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Abstract Toll-like receptors (TLRs) are a class of pattern

recognition receptors sensing microbial components and

triggering an immune response against pathogens. In addi-

tion to their role in anti-infection immunity, increasing

evidence indicates that engagement of TLRs can promote

cancer cell survival and proliferation, induce tumor immune

evasion, and enhance tumor metastasis and chemoresis-

tance. Recent studies have demonstrated that endogenous

molecules or damage-associated molecular patterns

released from damaged/necrotic tissues are capable of

activating TLRs and that the endogenous ligands-mediated

TLR signaling is implicated in the tumor development and

affects the therapeutic efficacy of tumors. Since both

exogenous and endogenous TLR ligands can initiate TLR

signaling, which is the most valuable player in tumor

development becomes an interesting question. Here, we

summarize the effect of TLR signaling on the development

and progression of tumors, and discuss the role of exoge-

nous and endogenous TLR ligands in the tumorigenesis.

Keywords Toll-like receptor � Tumorigenesis �
Ligand � PAMPs � Inflammatory mediator

Introduction

Toll-like receptors (TLRs) are a family of pattern recog-

nition proteins that detect both microbe- and host-derived

molecular patterns. TLRs are expressed mainly on mac-

rophages, dendritic cells (DCs) and epithelial cells.

Ligand binding to TLRs activates transcription factors,

leading to production of inflammatory mediators. Thus,

TLRs play a crucial role in the innate immune response

and the subsequent induction of adaptive immune

response against pathogen infection. In recent years,

increasing evidence demonstrates that functional TLRs

are also expressed on tumor cells and the engagement of

these TLRs induces production of proinflammatory cyto-

kines and plays an active role in carcinogenesis and tumor

progression during chronic inflammation. Moreover,

accumulating evidence points out that the endogenous

stimulators can activate TLR signaling and contribute to

the pathogenesis of the tumor. Here, we review the role of

TLR signaling as well as exogenous and endogenous TLR

ligands in tumorigenesis.

Toll-like receptor signaling and damage-associated

molecular patterns

So far, at least 11 mammalian TLRs have been identified,

each of them recognizing distinct pathogen-associated

molecular patterns (PAMPs) derived from various micro-

organisms (Table 1). TLRs 1, 2, 4, 5, and 6 are expressed

and bind their ligands on the cell surface. TLRs 3, 7, 8, and 9

are nucleic acid receptors expressing on endosomal mem-

brane. The ligand for TLR10 remains unknown [1]. Mouse

TLR11 recognizes profilin-like molecule from the proto-

zoan parasite [2], whereas Human TLR11 fails because of
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the presence of a stop codon in the gene [3]. Extracellular

components MD-2 [4] and CD14 [5] are also critical for the

recruitment of TLR4 ligands.

Most TLRs share a common signaling pathway in which

myeloid differentiation factor 88 (MyD88) and toll/inter-

leukin-1 receptor (TIR) domain-containing protein

(TIRAP)/MyD88 adaptor-like (Mal) are recruited to acti-

vate tumor necrosis factor receptor-associated factor-6

(TRAF6)/IjB kinase (IKK) complex and mitogen-acti-

vated protein kinase (MAPK) kinase, respectively,

resulting in early activation of the transcription factor

NF-jB and MAPK (see reviews in [6, 7]). This is called

MyD88-dependent TLR signaling pathway. Another two

TIR-containing adaptor molecules, TIR domain-containing

adaptor inducing interferon-b (TRIF)/TIR domain-con-

taining adaptor molecule-1 (TICAM-1) and TRIF-related

adaptor molecule (TRAM)/TIR domain-containing adaptor

molecule-2 (TICAM-2), mediate the MyD88-independent

signaling pathway leading to the activation of the late

phase NF-jB and IFN regulatory factor 3 (IRF3) and the

subsequent production of type I IFN (IFN a/b), IFN-

inducible gene products, and an immune regulatory

response [7].

In addition to the exogenous ligands of microbes,

increasing evidence indicates that TLRs are receptors for

the endogenous stimulators released from damaged tissues

and mediate a non-infectious inflammatory response [8,

9]. These host-derived endogenous TLR ligands are either

components of cells or induced gene products in specific

conditions, including extracellular matrix components and

intracellular proteins and nucleic acids (Table 1). Usually,

endogenous TLR ligands do not interact physiologically

with corresponding receptors because of their different

cellular localization. In some pathological conditions,

these endogenous molecules are released from injured/

inflamed tissues and cells or actively secreted by

inflammatory cells via a non-conventional lysosomal

route [10, 11]. They activate TLRs and initiate a protec-

tive inflammatory response and the repair of damaged

tissues. Thus, endogenous TLR ligands are often referred

to as alarmins and serve as early warning signals to host

immune systems. As these host-derived non-microbial

molecules are released following tissue injury and cell

death and are able to elicit similar responses as PAMPs,

they have been collectively categorized as damage-asso-

ciated molecular patterns (DAMPs). The activation of the

immune system is therefore not only based on the rec-

ognition of PAMPs but also relies on the presence of

DAMPs released by injured cells [12]. The endogenous

TLR ligands-mediated sterile inflammation has been

linked to a variety of pathological processes, especially

tumorigenesis [13, 14].

Toll-like receptor signaling and tumors

Increasing evidence supports that TLR signaling plays an

important role in tumorigenesis. At first, polymorphisms in

TLR genes are related to risk of several cancers [15–17].

Some variations in TLR genes are even functionally

associated with cancer susceptibility [18–20]. Importantly,

TLR signaling-mediated chronic inflammation is involved

in tumor development and contributes to tumor progression

and chemoresistance [21, 22]. Moreover, the activation of

TLR signaling could regulate antitumor immunity of the

host [23] or induce tumor immune evasion [21, 24].

