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Abstract The PTEN gene is one of the most frequently

inactivated tumor suppressor genes in sporadic cancers.

Inactivating mutations and deletions of the PTEN gene are

found in many types of cancers, including melanoma.

However, the exact frequency of PTEN alteration in mel-

anoma is unknown. In this study, we comprehensively

reviewed 16 studies on PTEN genetic changes in mela-

noma cell lines and tumor biopsies. To date, 76 PTEN

alterations have been reported in melanoma cell lines and

38 PTEN alterations in melanoma biopsies. The rate of

PTEN alterations in melanoma cell lines, primary mela-

noma, and metastatic melanoma is 27.6, 7.3, and 15.2%,

respectively. Three mutations were found in both mela-

noma cell lines and biopsies. These mutations are scattered

throughout the gene, with the exception of exon 9. A

mutational hot spot is found in exon 5, which encodes the

phosphatase activity domain. Evidence is also presented to

suggest that numerous homozygous deletions and missense

variants exist in the PTEN transcript. Studying PTEN

functions and implications of its mutations and other genes

could provide insights into the precise nature of PTEN

function in melanoma and additional targets for new ther-

apeutic approaches.

Keywords PTEN � Melanoma � Mutation � Deletion �
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Introduction

Phosphatase and tensin homolog (PTEN) is 47-kDa protein

and was first identified as a candidate tumor suppressor

gene in 1997 after its positional cloning from a region of

chromosome 10q23 known to exhibit loss in a wide spec-

trum of tumor types [1–3]. Since then, mutations of PTEN

have been detected in a variety of human cancers including

breast, thyroid, glioblastomas, endometrial, prostate, and

melanoma [4–14]. Inherited mutations in this gene also

predispose carriers to develop Cowden’s disease, a herita-

ble cancer risk syndrome, and several related conditions

[15–17]. PTEN is classified as a tumor suppressor because

its activity is lost by deletion, mutation, or through epige-

netic changes [18–21]. Molecular mechanistic studies of

PTEN have provided a great deal of insight into the basis

for its involvement in tumor suppression. The PTEN pro-

tein has both protein phosphatase and lipid phosphatase

activity [22, 23]. Although the tumor suppressive function

of PTEN has mainly been attributed to its lipid phosphatase

activity, a role for PTEN protein phosphatase activity in

cell-cycle regulation and inhibition of cell invasion in vitro

has been suggested as well [24–28]. Loss of PTEN function

seems to be responsible for many of the phenotypic fea-

tures of melanoma, thus PTEN may serve as a potential

target for drug development. However, most types of

tumors with PTEN alteration also carry other genetic

changes, making the role of PTEN more ambiguous. As

discussed below, PTEN homozygous deletions and mis-

sense mutations alone is sufficient to cause tumorigenesis

in certain tissues but not in others. However, even when
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mutation of PTEN alone has minimal effects, it frequently

contributes to tumorigenesis in the context of other genetic

alterations. In this review, signaling pathways mediated by

the lipid and protein phosphatase activities of PTEN, and

the implication of PTEN loss in melanoma tumorigenesis,

will be discussed.

PTEN, a tumor suppressor gene

The most convincing initial insight into the potential

involvement of chromosome 10 in melanoma was reported

by Fountain et al. [29]. Many Studies on the relative fre-

quency of chromosomal aberrations revealed that several

chromosomes were more commonly altered than chromo-

some 10; however, chromosomes 9 and 10 were unique in

their early alteration and dysplastic lesions. The presence

of a tumor suppressor gene(s) on chromosome 10q had

long been suspected, since loss of heterozygosity (LOH) on

regions of chromosome 10q was observed frequently in a

number of cancer types [30–34]. In melanoma, loss of

chromosome 10 was first reported by Parmiter et al. [35].

Since then, LOH of chromosome 10q has been studied

extensively and a frequency of 30–50% has been found in

melanoma, suggesting that the presence of tumor sup-

pressor gene(s) on chromosome 10q is critical for

inhibiting melanoma tumorigenesis [32, 33]. However,

LOH studies in melanoma did not eventually yield the

identification of a tumor suppressor gene on chromosome

10q. In 1997, by homozygous deletion mapping in gliomas

and breast tumors, PTEN was finally identified as a can-

didate tumor suppressor gene on chromosome 10q. That

year, three research groups independently reported the

cloning of PTEN, MMAC1 and TEP1, which turned out to

be the same tumor suppressor gene. In 1997, Li et al. [1]

first isolated PTEN by mapping of homozygous deletions

on chromosome 10q23 in breast tumors. The predicted

PTEN protein contained the phosphatase consensus motif

and had *40% homology with the focal adhesion protein

tensin. It was named PTEN (phosphatase and tensin

homolog deleted in from chromosome ten). Similarly,

MMAC1 was cloned based on homozygous deletion studies

in glioma tumor cells by Steck and colleagues [2]. Coding

region mutations of this gene were observed in numerous

cancer types including glioblastomas, prostate, kidney and

breast cancers, thus it was named MMAC1 (mutated in

multiple advanced cancers). TEP1, on the other hand, was

identified as a protein tyrosine phosphatase by searching

Genebank sequences containing phosphatase consensus

motifs. The expression level of this gene was found to be

altered in a number of tumor cells and it was rapidly

downregulated by transforming growth factor-b (TGF-b).

Therefore, it was called TEP1 (TGF-b-regulated and

epithelial cell-enriched phosphatase) [3]. Sequence identity

between PTEN, MMAC1, and TEP1 confirmed that they

were of the same gene. Subsequently, a high frequency of

PTEN mutations have been reported in malignant mela-

noma, squamous cell carcinoma, endometrial, and thyroid

tumors in addition to glioma, prostate, and breast tumors

[4, 5, 7, 36]. These findings placed PTEN among the most

mutated tumor suppressor genes in human cancers.

PTEN signaling

The PTEN gene spans 105 kb and includes nine exons

(Fig. 1a). PTEN was first predicted to be a protein phos-

phatase since it contained (I/V)-H-C-X-A-G-X-X-R-(S/T)-

G, the critical motif found in protein tyrosine phosphatases

(PTPs) and dual-specificity phosphatases (DSPs) [1, 37,

38]. However, the recombinant PTEN protein exhibited

higher catalytic activity towards negatively charged

phosphorylated polypeptides than phosphoproteins

[39]. Phosphatidylinositol (3,4,5)-tris-phosphate [PtdIns

(3,4,5)P3] was then identified as a substrate of PTEN [40].

