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Abstract Following the initial discovery that adipose tis-

sue actively synthesizes and secretes cytokines, obesity-

induced inflammation has been implicated in the etiology of

a host of disease states related to obesity, including cardio-

vascular disease and type II diabetes. Interestingly, a

growing body of evidence similarly implicates sphingolipids

as prime instigators in these same diseases. From the recent

discovery that obesity-related inflammatory pathways

modulate sphingolipid metabolism comes a novel perspec-

tive—sphingolipids may act as the dominant mediators of

deleterious events stemming from obesity-induced inflam-

mation. This paradigm may identify sphingolipids as an

effective target for future therapeutics aimed at ameliorating

diseases associated with chronic inflammation.
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Introduction

Despite an explosion in interventions aimed at holding

back the tide of obesity and improving public health, the

rising trends in its prevalence show little sign of slowing.

The economic and personal toll of obesity is enormous.

Medical costs associated with treating obesity and its

complications are roughly $150 billion annually, and obese

individuals can expect average annual medical expenses to

be approximately $1,500 more than normal-weight persons

[1]. The problem is not merely one of money, however,

considering that obesity is estimated to result in up to

20 years of life lost when compared to the non-obese [2]. If

interventions aimed at averting obesity continue to fail,

trends can be expected to increase with an estimated 2.4

million more adults becoming obese annually, followed

closely by an ever-greater financial burden. The observa-

tion by the ancient Greek physician Hippocrates that

‘‘sudden death is more common in those who are naturally

fat than in the lean’’ astutely describes the increase in

mortality associated with obesity.

Of course, the increased health-related expenses and risk

of mortality are not simply due to the mechanical discom-

forts and limitations that accompany an expanding fat mass.

Obesity not only adversely affects tissue function but also

contributes to an elevated risk of developing several fatal

diseases, such as hypertension, atherosclerosis, type 2 dia-

betes mellitus, and nonalcoholic fatty liver disease [3]. As

such, it is not surprising that extensive efforts have been

devoted to understanding the role of obesity in the etiology of

these prominent diseases. In particular, two deleterious

factors often associated with obesity are implicated in

increasing disease risk—lipotoxicity and inflammation.

Lipotoxicity refers to the ectopic deposition of fat in tissues

not intended as lipid storage sites. Of the myriad of bioactive

lipids in tissues, however, the sphingolipids warrant partic-

ular attention due not only due to being highly correlated

with the degree of obesity, but also implicated in the etiology

of various diseases [4–7]. In addition, inflammation, defined

by elevated levels of proinflammatory cytokines and

increased presence and activity of monocytes/macrophages,

is also present in obesity [8–11]. Interestingly, recent efforts

reveal that these two seemingly distinct characteristics of

obesity, lipotoxicity and inflammation, share a degree of

linearity that might alter our perspective on the mechanism

of inflammation-induced complications in various diseases.
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Thus, it is the intention of this review to explore the role of

sphingolipids in the pathophysiology of some of the promi-

nent diseases associated with obesity-induced inflammation.

Obesity, inflammation, and sphingolipids

Obesity-induced inflammation

Gone are the days when adipose tissue was considered a

passive organ whose exclusive functions are to accumulate

triglycerides in hypertrophied adipocytes during caloric

excess and release these lipids during caloric restriction.

The exploration of obesity and inflammation began in

adipose tissue. From the initial observation that adipose is

capable of synthesizing and releasing tumor necrosis factor

a (TNFa) [12], the total number of adipose-derived mole-

cules (termed ‘‘adipokines’’) has ballooned. Compared to

adipose from lean individuals, adipose tissue from the

obese has increased levels of several inflammatory pro-

teins, such as interleukin-6 (IL-6), iNOS, C-reactive

protein (CRP), monocyte chemotactic protein-1 (MCP-1),

and plasminogen activator inhibitor type-1 (PAI-1), among

others [13–16]. Transcriptional profiling reveals that

inflammatory genes are among the most abundantly regu-

lated in adipose tissue in obesity [17]. However, adipose

tissue is not simply a homogenous collection of adipocytes.

