directly binds to CKB and is highly expressed in

GABAergic neurons, was reported to promote spine for-

mation [164]. Selective loss of GABAergic medium spiny

neurons is a major hallmark of HD. It would be of great

interest to investigate whether inhibition of CKB might

account for the loss of spine density and length in brains of

HD mice as reported earlier [165].

We recently reported that in addition to suppressing CKB

in HD brains, reduced levels of CKB protein and transcripts

also occur in hair cells of the cochlea in HD mice (R6/2 and

HdhCAG150) and are associated with hearing impairment in

HD mice [6]. Consistent with the potential importance of CKB

in peripheral tissues, a significant reduction in the CKB pro-

tein was found in the blood buffy coat of premanifest and

manifest HD patients compared to those of age-matched

control subjects, suggesting that CKB might serve as a

peripheral biomarker of HD progression [159].

The detailed mechanism that mediates the suppression

of CKB by mutant Htt is largely uncharacterized. Because

CKB is very sensitive to oxidative stress [156, 166, 167],

and mutant Htt aggregates enhance ROS production in HD

[35, 168], ROS are likely to mediate suppression of CKB

during HD progression. Noting that creatine has antioxidant

Mutant Htt

KCC2

P53

ROS

Nucleus

K+ Cl-

Cytoplasm

CKB

CKMT1
Cr PCr

Cr

CrPCr

ADP ATP

ADPATP

Mitochondria

CKB

Fig. 2 Regulation of brain-type creatine kinase (CKB) in Hunting-

ton’s disease (HD). Potential pathways, which mediate the regulation

of the creatine kinase (CK)/phosphocreatine (PCr) system by mutant

Huntingtin (Htt), are summarized. Both the expression and transcript

levels of CKB are downregulated in HD. Solid lines represent

pathways supported by experimental evidence. Dotted lines indicate

hypothesized pathways. Mutant Htt is known to interact with and

activate p53 [176], which suppresses the CKB promoter [177].

Elevation of reactive oxygen species (ROS) in HD leads to

suppression of CK activity and promotes CKB degradation [178].

Creatine may provide its beneficial effect on CKB expression by

reducing the level of ROS [169]. Creatine also improves mitochon-

drial biogenesis [6, 179]. Reduction of CKB expression in HD might

compromise the functions of its interacting proteins (e.g., the neuronal

K–Cl co-transporter, KCC2) [180]
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properties [169], we recently found that creatine supplemen-

tation significantly rescued the downregulation of CKB in the

cochlea of HD mice (Fig. 2) [6], probably due to feedback

regulation between the CK/PCr system and ROS. Further

investigation is required to evaluate the potential feedback

regulation described above.

Creatine supplementation as treatment

for neurodegenerative diseases

Because impaired cellular energy homeostasis is a common

pathogenic pathway for many degenerative disorders, the

beneficial effects of creatine supplementation have been

extensively tested and proven effective in various animal

models of many degenerative disorders including HD, PD,

and ALS [170]. In HD mice (R6/2, N171-82Q), dietary

creatine supplementation (1–3%) was long shown to delay

disease progression by improving aggregate formation,

weight loss, impaired motor coordination, brain atrophy,

lifespan, and hearing loss [6, 171]. Similarly, in the MPTP-

treated mouse model of PD, orally administrated creatine

(1 % in the diet) protected MPTP-evoked dopamine

depletion and neuronal loss [172]. The beneficial effects of

creatine (1–2 % in the diet) on motor performance and

lifespan were also observed in a mouse model of ALS

[173]. Nonetheless, results from human trials on dietary

creatine supplementation (5–10 g/day) in HD patients have

not been promising to date [174]. Considering the low

permeability of the blood–brain barrier (BBB) to creatine

[175], one possible solution is to further increase dosages

of dietary creatine in human trials. A phase III clinical trial

of high-dose creatine (40 g/day) for HD patients is cur-

rently recruiting participants (CREST-E, http://www.clinic

altrials.gov). In addition, suppression of CKB during the

course of many degenerative diseases (including HD)

inevitably limits the effect of substrate (creatine) supple-

mentation. Future studies that enhance the activity and/or

expression of CKB might greatly facilitate the therapeutic

effectiveness of creatine supplementation.

Concluding remarks

Many neurodegenerative disorders (including AD, PD, and

HD) are protein-misfolding diseases. Despite the tremen-

dous efforts devoted to developing therapeutic interventions,

effective treatment to delay disease progression has yet to be

developed. Recent studies suggest that dysregulation of cel-

lular energy homeostasis is a common feature of many

degenerative disorders (including HD), and thus is an

important pathway as a drug target. The complex role of

AMPK in brains undergoing degeneration, as shown in HD

and AD, call for further studies on the characterization ofT
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AMPK isoform-specific functions and regulation. Results of

those studies should provide necessary insights into the

development of isoform-specific AMPK activators or inhibi-

tors, and potential therapeutic applications of AMPK drugs. It

would also be of great interest to characterize the potential

cross-regulation of the two energy-regulating systems

(AMPK and CK/PCr) in the brain so that a better match

between energy supply and demand can be achieved in

degenerative neurons.
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