In 1999, the crystal structure of PTEN was unraveled,

showing an overall phosphatase domain structure similar to

that of the DSP Vaccinia Hi-related phosphatase (VHR).

However, the active site pocket of PTEN appeared deeper

and wider, and two basic residues (Lys125 and Lys128)

were localized within the active site loop, which were

absent in PTP and VHR [41]. It was suggested that PTEN,

as a phosphatase, might have preference towards

PtdIns(3,4,5)P3 and highly acidic residues present in

polypeptides, although it could use both protein and lipid

as substrates.

As a phosphatase, PTEN acts to remove phosphates

from lipids. The best described substrate of PTEN is

PtdIns(3,4,5)P3. PTEN removes the phosphate in

PtdIns(3,4,5)P3 to generate PtdIns(4,5)P2. PTEN serves to

counter-balance the effects of phosphoinositide 30 kinase

(PI3K), which normally adds a phosphate to PtdIns(4,5)P2

to generate PtdIns(3,4,5)P3. PtdIns(3,4,5)P3 recruits kinases

such as phosphoinositide-dependent kinase 1 (PDK1),

which in turn phosphorylates Akt that phosphorylates other

downstream proteins involved in regulation of apoptosis

and cell-cycle progression. PTEN removal of the phosphate

from PtdIns(3,4,5)P3 inhibits this pathway by preventing

localization of proteins with pleckstrin homology domains

to the cell membrane. In addition to this activity, other

functions could be affected following alterations (deletion/

mutation) of the PTEN gene.

The PTEN tumor suppressor function requires both the

phosphatase and the lipid membrane-binding domains

(Fig. 1b), and the lipid phosphatase activity of PTEN

dephosphorylates the 3-phosphoinositide products of PI3K.
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3-phosphoinositides can activate important survival kinases,

such as PDK1 and Akt, as well as other proteins that are not

kinases. PTEN therefore negatively regulates the Akt path-

way, leading to decreased phosphorylation of Akt substrates

such as tuberous sclerosis 2 (TSC2) and PRAS40 (encoded by

AKT1S1) that control mTOR activity, p27 (encoded by

CDKN1B), p21 (encoded by CDKN1A), glycogen synthase

kinase 3 (GSK3a and GSK3b), BCL-2-associated agonist of

cell death (BAD), apoptosis signal regulating kinase 1 (ASK1,

also known as MAP3K5), WT1 regulator PAWR (also known

as PAR4) and CHK1, as well as members of the forkhead

transcription factor family (for example, FOXO1, FOXO3,

and FOXO4) [42]. Changes in phosphorylation alter the

activity and/or localization of these proteins, which in turn

affects processes such as cell cycle progression, metabolism,

migration, apoptosis, transcription, and translation.

Mechanism of PTEN regulation

There are multiple mechanisms for the regulation of PTEN,

including transcription, mRNA stability, microRNA

(miRNA) targeting, translation, and protein stability. PTEN

is transcriptionally silenced by promoter methylation in

endometrial, gastric, lung, thyroid, breast and ovarian

tumors, as well as glioblastoma [43–49]. In glioma, lung,

and prostate cancer, PTEN expression is decreased by

overexpression of miRNA-26a (miR-26a), miR-106b-25
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Fig. 1 Schematic representation of PTEN gene and genetic altera-

tions identified in melanoma. a Structural representation of PTEN
with 9 exons represented by boxes. The exon 5 represents the hot spot

of mutations and the different numbers show the mutated codons. The

vertical lines correspond to the localization of PTEN mutations in the

exons and the height of the lines indicates the mutation frequencies.

The horizontal lines refer to different extent of deletions. b Schematic

representation of PTEN protein and its biological functions. PTEN

contains two key domains: the phosphatase domain (in red; amino

acids 14–185), which possesses lipid and protein phosphatase

activities; and the C2 domain (in grey; amino acids 190–350), which

is responsible for lipid binding and membrane localization. There are

two other important domains; the carboxy-terminal region (amino

acids 351–400), which is involved in cell migration and regulation of

protein stability; and the PDZ-binding domain (in yellow; amino acids

401–403), which is important for protein–protein interactions
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cluster, or the miR-21 [50–52]. PTEN can also be post-

translationally regulated by phosphorylation, ubiquityla-

tion, oxidation, acetylation, proteosomal degradation, and

subcellular localization [53, 54]. Although many of these

post-translational changes in PTEN have been shown to

alter various cellular phenotypes in vitro, most have not

been validated as key regulators of PTEN in human cancers

or mouse models. PTEN amino acids Lys13 and Lys289

are monoubiquitinated, which leads to nuclear import in

vitro, and mutations at Lys289 have been observed in

Cowden syndrome and associated with nuclear exclusion

[55]. Recently, a regulatory role has been reported by

Poliseno et al., [56] showing that mRNA molecules from

PTENP1 (PTEN pseudogene) can act as competitive

endogenous RNA sequestering miRNA molecules. In a

given tissue, there would be a balance in the level of

expression from both PTEN and PTENP1; if PTENP1

transcription decreases, more miRNAs are able to target

PTEN. On the other hand, an increase in PTENP1 tran-

scription implies that less miRNA will target PTEN.

Therefore, PTENP1 indirectly regulates PTEN by com-

peting for binding to the miRNA. In conclusion, PTENP1

transcripts can act as indirect post-transcriptional regula-

tors decoding miRNAs that target the PTEN gene.

However, the role of PTENP1 in disease (tumorigenesis, in

particular) has not been proven.

Other criteria for PTEN regulation is the importance of its

gene dosage in tumorigenesis events. Indeed, a generated

complete or partial loss of PTEN knockout mice allowed to

understand its tumor suppressive activity in specific cells

and/or tissues in vivo, [57]. Using mouse genetic engineer-

ing, several studies have contributed to show the impact of

partial PTEN level reduction in cancer. A number of cancers,

including mammary, prostate, and uterine were found in

PTEN heterozygous mice [58–60]. Also, studies on knock-

out mice showed that complete PTEN loss results in

exhaustion of the hematopoietic stem cell compartment prior

to leukemia development [61, 62] or a novel cellular senes-

cence program [63]. As BRAF mutation induces senescence

in melanocytes, a process that is important for melanoma-

genesis, the cooperation between PTEN and BRAF on

cellular senescence warrants further investigation.