Expanding adipose tissue is accompanied by increased

infiltration of activated macrophages, and, while adipo-

cytes themselves appear to express the cellular machinery

to enable cytokine synthesis and responsiveness [18], these

resident macrophages play a dominant role in adipose-

derived proinflammatory gene expression [19].

The adipokine profile secreted from adipose tissue is

dynamic and is affected by fat mass status (Fig. 1). While

proinflammatory cytokine expression (e.g., TNFa, MCP-1,

IL-1b) is increased with weight gain by fat mass expansion

[12], anti-inflammatory protein expression (e.g., adipo-

nectin, IL-10) is elevated in adipose from lean or increased

with weight loss in the obese [20, 21]. Additionally, cir-

culating and tissue ceramide levels follow a trend similar to

proinflammatory cytokines. Though once considered to be

nothing more than correlative companions [22], we now

know that sphingolipid biosynthesis requires activation of

immune receptors and pathways.

TLR4 and sphingolipids

Recent findings have refuted the old notion that production

of ceramide, the backbone of all higher-order sphingoli-

pids, is exclusively controlled by substrate availability.

Rather, it appears hormonal signals have a powerful

influence to alter ceramide metabolism, resulting in cera-

mide accumulation or degradation. Similar to inflammatory

status in lean and obese, ceramide metabolism and accu-

mulation is altered in the tissues of lean and obese. Both

rodent and human models of obesity have shown an

increase in ceramide levels in a variety of tissues, such as

skeletal muscle, liver, and hypothalamus [7, 23–26]. Also,

paralleling the shift in inflammatory status with weight loss

[11], a reduction in fat mass is associated with a reduction

in tissue and circulating ceramide levels [7, 27, 28]. For

example, Huang et al. [27] found that substantial surgery-

induced weight loss (*25% of body weight) in morbidly

obese humans correlated with a reduction in plasma cera-

mides. However, Dube et al. [29] found that even modest

weight loss (2% body weight) is associated with a signif-

icant drop in ceramide levels.

The parallel changes in inflammatory status and cera-

mide metabolism are not coincidental. We recently found

that the activation of inflammatory pathways is a necessary

event in ceramide biosynthesis, with both saturated fatty

acids and bacterial endotoxins converging on the Toll-like

receptor 4 (TLR4) pathway to induce ceramide accumu-

lation (Fig. 2)[23]. Using mutant mice lacking a functional

TLR4 (C.C2-Tlr4Lps-d), we found that TLR4 is required

for saturated fatty acid- and endotoxin-induced ceramide

biosynthesis in skeletal muscle and liver. Interestingly,

while saturated fatty acids are known to induce both an

inflammatory response and de novo ceramide biosynthesis,

unsaturated fatty acids, which do not activate TLR4, fail to

do both [23]. In addition to saturated fats, lipopolysac-

charide (LPS), a major bacterial membrane lipid and TLR4

ligand, similarly induced ceramide biosynthesis in a TLR4-

dependent manner [23].

TLR4 initiates signaling through the canonical IKKb-

NF-jB pathway. Briefly, upon activation, IKKb phos-

phorylates and marks the NF-jB inhibitor, IjBa, for

degradation, after which NF-jB is liberated and free to

migrate into the nucleus to initiate transcription of various
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Fig. 1 Adipocyte expansion, leading to obesity, is associated with

reduced adiponectin levels and elevated TNFa and ceramide
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cytokines. IKKb has been previously implicated in acting

as a prime mediator of inflammation-induced metabolic

disorders via its inhibitory effects on proximal insulin

signaling [30, 31]. We found that IKKb was a necessary

downstream factor in TLR4-induced ceramide biosynthe-

sis. Not only was IKKb ablation associated with

dramatically reduced ceramides in spite of TLR4 activa-

tion, it was necessary for the fatty acid- and inflammation-

induced increase in transcription of several of the enzymes

involved in de novo ceramide synthesis [23]. Additionally,

diet-induced obese mice treated with the IKKb inhibitor

sodium salicylate fail to accrue ceramides [23].