PTEN, a mutated gene in human cancers

Numerous mutations have been reported throughout this

gene (Fig. 1a). Mutations resulting in the loss of function

or reduced levels of PTEN, as well as PTEN deletions or

alteration are found in many sporadic tumors [64]. PTEN

mutations are found throughout most of the PTEN coding

region, with the exception of exon 9, which encodes the

carboxy-terminal 63 amino acids [65]; more than 40%

occur within exon 5, which encodes the phosphatase

domain [65]. Allelic or total deletion of PTEN is a frequent

occurrence in cancers such as breast, prostate cancer, and

melanoma. A subset of patients with melanoma carries

mutations in the PTEN promoter or in potential splice

donor and acceptor sites [5, 66–69]. Splicing alterations

can lead to exon skipping that alters PTEN functions. In

mice, decreasing PTEN level correlates with increasing

tumor susceptibility [70, 71]. This suggests that reduced

levels of normal PTEN are insufficient for its tumor sup-

pressor function and raises the possibility that reduction of

PTEN activity could be an important driving mechanism

for cancer.

PTEN mutations have been extensively characterized and

found in three linked autosomal dominant cancer predispo-

sition syndromes: Cowden’s disease (CD), Lhermitte–

Duclos disease, and Bannayan-Zonana syndrome. These

cancer syndromes share similar phenotypic characteristics

including mental retardation, gastrointestinal hamartomas,

thyroid adenomas, breast fibroadenomas, macrocephaly, and

mucocutaneous lesions [72, 73]. Over 80% of patients with

CD harbored germline PTEN mutations. LOH studies in 20

hamartomas using markers flanking and within PTEN

showed that wild-type PTEN locus was indeed lost in two

breast fibroadenomas, one thyroid adenoma, and one pul-

monary hamartoma, confirming that PTEN functions as a

tumor suppressor gene in CD [74]. Somatic PTEN alteration

is common in many sporadic tumor types [75]. Various tis-

sue-specific and/or inducible homozygous deletions of

PTEN have been generated in mice to model sporadic PTEN

loss in tumorigenesis. In the endometrium [76], mammary

gland [77], prostate [78], and in T cells [79], homozygous

deletion of PTEN led to rapid tumor formation in the targeted

tissue. Similarly, PTEN-deficient mice developed tumors in

the liver [80], bladder [81], and lung [82]. By contrast, when

PTEN was deleted the intestine [83], no malignant tumors

developed, although intestinal polyps were common, as

observed in Cowden syndrome. Loss of other tumor sup-

pressors or the activation of oncogenes can nonetheless

combine with PTEN loss to cause cancer in these organs.

PTEN mutations in melanoma

PTEN mutations in melanoma were reported shortly after

its cloning. Initial studies demonstrated a mutation rate of

*30–40% in melanoma cell lines and *10% in primary

melanomas [5, 66]. Functional studies supported the

hypothesis that PTEN played an important role in mela-

noma. Indeed, in PTEN-deficient melanoma cells, ectopic

expression of PTEN was able to reduce melanoma tumor-

igenicity and metastasis [3, 84], implicating PTEN as a

critical tumor suppressor in melanoma tumorigenesis.

1478 A.-H. Aguissa-Touré, G. Li
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To elucidate the role of PTEN loss in melanoma tumori-

genesis, a thorough understanding of the functions of

PTEN on the structural/molecular level and PTEN-medi-

ated signaling events is necessary.

The PTEN mutations are scattered along the length of

the gene, with the exception of exon 9 (no mutation

reported). A mutational hot spot is found in exon 5 (33%),

which encodes the phosphatase catalytic core motif

(Fig. 1), and recurrent mutations are also found at CpG

dinucleotides suggesting deamination-induced mutations.

The genetic alterations included point missense mutations,

insertions, splice site mutations, small and gross deletions

of the gene (Tables 1, 2). The majority of these alterations

lead to premature termination with small transcripts or

functional inactivation of the protein in some cases.

A similar mutational profile has been found for PTEN

mutations in human cancers. The highest frequency of PTEN

mutations is found in endometrial carcinomas and glioblas-

tomas. PTEN mutations are also found in lymphoma,

thyroid, breast, prostate carcinomas, and melanomas [85].

In melanoma, PTEN mutation rates of 27.6% in melanoma

cell lines (Table 3) and 12.0% in melanoma biopsies have

been reported (Table 4). In 1997, Guldberg et al. [5] first

reported that 42.9% (15/35) of examined melanoma cell

lines harbored PTEN mutations. Nine of these cell lines

showed homozygous deletion of PTEN gene, and six lines

had mutations in one allele in combination with the loss of

the second. Tsao et al. [66] examined 45 melanoma cell lines

and found PTEN mutations in 28.9% of the melanoma cell

lines, including 20.0% (9/45) homozygous deletions and

8.9% (4/45) frameshift, nonsense, and intronic splice muta-

tions. Teng et al. [86] examined seven melanoma cell lines

and found that four cell lines contained homozygous dele-

tions in the PTEN gene. Pollock et al. [87] reported that

22.8% (13/57) of melanoma cell lines carried mutations in

PTEN. Eight of these cell lines showed mutations in one

allele and five had homozygous deletion of PTEN. In total, 76

different alterations were found in all the cell lines studied

(Tables 1, 3). Among these alterations, there are 20 deletions

for which the exact regions were not determined. All infor-

mation on PTEN mutational status in melanoma biopsies was

obtained from a single tumor of the patients. To expand our

knowledge on PTEN functions, it would be important to

study its status in multiple tumors from the same patient.

PTEN mutations are uncommon in uncultured melanoma

biopsies. Tsao et al. [66] examined 17 uncultured metastatic

melanoma samples; only one case of homozygous deletion

and another case of premature stop mutation were identified

(Tables 2, 4). When Boni et al. [88] tried to identify muta-

tions within the exons 5, 6, 7, and 8 of the PTEN gene, no

mutations were found. Teng et al. [86] found 10% (1/10)

missense mutation of PTEN in primary melanoma tumors.

Birck et al. screened a panel of 77 melanoma biopsies

including 16 primary and 61 metastatic tumors. PTEN

mutations were identified in 6.6% (4/61) of the metastatic

tumors, while no mutation was found in primary melanoma

[13]. In this study, they have detected a nonsense mutation

(L139X) that had already been reported by Guldberg et al.