As mentioned, both saturated fatty acids (SFA) and

bacterial endotoxins appear to activate TLR4, though

whether they activate the receptor via similar or disparate

mechanisms is not clear. The findings that SFA, but not

unsaturated FA, activate TLR4 are widely reported [23,

32–34]. In contrast, Erridge et al. [35] found conflicting

results, reporting that SFA failed to activate TLR4 in

multiple cell types and implicating LPS contamination in

fatty acid preparations as the source of TLR4 activation.

However, this fails to explain the contrasting effects of

SFA compared to unsaturated counterparts, which should

be similarly contaminated [23]. Another argument against

SFA and endotoxins affecting TLR4 via a single mecha-

nism is the different kinetics of TLR4 activation between

the two purported ligands. In exploring the inflammatory

effects of SFA and LPS, Shi et al. [36] observed that orders

of magnitude more SFA are necessary to get a comparable

response seen with LPS, indicating LPS is a far more

potent TLR4 activator, regardless of the mechanism.

Similarly, LPS elicited a significantly greater increase in

NF-jB activation compared to SFA [36]. Additionally,

non-TLR4 mechanisms may explain the ability of SFA to

activate inflammatory pathways [37].

Cytokines and sphingolipids

However, the absence or presence of TLR4 signaling does

not explain every alteration in sphingolipid metabolism in

response to the myriad of proinflammatory or anti-inflam-

matory stimuli. While TNFa and other proinflammatory

cytokines (e.g., IL-1b) can activate de novo ceramide

synthesis [38], likely via increased IKKb-NF-jB action,

they can also exploit a ‘backdoor’. Several proinflamma-

tory cytokines result in ceramide accrual by activating

sphingomyelinase, which mediates the conversion of

sphingomyelin to ceramide. Specifically, TNFa and IL-1b
signaling activates acid and neutral sphingomyelinase

activity, resulting in significant ceramide pooling [39–41].

Considering that sphingomyelin is the dominant membrane

lipid, its role as a source of ceramide is potentially

enormous.

In contrast, adiponectin has long been known to oppose

proinflammatory cytokines. Whereas TNFa activates pro-

inflammatory pathways and induces cell death, adiponectin

inhibits proinflammatory pathways and promotes cell sur-

vival [42, 43]. Importantly, evidence suggests that the

contrasting effects of the quintessential pro- and anti-

inflammatory cytokines TNFa and adiponectin, respec-

tively, can be explained by how they modulate ceramide

metabolism (Fig. 3). Holland et al. [44] recently demon-

strated that adiponectin receptors contain inherent

ceramidase activity [45], resulting in the degradation of

ceramide to form sphingosine [46]. Sphingosine, in turn, is

phosphorylated by sphingosine kinase, forming sphingo-

sine 1-phosphate (S1P). Of the several metabolic fates

available to ceramide, its deacylation and phosphorylation

(via ceramidase and sphingosine kinase, respectively) to
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Fig. 2 The TLR4-induced activation of ceramide biosynthesis rep-

resents a common pathway between lipotoxicity- and inflammation-

induced insulin resistance. Saturated fatty acids (SFA); lipopolysac-

charide (LPS); tumor necrosis factor (TNF) a; inhibitor of jB kinase

(IKK) b; sphingomyelinase (SMAase)
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Fig. 3 TNFa induces ceramide biosynthesis and accrual through

multiple mechanisms, whereas adiponectin activates ceramide deg-

radation and eventual formation of S1P. Ceramide (Cer); sphingosine

1-phosphoate (S1P)
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form S1P is intriguing, inasmuch as ceramide and S1P

exert completely different and even antagonistic actions. In

stark contrast to ceramide, S1P has been repeatedly shown

to activate Akt and promote cell survival and growth, even

directly antagonizing ceramide [46–50]. Indeed, S1P has

been shown to reduce ceramide synthesis by inhibiting de

novo enzymatic activity [51], which gives rise to the theory

that ceramide and S1P constitute a rheostat system [52].