[5]. By examining two intragenic biallelic polymorphisms,

53.8% (21 out of 39) informative specimens showed loss of

one PTEN allele [13]. Reifenberger et al. [89] examined 40

melanomas and found 20% (3/15) of primary melanomas

and 12% (3/25) of metastatic melanomas contained PTEN

mutations. Two different mutations were found in both pri-

mary and metastatic melanomas. Celebi et al. [14] also

detected PTEN sequence alterations in four of 21 (19%)

metastatic melanoma samples. Two other mutations were

found in the putative splice site of PTEN, making the total

alterations at 28.6%. Similar results were reported by Poet-

sch et al. [90] and Abdel-Rahman et al. [91] for metastatic

melanomas (Tables 2, 4). Taken together, these data sup-

ported the notion that PTEN alterations occur in melanomas

and loss of PTEN may contribute to melanoma development.

Functional studies support a role for PTEN in melanoma

tumor suppression. An in vitro LOH study by Robertson

et al. [92] showed that PTEN was indeed targeted for LOH

in melanoma. A melanoma cell line UACC903 with

duplicated mutant chromosome 10 was used to build the in

vitro LOH model. A wild-type chromosome 10 was

transferred into the cells and underwent spontaneous

breakage and deletions over time in culture. During this

process, the introduced wild-type copy of PTEN was lost.

In parallel, another melanoma cell line with wild-type

PTEN gene maintained a transferred 10q23–24 region that

contained the exogenous PTEN gene. Ectopic expression of

PTEN into UACC903 cells was also demonstrated to

suppress tumor cell growth [92]. Similar findings have

been reported by Tsao et al. [67] as well. In a number of

melanoma cell lines, overexpression of PTEN uniformly

inhibited colony formation, implicating a tumor-suppres-

sive function of PTEN in melanoma [67].

In contrast, three groups have failed to detect significant

PTEN mutation rates in melanoma. Boni et al. [88] used

two microsatellite markers flanking PTEN gene to search

for LOH surrounding the PTEN locus, and found no LOH

for either of the markers in 40 (23 primary and 17 meta-

static) melanoma tissue. Further SSCP analysis for exons

of PTEN gene did not yield any abnormal bands [88].

Herbst et al. [93] analyzed LOH at loci closely linked or

intragenic to PTEN in 65 melanomas. A rate of LOH of

lower than 16% with eight different polymorphism markers

led to the conclusion that it rather represented random

genetic events than indicating that PTEN was the target in

melanoma [93]. Poetsch et al. [90] screened 25 primary and

25 metastatic melanomas for PTEN mutation, and found

two missense and eight silent mutations (Table 2).
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Table 1 PTEN alterations in melanoma cell lines

Cell line Exon Codon Mutations Effect on PTEN

expression

References

Ma-Mel-45a 1 13 K13X Premature stop [147]

TCL11D11 1 – Del E1 ND [86]

G-mel 1 – Del E1 No initiation [67]

MM472 2 30 P30L ND [87]

Ma-Mel-85 2 32 Del I32 ND [147]

FM76 2 38 P38S ND [5]

FM81 2 38 P38S ND [5]

4686M 2 38 P38S PP [148]

Ma-Mel-150a 2 38 P38S ND [147]

Ma-Mel-32 2 38 P38L ND [147]

NK14 2 38 P38L ND [87]

D35 2 47 R47R PP [149]

TCL11E3 2 – Del E2 ND [86]

Sk-Mel-24 2 – Del E2 NP [5]

HS944 2 – Del E2 Premature stop [67]

MGH-BO-1 2 – Del E2 Premature stop [66, 67]

Sk-Mel-37 2 – Del E2 Premature stop [66, 67]

HS944 2 – Del E2 Premature stop [68]

MGH-BO-1 2 – Del E2 Premature stop [68]

Sk-Mel-37 2 – Del E2 Premature stop [68]

MM200 3 56 F56I NP [87, 149]

Sk-Mel-28 3 56 A56G ND [69]

HT144 3 56–70 Del 45 bp Premature stop [87]

UACC903 4 76 Y76X ND [66–68]

Ma-Mel-11 5 90–95 Del 90–95 ND [147]

D32 5 101 Del 1 bp NP [149]

30966M 5 105 C105R/Del314 Stop at 112 [148]

Ma-Mel-134 5 108 L108P ND [147]

Ma-Mel-19 5 118 H118L ND [147]

FM88 5 127 G127E ND [5, 69]

Ma-Mel-05 5 128 L128N ND [147]

Ma-Mel-38 5 130 R130Q ND [147]

FM62 5 139 L139X ND [5, 69]

MM622 5 139 L139X NP [87, 149]

MM455 6 165–211 Del 142 bp No transcription [87]

Sk-Mel-28 6 167 T167A PP [67, 68, 87, 149]

Sk-Mel-39 6 183 546 Ins A Premature stop [66–68]

MM455 6 – Del E6 Premature stop [66–68]

FM2 6 – Del E6 ND [69]

WM 1026.7 6 – Del nt1297-1438 NP [66]

FM9 7 214 C640T ND [69]

FM39 7 225 675 Ins TA Premature stop [5]

2211M 7 246 P246S PP [148]

Ma-Mel-KNUD 7 247 L247X ND [147]

BL 8 298 Q298X NP [87, 149]

FM49 8 317 Del 18 bp VLTLTKN ? D [5]

C32 1–2 1–55 Del 164 bp Initiation in I2 [87]
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Table 1 continued

Cell line Exon Codon Mutations Effect on PTEN

expression

References

TCL11D7 1–2 – Del E1–2 ND [86]

FM72 1–2 – Del E1–2 NP [5]

FM95 1–2 – Del E1–2 ND [69]

FM95 1–5 – Del E1–5 NP [5]

FM2 1–8 – Del E1–8 NP [5]

FM60 1–9 – Del E1–9 NP [5]

FM70 1–9 – Del E1–9 NP [5]

Sk-Mel-23 1–9 – Del E1–9 NP [66–68]

WK 1–9 – Del E1–9 NP [66, 67]

ML 1–9 – Del E1–9 NP [66–68]

WM 168.26 1–9 – Del E1–9 NP [66]

MGH-LA-1 1–9 – Del E1–9 NP [67]

BA-1 2–5 – Del E2–5 Premature stop [66]

MGH-BA-1 2–6 – Del E2–6 Premature stop [67]

FM92 2–9 – Del E2–9 NP [5, 69]

MM386 3/4 55–84 Del 89 bp Premature stop [87]

FM3 3–9 – Del E3–9 NP [5]

FM82 4–9 – Del E4–9 NP [5]

EST71 4–9 – Del E4–9 ND [69]

FM82 4–9 – Del E4–9 ND [69]

A2058 5,6 112/186 L112Q/L186M NP [87, 149]

Sk-Mel-31 6–9 – Del E6–9 NP [5, 69]

TCL11D9 6–9 – Del E6–9 ND [86]

A03 8–9 268–405 Del 411 bp No transcription [87]

Ma-Mel-08a – 157/162 E157X/D162V ND [147]

5810P – – Del NP [148]

26258M – – Del NP [148]

3962M – – Del NP [148]

C32 – – Del NP [149]

D08 – – Del PP [149]

D14 – – Del NP [149]

D20 – – Del NP [149]

HT144 – – Del NP [149]

MM386 – – Del NP [149]

A06 – – Del NP [149]

A13 – – Del NP [149]

D36 – – Del NP [149]

MM488 – – Del NP [149]

MM604 – – Del NP [149]

Ma-Mel-21 – – Del ND [147]

Ma-Mel-80a – – Del ND [147]

Ma-Mel-99 – – Del ND [147]

Ma-Mel-101 – – Del ND [147]

Ma-Mel-02 – – Del ND [147]

Ma-Mel-76 – – Del ND [147]

FM45 – – I2, T18A Skipping of E3 [5]

RU – – I3, del (nt1–4) Possible splice variant [67, 68]
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These findings are in contrast with the abundant evi-

dence implicating PTEN as an important tumor suppressor

in melanoma and other cancers. However, it must be taken

into consideration that although an overall mutational rate

of PTEN in cultured melanoma cell lines is around 27.6%,

only seven cases with PTEN mutations has been detected in

over 96 primary melanomas. There are several possible

explanations for this observation: (1) although PTEN loss is

important in melanoma, it occurs late in melanoma

tumorigenesis since mutation is rarely detected in primary

melanomas; (2) PTEN loss may in fact be relatively rare in

melanoma, and the establishment of cell lines selects for

melanomas with PTEN alterations; (3) the biology of

PTEN alteration in early melanomas makes detection of

alteration difficult (e.g., from dosage reduction, epigenetic

downregulation of expression or homozygous deletion); (4)

the number of primary melanoma samples examined is

small and the subtypes of tumors have not been examined;

or (5) PTEN loss following the epigenetic mechanisms,

such as DNA methylation.

The negative cases in PTEN alteration studies could be

explained by the homozygous deletion rate observed by

several laboratories. As homozygous deletion makes LOH

of chromosome 9p21 (at CDKN2A) difficult to detect in

tumor samples [94], it is possible that chromosome 10q23

PTEN deletions in melanomas may have been underde-

tected too. Moreover, epigenetic studies recently suggested

that the involvement of PTEN function loss in melanoma

might have been in fact underestimated. Zhou et al. [95]

analyzed PTEN protein expression, instead of analyzing

PTEN gene mutations in melanomas. Using immunohis-

tochemistry, they found no PTEN protein expression in

15% (5/34) and low expression in 50% (17/34) of mela-

noma samples (four primary and 30 metastatic).

Surprisingly, among the five melanomas with no PTEN

protein expression, four showed no deletion or mutation of

PTEN gene, indicating the presence of an epigenetic

mechanism of biallelic functional inactivation of PTEN

[95].

The timing of PTEN alterations in melanoma develop-

ment is also not understood. Cytogenetic studies, cited

above, suggested an early involvement of PTEN. However,

Birck et al. [13] examined primary melanoma samples and

detected no PTEN mutations. However, they also found

allelic loss of PTEN gene in 37.5% (3/8) primary mela-

nomas, indicating a decreased PTEN dosage possibly

occurring early in melanoma development [13]. Thus,

different types of genetic changes may lead to higher fre-

quency of PTEN alterations in melanoma cell lines,

providing some explanation for the discrepancies in the

literature. Additional work will be needed to accumulate

data to allow for reconciliation of divergent mutation rates

from different studies.

Sporadic melanomas frequently have a loss of PTEN

through LOH, deletion, and mutation [5]. PTEN can also be

epigenetically silenced in melanoma, as decreased PTEN

transcript levels were associated with PTEN promoter

methylation [96]. PTEN methylation also correlated with

decreased survival [97]. In another study, low PTEN

expression was associated with melanoma ulceration,

which is characteristic of aggressive tumors, but did not

significantly correlate with overall survival [98]. A link

between DNA damage and PTEN mutation in melanoma

has been suggested by Wang et al. [99] who showed that

more than 50% of the melanomas from patients with

xeroderma pigmentosum have PTEN mutations that are

typically associated with ultraviolet radiation exposure.

In mice, PTEN deletion in pigmented mouse cells does

not lead to the development of spontaneous melanoma,

despite an increase in the number of dermal melanocytes.

However, in this model, topical carcinogen treatment led to

melanoma formation in nearly 50% of the mice within

20 weeks [100]. In conjunction with CDKN2A (encoding

p14ARF) deletion, nearly 10% of PTEN?/- mice devel-

oped spontaneous melanoma [101].

In all the melanoma biopsies analyzed, 12.0% (41/342)

contained PTEN alterations. Three mutations were found

twice in different tumors, giving a total of 38 different

alterations (Tables 2, 4). The huge proportion of these

alterations was found in metastatic melanoma biopsies (34/

224, 15.2%). Only 7.3% (7/96) of primary melanoma

specimens were found to carry PTEN alterations.

Table 1 continued

Cell line Exon Codon Mutations Effect on PTEN

expression

References

Sk-Mel-131 – – I5, T2A Possible splice variant [66–68]

J6 – – I6, G5T Possible splice variant [66, 67]

EST73 – – I6, G5T ND [69]

AF6 – – Splice mutation NP [149]

WM1799 – – Failed PCR NP [68]

Alterations are defined as amino acid substitutions, coding nucleotide change; HD homozygously deleted, Del deletion, E exon, I intron,

Ins insertion, ND not determined, NP no PTEN, PP PTEN present
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PTEN mutations and other genes

In addition to PTEN alterations, mutations of CDKN2A, as

well as NRAS mutations have been frequently observed in

melanoma [102, 103]. CDKN2A is the most often mutated

tumor suppressor gene in melanoma, with 60% homozy-

gous deletions and additional 15–20% point mutations

[104–106]. The two proteins encoded by CDKN2A, p16,

Table 2 PTEN alterations in melanoma tissues

Sample ID Exon Codon Mutation Predicted effect Tumor References

46, sub. 1 7 AA del Stop at 9 MM [13]

S14126 1 19 D19N Missense MM [14]

S23807 2 25 D25N Missense MM [14]

MT-1 2 38 P38F Missense PM [86]

M15 3 – Ins of 45 bp Dupl E3 PM [89]

M16 3 – Ins of 45 bp Dupl E3 MM [89]