Interestingly, S1P may be a critical mediator of adipo-

nectin’s anti-inflammatory profile. S1P has been shown to

inhibit actions of pro-inflammatory cytokines [53] and

regulate inflammation-related gene expression [54].

Sphingolipids in the pathophysiology of obesity-induced

inflammation

The inflammatory state associated with obesity is impli-

cated in several clinically important complications.

Similarly, a growing body of literature suggests that cera-

mide and other sphingolipids are also present in these

disease states and may play a prominent role in the etiol-

ogy. In light of findings suggesting that sphingolipid

metabolism is affected by inflammatory profile [23, 44], it

seems likely that sphingolipids are downstream effectors of

obesity-induced inflammation and are critical mediators of

inflammation-associated diseases. This section will high-

light the role of sphingolipids in the etiology of several

diseases associated with obesity-induced inflammation

(Fig. 4).

Cardiovascular disease

A role for inflammation in the etiology of cardiovascular

disease, a term used to collectively describe diseases that

involve the heart or blood vessels, has become so well

established over the past two decades that a number of

inflammatory markers are now measured as potential pre-

dictors of prevalent or incident cardiovascular disease [55].

Additionally, anti-inflammatory medications are now used

to reduce the risk of cardiovascular disease [55, 56].

Similarly, sphingolipids have been shown to play a role in

the regulation of vascular growth and tone, thus impacting

cardiovascular function. We will explore the impact of

sphingolipids in three prominent cardiovascular disorders

commonly associated with obesity-induced inflammation,

namely hypertension, atherosclerosis, and cardiomyopathy.

Hypertension

Hypertension, identified as clinically elevated blood pres-

sure, is a major risk factor for cardiac and cerebrovascular

disease. Noting the vascular effects of sphingolipids,

Spijkers et al. [57] sought to determine the role of sphin-

golipids in essential hypertension. They found that shifting

the ceramide/S1P ratio towards ceramide dominance by

administering a sphingosine kinase inhibitor or by exoge-

nous sphingomyelinase induced pronounced endothelium-

dependent contractions in isolated carotid arteries. Addi-

tionally, in vivo administration of a sphingosine kinase

inhibitor resulted in a marked rise in blood pressure in

spontaneous hypertensive rats, and, further implicating

ceramide, hypertensive rats have significantly increased

levels of total ceramides in arterial tissues. Moreover, both

hypertensive rats and humans have elevated plasma cera-

mide levels [57]. Similarly, in an effort to decipher the

genetics of hypertension, Fenger et al. [58] conducted a

genomic analysis focusing on components of ceramide

metabolism and concluded that the ceramide/S1P rheostat

has a substantial influence on blood pressure regulation.

Interestingly, they found that genes involved in de novo

ceramide synthesis, rather than ceramide formation via

sphingomyelinase, were the most important sources of

ceramide in a hypertensive population.

Atherosclerosis

Several early reports have cited a consistent positive cor-

relation between circulating sphingolipids and occurrence

of cardiovascular complications [59–62]. In fact, the cor-

relation is so consistently observed that sphingomyelin

levels are considered an independent risk factor for coro-

nary artery disease [63]. In support of these observations,

recent findings have established that sphingolipids indeed

play a causative role in the etiology of atherosclerosis. Park

et al. [64] found that treating apoE KO mice, which

develop advanced atherosclerosis and have elevated cir-

culating sphingolipids [59], with an inhibitor of de novo

ceramide synthesis, myriocin, not only reduced plasma
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Fig. 4 Ceramide has been shown to cause virtually all of the

pathological states elicited by obesity-induced inflammation
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ceramide and sphingomyelin, but also total plasma cho-

lesterol and triglycerides. Further, inhibition of ceramide

synthesis in the KO mice resulted in a substantial reduction

in atherosclerotic lesion area in the aortic root and slowed

the progression of atherosclerosis in the brachiocephalic

artery. Macrophage content in the aortic root was similarly

reduced in myriocin-treated mice [59]. Interestingly, inhi-

bition of de novo ceramide synthesis also results in

increased hepatic apoA-I synthesis and elevated circulating

levels of favorable HDL cholesterol [65]. Similar to

treatments using inhibitors of ceramide synthesis, the use

of a myriocin-based drug FTY720, an S1P homologue, also

inhibits atherosclerosis [66].