MM15 4 79 A79T Missense MM [90]

M122 5 88 T262C Missense MM [91]

M138 5 95 C283T Missense MM [91]

FM88 5 127 G127E Missense MM [5]

FM62 5 139 L139X Nonsense MM [5]

1, LN 5 139 L139X Nonsense MM [13]

M062 5 160 C479T Missense MM [91]

13, LN 5 164 Ins of A Stop at 179 MM [13]

S14456 6 211 C211X Nonsense MM [14]

S20855 7 217 V217I Missense MM [14]

FM39 7 225 Ins of TA Frameshift MM [5]

M54 7 244 P244S Missense PM [89]

40816-01 7 243–246 Del Stop at 255 MM [87]

KM-17 7 263 Dupl Stop at 271 MM [66]

4, sub. 8 276 Del 11 bp Stop at 297 MM [13]

M202 8 308 C922T Missense MM [91]

M24 8 335 R335X Nonsense PM [89]

M25 8 335 R335X Nonsense MM [89]

MM11 8 339 P339L Missense MM [90]

M36 8 – Del Frameshift MM [89]

KM-16 – – ROH ND MM [66]

SSM4 – – I6, G11A Silent PM [90]

NM2 – – I1, A152G Silent PM [90]

NM7 – – UTR/E1-22C ? T – PM [90]

MM7 – – I3, G79A Silent MM [90]

MM11 – – UTR/E1–101C ? T – MM [90]

MM14 – – I3, G53A Silent MM [90]

MM15 – – UTR/E1–22C ? T – MM [90]

MM21 – – I1, A63T Silent MM [90]

S5914 – – I1, G14A Putat. splice site MM [14]

S4890 – – I2, G13A Putat. splice site MM [14]

M103 – – I5, T14C ND MM [91]

M150 – – I4, A3G ND MM [91]

M124 – – I5, T14C ND MM [91]

M149 – – I3, C47T ND MM [91]

Del deletion, Dupl duplication, E exon, HD homozygously deleted, I intron, Ins insertion, LN lymph node metastasis, MM metastatic melanoma,

ND not determined, PM primary melanoma, Putat putative, ROH retention of heterozygosity, Sub subcutaneous metastasis, UTR untranslated

region
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and p14ARF, function in the pRB and p53 pathway,

respectively. p16 is a cyclin-dependent kinase inhibitor.

It binds to and inhibits cyclin D/CDK4, which in turn blocks

pRB phosphorylation, leading to G1 cell-cycle arrest. p14,

on the other hand, binds mdm2 and relieves p53 from

mdm2-mediated p53 degradation. p53 is known to block

cell proliferation by inducing cell-cycle arrest or apoptosis.

As RAS is a prominent oncogene involved in melanoma

tumorigenesis, like PTEN, it has several biological func-

tions. RAS gene family members include HRAS, NRAS, and

KRAS. They encode 21-kDa proteins with GTPase activity.

RAS is involved in regulating receptor tyrosine kinase-

induced MAPK activation. RAS activates MEK and

MAPK through RAF. RAS also binds and activates lipid

kinase PI3K, and therefore activates Akt pathway. Finally,

RAS interacts with p53 and p16. In primary mouse

embryonic fibroblasts, for example, HRAS was shown to

induce premature cell senescence, which was associated

with the accumulation of p16 and p53 [107]. Pathways

controlled by these three elements, RAS, p53, and p16,

therefore appear to be central to control of the malignant

phenotype.

PTEN functions as a lipid and protein phosphatase that

downregulates Akt and MAPK, potentially suggesting that

RAS and PTEN have opposite functions in both protein and

lipid kinase signaling pathways. Is it possible that PTEN

loss and RAS oncogenic activation are redundant in tumor

development? Tsao et al. [67] reported a reciprocal muta-

tional status for PTEN and NRAS in human melanoma

cells. Among 53 cutaneous melanoma cell lines, 16 cell

lines (30%) harbored PTEN mutations and 11 lines (20.7%)

had oncogenic NRAS mutations. Only one cell line showed

mutations in both genes, so a total of 50% cell lines had

mutations in either PTEN or NRAS (Table 2; [67]). Similar

reciprocal findings have been reported in endometrial

cancer [108]. Furthermore, Davies et al. [109] showed that

loss of PTEN expression was not detected in melanoma

cases harboring NRAS mutations. However, Nogueira

et al. [110] recently found that PTEN loss cooperates with

RAS activation to drive melanoma cell invasion and pro-

mote metastasis.

In mouse melanoma models, RAS and CDKN2A loss

cooperate to lead to melanoma development [111]. It has

been shown that CDKN2A loss coupled with PTEN loss

Table 3 Frequency of PTEN
alterations in melanoma cell

lines

The numbers in bold indicate

total cases

No. of cell lines Mutation (%) Deletion (%) Total alterations (%) References

7 0 (0) 4 (57.1) 4 (57.1) [86]

35 6 (17.1) 9 (25.7) 15 (42.9) [5]

45 4 (8.9) 9 (20.0) 13 (28.9) [66]

53 6 (11.3) 10 (18.9) 16 (30.2) [67]

57 8 (14.0) 5 (8.8) 13 (22.8) [87]

47 5 (10.6) 7 (14.9) 12 (25.5) [68]

41 3 (7.3) 3 (7.3) 6 (14.6) [148]

71 8 (11.3) 11 (15.5) 19 (26.8) [149]

47 5 (10.6) 7 (14.9) 12 (25.5) [69]

60 12 (20.0) 6 (10.0) 18 (30.0) [147]

463 57 (12.3) 71 (15.3) 128 (27.6)

Table 4 Frequency of PTEN
alterations in melanoma tissues

The numbers in bold indicate

total cases

PM primary melanoma, MM
metastatic melanoma, ND not

determined

No. of biopsies PM (%) MM (%) Total alterations (%) References

10 1/10 (10.0) ND 1/10 (10.0) [86]

8 0/4 (0) 3/4 (75.0) 3/8 (37.5) [5]

17 ND 2/17 (11.8) 2/17 (11.8) [66]

40 0/23 (0) 0/17 (0) 0/40 (0) [88]

77 0/16 (0) 4/61 (6.6) 4/77 (5.2) [13]

40 3/15 (20.0) 3/25 (12.0) 6/40 (15.0) [89]

21 ND 6/21 (28.6) 6/21 (28.6) [14]

50 3/25 (12.0) 7/25 (28.0) 10/50 (20.0) [90]

49 0/3 (0) 1/46 (2.2) 1/49 (2.0) [87]

30 ND 8/30 (26.7) 8/30 (26.7) [91]

342 7/96 (7.3) 34/224 (15.2) 41/342 (12.0)
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lead to melanoma; however, it is not clear that PTEN loss

confers greater susceptibility to melanoma development

than CDKN2A loss alone [101]. Recently, Dankort et al.

[112] showed that a simultaneous activation of BRAF and

deletion of PTEN in melanocytes leads to early onset

spontaneous melanomas, with metastasis to the lymph

nodes and lung. Notably, the mTOR inhibitor rapamycin

increased survival in these mice by more than twofold

[112]. These mouse studies indicate that PTEN is probably

not a driving mutation in melanoma, but can contribute to a

malignant phenotype in the presence of other genetic

alterations. Further studies are needed to elucidate the

details of PTEN, RAS, and CDKN2A interaction in murine

models.

A direct downstream target of RAS, BRAF, has been

shown to exhibit a higher mutation frequency in melanoma

[113]. In all, 806 of 2,346 (34.3%) uncultured melanomas,

568 of 1,336 (42.4%) cutaneous melanomas, and 251 of

389 (64.5%) melanoma cell lines harbored mutated BRAF

gene. In that study, NRAS mutations were also detected in

21.2% (379/1,790) uncultured melanomas, 26.4% (282/

1,067) cutaneous melanomas, and 13.6% (58/426) of the

melanoma cell lines. Furthermore, cell lines were detected

with oncogenic-activated RAS–RAF–MAPK pathway.

Thus, BRAF is a second gene whose mutations are recip-

rocally distributed with regard to RAS. Like RAS, RAF

can activate PI3K, and PI3K and Akt can directly alter

RAF kinase activity [114, 115]. Thus, understanding the

relation of PTEN, RAS, and RAF, in the context of PI3K-

Akt and RAS–MAPK pathways will be crucial to under-

standing melanoma tumorigenesis.

The PTEN expression in pre-malignant lesions was

conducted by two different groups. Tsao et al. [116] found

uniformly strong PTEN expression in the cytoplasm of

almost all benign nevi, while Singh et al. [117] showed

strong cytoplasmic staining of PTEN for eleven of 17

(64%) benign nevi. In accordance of these findings, PTEN

is present in pre-malignant melanoma as opposed to its

notable absence in a significant proportion of primary

melanomas. These findings support the role of PTEN loss

in the pathogenesis of melanoma.

PTEN genetic alterations in melanoma result in the

activation of critical signaling pathways promoting growth

and survival of tumors cells. Alterations in the RAS–RAF–

MAP kinase and PI3-kinase signaling pathways are com-

monly altered in melanoma. Mutations in BRAF and

NRAS occur in a mutually exclusive pattern and lead to

MAP-kinase activation. The most common known genetic

alteration in the PI3-kinase cascade is the loss of PTEN

function, and was commonly associated with BRAF

mutations [67, 68, 118].

Alterations in membrane receptors or mutations in

downstream effectors such as RAS or RAF can initiate

aberrant MAPK signaling in melanoma [119]. About 20%

of melanoma patients harbor NRAS mutations, but it is

BRAF (the RAS substrate) that harbors the most frequent

mutations in melanoma (*40%) [113]. About 80% of

these mutations display a valine to glutamic acid substi-

tution (V600E), causing constitutive kinase activation, and

about 16% harbor a valine to lysine substitution (V600K)

[120, 121]. MAPK signaling is required for proliferation of

both RAS and RAF-transformed melanocytes, as it was

shown that RAF and MEK inhibitors decreased ERK

activity and blocked their cell cycle progression. Provided

the large number of melanomas that harbor activating

mutations in the BRAF oncogene and their reliance on

BRAF activity, targeted inhibition of this protein became

of high interest.

The treatment of human melanoma at advanced stage

using biotherapeutics or chemotherapeutics has rarely

provided response rates higher than 20% [122]. This clin-

ical aspect is changing with the advent small molecule

inhibitors to treat metastatic melanoma [123, 124]. The

BRAF mutation in melanoma provided an opportunity to

target a cancer-specific oncogene and develop compounds

to curb its aberrant activity. Recently, through structure-

guided approaches, the specific BRAF(V600E) inhibitor

PLX4032 was developed, which provided increasing proof

that targeting BRAF in melanoma is a real therapeutic

approach [123, 124]. PLX4032 is a well-tolerated small-

molecule inhibitor inducing *80% partial or complete

tumor regression for melanomas containing BRAF(V600E)

mutations and has received FDA approval for the treatment

of late-stage human melanoma.

In melanoma, ERK mutations have not been identified

and MEK mutations are not frequent. However, as the

MAPK pathway is constantly active in the tumor cells,

these effectors can also be targeted. From preclinical

models, MEK inhibitors induce significant reduction in

melanoma growth [125, 126]. However, these inhibitors

have not shown significant clinical efficacy in melanoma

clinical trials [127]. Interestingly, inhibitors of BRAF and

MEK were reported to have similar transcriptional targets;

therefore, MEK inhibitors could be useful in patients with

acquired BRAF inhibitor resistance if toxicities can be

controlled [128].

Interestingly, BRAF V600E mutations are also observed

in benign nevi; suggesting that BRAF mutations alone are

insufficient for tumorigenesis and that additional factors

are needed for cancer progression [129]. In fact, a mouse

genetic model of BRAFV600E/PTEN-/- that mimics mel-

anoma progression indicates that the PI3K pathway also

plays an important role in the development of aggressive

tumors [112]. PI3K pathway activity was shown to be

increased in melanoma through loss of activity of the tumor

suppressor PTEN. This loss occurs through PTEN
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mutation, deletion, or methylation, which can also coincide

with BRAF mutations but not NRAS [68]. PTEN loss is

found in 5–20% of noninherited melanomas, and similar to

other neoplasia, may regulate inhibition of the MAPK

pathway, cell-cycle arrest, and survival via effects on Bcl-2

and caspases [130]. Thus, as melanomas favor the dereg-

ulation of both the MAPK and PI3K pathways, their

combined targeting has therapeutic merit [131]. Although

multiple other signaling pathways may be involved in

melanoma oncogenesis, finding which ones are essential

for melanoma survival and progression will determine their

therapeutic value.

Recently, several studies have identified PTEN loss in

multiple mechanisms of BRAF inhibitor resistance [132–

135], suggesting that PTEN inactivation can affect sensi-

tivity to BRAF inhibition. These findings are useful in

developing a new generation of BRAF inhibitors. In fact,

the growth advantage conveyed by the constitutive acti-

vation of these pathways leads to positive selection of cells

that have acquired the mutations and in many instances

leads to critical dependency of the cancer cells on their

activation. This creates opportunities for therapeutic

interventions targeted at signaling components within these

pathways that are amenable for pharmacological inhibition.