Underlining the connection between inflammation and

sphingolipids, LDL receptor KO mice that lack the ability

to generate sphingomyelin in macrophages, the archetypal

immune cell, have decreased atherosclerotic lesions in the

entire aorta. Moreover, plaque morphology analysis from

brachiocephalic arteries of LDL receptor KO mice reveal

reduced necrotic core area [67].

Cardiomyopathy

Like most cardiovascular complications, cardiomyopathy,

or weakening of the heart, has strong ties to inflammation

[68, 69]. However, inflammation per se may be a sufficient,

but unnecessary factor in cardiomyopathy etiology. To

tease out the role of inflammation versus the inflammation-

related factor NF-jB, Kawamura et al. [70] blocked the

activation of cardiac NF-jB by crossing transgenic mice

harboring cardiac-specific TNFa overexpression with

mutant mice carrying a disrupted NF-jB subunit. Inter-

estingly, they found that while NF-jB blockade did not

ameliorate myocardial inflammation as determined by

inflammatory cell infiltration, it significantly improved

cardiac function and survival, hinting that the classic

inflammation-immune response is less important than the

activation of NF-jB in cardiomyopathy. Combined with

the separate observation that TLR4 deficiency protects

against cardiomyopathy [63], and the fact that TLR4 and

NF-jB are regulators of de novo sphingolipid synthesis

[23], these findings may suggest that a product(s) of

inflammation, rather than inflammation per se, is respon-

sible for the inflammation-induced cardiomyopathy.

An oft-used rodent model of cardiomyopathy is the

cardiomyocyte overexpression of a glycosylphatidylinositol

membrane-anchored form of lipoprotein lipase (LpLGPI).

Park et al. [63] explored the role of ceramide in this model

by (a) crossing the LpLGPI mouse with a heterozygous

deletion of LCB1, a SPT subunit, and (b) treating LpLGPI

mice with myriocin. In addition to finding that the hearts

from LpLGPI mice contained 45% more ceramide than

control levels, they found that both genetic (LpLGPI-LCB1

cross) and pharmacological (myriocin) inhibition of cera-

mide synthesis improves cardiac function and reduces

expression of heart failure markers [63].

Non-alcoholic fatty liver disease

Non-alcoholic fatty liver disease (NAFLD) is defined as fat

accumulation in excess of 5 to 10% of liver weight [71].

While seemingly benign at onset, NAFLD, or hepatic ste-

atosis, can develop into considerably less benign

conditions, such as steatohepatitis, cirrhosis, and even

hepatocellular carcinoma [72, 73]. In fact, NALFD is the

most common cause of liver dysfunction in the United

States [72].

A large part of NALFD’s prevalence is its association

with obesity. The hyperlipidemia and chronic inflammation

associated with obesity impact NAFLD risk. Although

lipid accumulation is the hallmark of early NAFLD, latter

stages are marked by elevated inflammation [74]. Patients

with NALFD have elevated TNFa levels compared to

obese and non-obese controls [75], and TNFa receptor

level and TNFa gene expression are increased in the livers

of those with NAFLD when compared to healthy livers

[76]. In contrast, adiponectin levels are reduced in patients

with NAFLD [75]. Moreover, adiponectin transcript

expression in higher-fat livers is negatively associated with

hepatic ceramides and sphingomyelinase transcript levels

[22]. By investigating adiponectin and its receptors, Peng

et al. [77] found that circulating adiponectin was decreased

in diet-induced obese (DIO) mice compared to lean con-

trols, and that DIO mice have dramatically reduced hepatic

expression of adipoR2, the predominant adiponectin

receptor in the liver. Similar examinations in humans have

revealed comparable results—a reduction in hepatic

adiponectin and adipoR2 expression with advancing stea-

tosis [78, 79].