Relationship between PTEN alterations and functions

To date, 111 different alterations of the PTEN gene have

been reported (Tables 1, 2). Three mutations have been

found in both melanoma cell lines and tissues. Some

alterations have been reported twice or more. These

mutations, scattering along the whole gene, include point-

stop mutations, point missense mutations, insertions,

duplications, splice site mutations, and small and gross

deletions of the gene. A great number of the mutations are

found in exon 5 coding for the phosphatase domain, and

likely alter the phosphatase activity of PTEN. The majority

of mutations occurring in PTEN result either in abnormal

RNA splicing, truncation, or gross deletion of the gene,

thus predicting inactivation of the protein and supporting

loss of various functions assigned to PTEN.

A review of the literature (considering only the muta-

tions found in tumoral specimens and not those found in

cell lines) provides 38 PTEN mutations occurring in vari-

ous types of primary tumors or metastases (Table 2). These

mutations affecting PTEN in melanoma patients have been

found predominantly in metastatic tissues. It is mainly

nonsense, frameshift, or splicing mutations resulting in a

truncation of the protein. In addition, bi-allelic inactivation

of PTEN has been evidenced with both point mutations in

one allele and deletions of the other allele resulting in loss

of heterozygosity (LOH). Similarly to cell lines, a great

number of missense mutations occur in the exon 5 (hot

spots of PTEN mutations). Interestingly, two of the three

mutations found in both cell lines and biopsies were

located in the exon 5.

PTEN alterations in different functional domains will lead

to the loss of expression, thereby affecting its tumor sup-

pressor functions. In fact, PTEN contains two key domains

required for its tumor suppressor function: the lipid mem-

brane-binding (C2) domain (amino acids 190–350), and the

catalytic (phosphatase) domain (amino acids 14–185) with

an active site constituted by the residues 123–130 (Fig. 1b).

Many mutations affect these domains leading to a loss of

function (Tables 1, 2). There are other domains such as the

PDZ-binding domain (amino acids 401–403), which binds to

proteins containing PDZ domains (an acronym of three

proteins: Psd95, Dlg1, and Zo-1), and the carboxy-terminal

region (amino acids 351–400), which contains PEST (rich in

amino-acids P, E, S, T) sequences and may contribute to

protein stability and activity. Only deletions were reported

for these two domains and their importance in the tumor

suppressor function of PTEN is less well defined.

PTEN alterations occur in both the N-terminal catalytic

core motif and the C-terminal non-catalytic regulatory

domain. Five phosphorylation sites (S370, S380, T382,

T383, and S385) were reported for the latter [136]. When

phosphorylated at these residues, PTEN is targeted for

degradation through the ubiquitin/proteasome system

[137]. In addition, phosphorylation may protect the car-

boxyl terminus from caspase 3-mediated cleavage during

apoptosis [138]. Interestingly, it has been reported that

phosphorylation at T383 requires the protein phosphatase

activity, but not the lipid phosphatase activity [136].

Consequently, each alteration affecting these areas could

disturb the functional activity of PTEN.

As reported PTEN has many roles, including: (i) lipid

phosphatase activity removing the phosphate on either

PtdIns(3,4,5)P3 or (PtdIns(3,4)P2 [40, 136, 139]; (ii) pro-

tein phosphatase activity [3, 40, 136, 139]; and (iii) as a

substrate for phosphorylation by kinases [1, 3, 39]. These

different roles result in reduced activation of the (PI3K)/

Akt and other pathways leading to an anti-invasive, anti-

proliferative and tumor suppressive effects. PTEN is also

involved in mediating growth arrest and other cellular

functions of the MAPK pathway [140–143]. Each of

reported alterations could affect one or several functions.

The biological significance of the protein phosphatase

effects of PTEN is less well characterized than the lipid

phosphatase effects. The relationships between genetic

alterations and PTEN functions are outlined in Fig. 1b.

Although the lipid phosphatase activity of PTEN is

important for its tumor suppressor functions, other func-

tions of PTEN may also prove to be important. Indeed,

several studies have demonstrated that PTEN protein
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phosphatase activity is important for its functions in cell

cycle arrest and inhibition of cell invasion in vitro [24–28].

The lipid phosphatase activity of PTEN is thought to

mostly occur at the cell membrane, but PTEN has also been

demonstrated to exert nuclear functions. The binding of

PTEN to centromere protein C1 (CENP-C1) is required for

centrosome stability, and its nuclear localization is required

for DNA double-strand break (DSB) repair that is mediated

by DNA repair protein RAD51 [144]. PTEN also regulates

the tumor suppressor function of anaphase-promoting

complex (APC) and its regulator E-cadherin (encoded by

CDH1) in the nucleus, independently of its lipid phos-

phatase activity [145]. Altered APC–CDH1 activity has

been implicated in multiple tumor types [146].

Conclusions and perspectives

The analysis of PTEN alteration in cell lines and tissues

provides evidence that the development of many melanoma

cases seems to be driven by the loss of PTEN expression and

function. In this work, we have discussed function and sig-

naling of PTEN as a lipid phosphatase as well as a protein

phosphatase. The consequences of PTEN loss are alterations

in the control of cell-cycle progression, apoptosis, cell con-

tact, and migration. Together, these aberrations contribute to

the malignant cell phenotype (Fig. 1b).

We have discussed several lines of evidence implicating

PTEN in the development of melanoma. However, one key

question that remains to be answered is whether tumors that

develop as a consequence of PTEN attenuation are attributed

to which biological function of this tumor suppressor. The

importance of 10q23 loss in melanoma is clear, and studies of

PTEN in tumors and cultured melanoma lines suggest

strongly that mutated PTEN lead to a loss of function,

although much remains to be learned about the precise role of

PTEN in melanoma tumorigenesis. The exact frequency of

PTEN loss in primary tumors, in metastases and the relation

of these observations to the findings in cell lines require

further confirmation. The inter-relation of PTEN mutation

and other genes important in melanomagenesis needs to be

studied. Modeling of these genetic discoveries in mouse

models could be used to show whether re-expression of

PTEN in PTEN-deficient melanoma could lead to tumor

regression. Finally, the discovery of reagents to stimulate

PTEN activity in cells that lack functional PTEN could be an

important advance in cancer therapies.
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