Considering the contrasting presence of TNFa and

adiponectin in NAFLD, and given that TLR4 has been

implicated in the etiology of NAFLD complications [80], it is

not surprising that modulation of sphingolipid metabolism

impacts NAFLD. Memon et al. [81] observed that LPS

treatments, a TLR4 activator, resulted in a twofold increase

in hepatic SPT gene expression and enzyme activity, which

was supported by a 75 and 200% increase in hepatic sphin-

gomyelin and ceramide, respectively. Further, they found

that IL-1b injection increased hepatic SPT transcription and

activity in vivo and both IL-1b and TNFa induced SPT

transcript levels in cultured hepatocytes [81]. Additionally,

SPT inhibition with myriocin results in a significant reduc-

tion in hepatic triglycerides in DIO mice [82].

In addition to implicating the de novo ceramide

synthesis pathway, several groups have explored the role

of the salvage pathway in NAFLD, where ceramide is
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synthesized from sphingomyelin (SM) via sphingomyeli-

nase (SMase). Deevska et al. [83] demonstrated that mice

lacking acid SMase and functional LDL receptors are

protected from diet-induced hepatic steatosis when com-

pared to littermates with functional acid SMase. Moreover,

inhibition of SMase in palmitic acid-treated hepatocytes

exhibited significantly reduced triglyceride levels com-

pared to untreated controls, suggesting a role for SMase in

mediating steatosis in response to elevated fatty acids in

vivo [83]. SMase is mediated by numerous stimuli,

including TNFa [84–90], which induces SMase by binding

the p55 TNFa receptor (also known as TNF type 1

receptor)[91]. This is noteworthy, given that p55 TNFR

KO mice are resistant to diet-induced steatosis and liver

injury [92].

Insulin resistance

The development of the concept that obesity-induced

inflammation mediates disease onset started with a pivotal

publication by Hotamisligil et al. [9], demonstrating that

adipose-released cytokines inhibit insulin signaling. Insulin

resistance mediates a surplus of diseases, including car-

diovascular disease [93], type II diabetes, and even some

cancers [94, 95]. Hence, understanding the etiology of

insulin resistance with regards to inflammatory pathways is

intensely pursued.

IKKb

Following their novel observation that adipose-secreted

TNFa inhibits insulin signaling [9], Hotamisligil et al. [96]

found that the molecular mechanisms linking TNFa to

insulin resistance involved serine phosphorylation of

insulin receptor substrate (IRS)-1, inhibiting normal tyro-

sine phosphorylation and reducing IRS-1 action. This was

later revealed to be through the actions of the serine kinase

inhibitor of jB kinase-b (IKK-b) that phosphorylates IRS-

1 and impairs the ability of IRS-1 to associate with the

insulin receptor, which subsequently inhibits insulin-stim-

ulated tyrosine phosphorylation and activation of IRS-1-

associated PI3-kinase [11, 97].

The realization that IKKb mediates insulin resistance

elicited a rediscovery of insulin-sensitizing therapies. Over

a century ago, Williamson et al. [98] showed that salicylate

treatment reduced symptoms associated with diabetes. This

was later further confirmed when Reid et al. [99] demon-

strated that a regimen of aspirin improved glucose

tolerance in diabetic patients. More recently, salicylate was

found to inhibit IKKb activity [100] and the Shoelson lab

was instrumental in establishing that salicylates, via IKKb
disruption, were effective in preventing inflammation-

induced insulin resistance [101].

Research has continued to support a role for IKKb in

mediating inflammation-induced insulin resistance, though

the originally proposed mechanism, namely serine phos-

phorylation of IRS-1, is debated [102]. A novel perspective

to IKKb-induced insulin resistance is the observation that

IKKb regulates ceramide synthesis. In murine myotubes

overexpressing a kinase dead IKKb, ceramide levels are

dramatically reduced compared to wild-type cells, and the

lack of functional IKKb prevents ceramide biosynthesis in

response to common insults, like saturated fatty acids [23].

This was found to be a result of IKKb-NF-jB-mediated

transcription of enzymes involved in de novo ceramide

biosynthesis, including SPT2, various ceramide synthase

isoforms, and dihydroceramide desaturase 1. Additionally,

further evidence for ceramide as a mediator of IKKb-

induced insulin resistance comes from treatment of DIO

mice with sodium salicylate, an IKKb inhibitor. Sodium

salicylate-treated mice fail to accrue ceramide in skeletal

muscle and liver and remain insulin sensitivity despite DIO

[23].

Toll-like receptor 4

Obesity is the most important known risk factor contrib-

uting to insulin resistance [103]. As mentioned earlier,

efforts to identify the molecular mechanisms to explain

obesity-induced insulin resistance have revealed lipotox-

icity and inflammation as two prominent explanations

linking obesity to insulin resistance. A milestone was

reached when the Flier laboratory [36] revealed that TLR4,

a pattern-recognition receptor that plays a critical role in

innate immunity by activating the canonical NF-jB

inflammatory pathway, is a carrefour of lipid- and

inflammation-induced insulin resistance. They found that

saturated fatty acids, which are elevated in obesity, activate

TLR4 and evoke a TLR4-dependent inflammatory

response. Additionally, mice lacking TLR4 were protected

from acute lipid- and chronic HFD-induced insulin resis-

tance, despite weight gain [36]. Similar to earlier reports,

IRS-1 serine phosphorylation was increased in insulin-

resistant WT mice, but not in insulin-sensitive TLR4-

deficient mice. However, as with IKKb, accumulation of

ceramide might provide an alternate explanation to TLR4-

incuced insulin resistance.

An association between TLR4 and ceramides has long

been known, showing that TLR4 agonists activate cera-

mide-generating pathways, including de novo synthesis and

sphingomyelin salvage [104–106]. Similar to Flier’s

observations [36], we found that mice lacking functional

TLR4 were protected from a variety of insulin-desensitizing

interventions, such as acute lipid infusions, diet-induced

obesity, and LPS infusions. Additionally, we found that

TLR4 mutant mice, in contrast to controls, failed to accrue

2140 B. T. Bikman

123



ceramides in response to HFD in insulin-responsive tissues,

like the muscle, liver, and hypothalamus. Therefore, we

posit that TLR4 stimulates ceramide synthesis, which rep-

resents the common molecular mediator behind lipid- and

inflammation-induced insulin resistance.

Adiponectin

In contrast to many of its fellow adipose-secreted hormones,

adiponectin is known for its anti-inflammatory and insulin-

sensitizing functions. Similarly, rather than increasing with

obesity, like many adipokines, adiponectin secretion is

reduced with fat mass expansion [107] and increased with

weight loss [21]. It is therefore little surprise that adipo-

nectin reverses insulin resistance in obesity. Yamauchi et al.

[108] found that obese insulin-resistant mice experienced

significant improvements in insulin sensitivity and glucose

tolerance following adiponectin treatment.

For some time, the positive effects of adiponectin

treatment were thought to be mediated almost entirely by

its activation of AMP-activated protein kinase

(AMPK)[109], though this is not necessarily the case [110].

Adiponectin research took a significant step forward when

it was found that adiponectin receptors contain inherent

ceramidase activity, degrading ceramide and forming

sphingosine and S1P [45, 111]. Indeed, it appears that

many of adiponectin’s beneficial effects are mediated by

accumulation of S1P, including the activation of AMPK

[44]. Unsurprisingly, where its proinflammatory counter-

parts inhibit insulin sensitivity, the anti-inflammatory

adiponectin improves insulin sensitivity. In treating two

models of obesity-induced insulin resistance with adipo-

nectin, Holland et al. [44] found that the usual

accumulation of tissue ceramides evident in Lepob/ob and

HFD-fed mice was conspicuously absent, and the reduction

in ceramides was associated with a significant improve-

ment in whole-body insulin sensitivity in both models.

Moreover, tissue ceramide levels in disparate adiponectin

models (transgenic overexpression or adiponectin-null

mice) reveal that adiponectin function is inversely corre-

lated with ceramide levels, and reduced ceramides convey

protection against insulin resistance [44].

Given the widely acknowledged benefits of AMPK

activation, pharmacological activators of AMPK are

actively studied. In particular, metformin, the most widely

prescribed anti-diabetic drug, activates AMPK, which has

been shown to potently inhibit inflammatory mediators [30,

112–114]. Moreover, AMPK inhibits de novo ceramide

synthesis in astrocytes [115] and myotubes (Bikman BT,

unpublished observation) via SPT inhibition. However, as

is the case with adiponectin, it is yet unknown whether the

beneficial effects of metformin-induced AMPK activation

require the subsequent actions of S1P [44].

Non-ceramide sphingolipids

While most research centered on sphingolipids and insulin

resistance has focused on ceramides as the dominant sphin-

golipid responsible for insulin resistance, atherosclerosis,

etc., caution is required. Because the majority of interven-

tions used to explore ceramides as a mediator of insulin

resistance have used inhibitors of de novo sphingolipid

synthesis, it is likely that all sphingolipids downstream of

ceramide are also reduced and, hence, may be important

mediators of effects assigned exclusively to ceramide.

Indeed, evidence exists to support a role for both glucosyl-

ceramides [116] and sphingomyelin [117] as necessary for a

host of health complications, including insulin resistance and

NAFLD. However, while other sphingolipids are clearly

capable of inducing deleterious consequences, and indeed

may be the prime sphingolipids mediating these effects,

there is somewhat conflicted evidence concerning these

lipids and their responsiveness to inflammatory signals

(Fig. 5). The sphingomyelin-degrading actions of TNFa and

other inflammatory cytokines via sphingomyelinase are well

established [39–41] and covered above (See ‘‘Cytokines and

sphingolipids’’). The data surrounding glucosylceramides is

less clear. While we and others have shown that TLR4

activation in macrophages elicits an increase in glucosyl-

ceramides [23, 105], unlike ceramides, this effect is not

observed in other cell types or whole tissues (e.g., myocytes

or whole muscle)[23]. However, given that macrophages

reside in tissues that play a large role in metabolic function

(e.g., muscle and liver), this may prove to be an important

factor. Nevertheless, until the effects of macrophage-derived

sphingolipids are more clearly understood, it is unknown

whether inflammation-induced macrophage-derived gluco-

sylceramides mediate deleterious metabolic outcomes.

Ceramides and inflammation

Although the majority of research, and the paradigm of this

review, indicates that inflammatory signals activate cera-

mide biosynthesis, a conflicting perspective exists. After

observing that the nucleotide-binding domain, leucine-rich-

containing family, pyrin domain-containing-3 (Nlrp3) in-

flammasome, a Nod-like receptor, correlated with degree

of obesity-induced insulin resistance, Vandanmagsar et al.

[118] found that ablation of the Nlrp3 inflammasome pre-

vents HFD-induced insulin resistance. Interestingly, they

report that ceramide activates the Nlrp3 inflammasome,

though it is noteworthy that ceramide is not used alone in

treatments, but only in combination with LPS [118]. This

combination of lipid and LPS requires the reported results

to be viewed with an added measure of caution given the

synergistic amplification of the inflammatory response in

cells exposed to SFA and LPS together compared to either
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insult alone [119], which may be a result of a lipid-induced

TLR4 dimerization [120].

Conclusions

Since its initial discovery, obesity-induced inflammation

has lead to an eruption in research implicating inflamma-

tory pathways in the etiology of several prominent obesity-

related diseases. The purpose of this review has been to

highlight the role of inflammatory pathways in sphingo-

lipid biosynthesis and, to a degree, establish a role for

sphingolipids as critical mediators of many of the delete-

rious effects of obesity-induced inflammation. While other

mechanisms may exist, it is clear that sphingolipids play

important roles in the etiology and lethality of obesity-

related disease states commonly linked with inflammation,

namely cardiovascular complications, NAFLD, and insulin

resistance. Future efforts will not only further elucidate the

role of sphingolipids in the pathophysiology of obesity-

induced inflammation, but also likely find even greater

obesity-related disease states mediated by sphingolipids.
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