Polymorphism in Toll-like receptor genes and risk

of human cancer

TLR2 gene polymorphisms have been associated with the

risk of several human malignancies such as gastric cancer

[25], colorectal cancer [15], cervical cancer [16], gall-

bladder cancer [26] and leukaemia [27, 28]. For example,

TLR 2 (-196 to -174 del) gene polymorphism increases

the risk of gastric cancer in the Japanese population [25]

and increases the susceptibility of cervical cancer and

gallbladder cancer in the Indian population [16, 26]. This

allele also affects viral loads and increases the risk for

hepatocellular carcinoma in patients with chronic hepatitis

C [18]. It is believed that the deletion disrupts TLR2 pro-

moter activity and the production of cytokines [18].

Asp299Gly polymorphism of the TLR4 gene is associ-

ated with the risk of sporadic colorectal cancer [15],

mucosa-associated lymphoid tissue lymphoma and Hodg-

kin’s lymphoma [28]. The TLR4 Thr399Ile polymorphism

is significantly associated with gallbladder cancer [26] and

cervical cancer susceptibility in the Indian population [16].

Both TLR4 Asp299Gly and Thr399Ile polymorphisms are

related to increased risk of precancerous gastric lesions

and, possibly, gastric cancer [29–31]. The TLR4?896 A/G

polymorphism impairs TLR4 reactivity to bacterial LPS

and is a risk factor for noncardia gastric carcinoma [19]. A

heterozygous Thr135Ala polymorphism at LRR motif of

TLR4 has been reported in patients with poorly-differen-

tiated gastric adenocarcinomas. The mutation of Thr to Ala

may affect phosphorylation of TLR4 protein, providing a

specific example that a functional polymorphism of TLR4

gene increases cancer risk [20]. In addition, TLR4?3725

G/C polymorphism is a risk factor of severe gastric atrophy

in H. pylori-seropositive Japanese [32]. The several single-

nucleotide polymorphisms (SNPs) in TLR4 gene increase

the risk of prostate cancer in different populations [33–36].

TLR4 coreceptor CD14 promoter-159 polymorphism is

associated with reduced risk of intestinal-type gastric

cancer in a Japanese population [37].

Contribution of TLR ligands to tumorigenesis 937
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It has been reported that the combination of two TLR9

variant alleles is protective for endometrial cancer risk

[38]. TLR9-1237C and 2848A SNPs and TLR9/1237C-

2848A haplotype are associated with an increased risk for

Hodgkin’s lymphoma [39]. TLR3 polymorphism is an

independent prognostic marker for stage II colorectal

cancer [40], and the polymorphisms of both TLR3 and

TLR10 are associated with nasopharyngeal carcinoma risk

in the Cantonese population [17, 41]. Variation in the

TLR10-TLR1-TLR6 gene cluster is related to the risk of

prostate cancer [42] and non-Hodgkin lymphoma [27].

Gene polymorphism may only represent a disease-

associated marker, but the functional association of TLR

polymorphisms with cancer risk illustrates an important

role of TLRs in tumorigenesis.

Toll-like receptor signaling-mediated tumorigenesis

and antitumor immunity

A number of studies report that functional TLRs are widely

expressed on cancers or cancer cell lines, suggesting a

critical role of TLRs in tumors [21, 24, 43, 44]. Knock-

down of TLR4 gene results in a dramatic reduction of

human breast cancer cell viability [45] and efficiently

inhibits established tumor growth in vivo in a mouse

prostate cancer model [46]. Deficiency of TLR4 signaling

in mice enhances cancer-related survival and reduces

tumor growth in the lungs [14], and protects mice from

colon carcinogenesis [47]. Tumor cells also utilize the

TLR4 signaling pathway to escape immune surveillance

and enhance tumor cell invasion and metastasis. For

example, activation of TLR4 in tumor cells results in

resistance of tumor cells to CTL attack [21]. TLR4 sig-

naling promotes immune escape of human lung cancer

cells by inducing immunosuppressive cytokines and

apoptosis resistance [24]. Triggering of TLR4 expressed on

human head and neck squamous cell carcinoma (HNSCC)

protects the tumor from immune attack and supports tumor

progression [43]. Knockdown of TLR4 in human prostate

cancer cells results in a dramatic reduction of tumor cell

migration and invasion [46]. TLR4 signaling also promotes

immune escape, progression and chemoresistance of

ovarian cancer [22, 44]. Thus, activation of TLR4 on tumor

cells appears to promote tumor cell proliferation, resistance

to apoptosis and immune escape.

The pro-tumorigenic effects of TLR4 signaling are

involved in activation of NF-jB and many other inflam-

matory mediators in tumor cells and immune cells.

Inappropriate TLR4 signaling results in chronic inflam-

mation, which leads to the increase of NF-jB activity in

cancer cells to drive cancer growth. Activation of NF-jB in

both tumor cells and tumor-associated macrophages

(TAMs) is dependent on TLR4 signaling [14]. TNF-a

produced by macrophages mediates NF-jB activation in

tumor cells, and in turn tumor cells could induce NF-jB

activation in macrophages [14]. The activation of TLR4 on

human colon cancer cells can increase the phosphorylation

of ERK, regulate the expression of IL-8 and caspase-7, and

promote the proliferation and migration of human colon

cancer cells [48]. In addition, TLR4 signaling has been

found to be responsible for induction of cyclooxygenase-2

(COX-2), prostaglandin E2 (PGE2) production, and EGFR

phosphorylation, which promote the development of coli-

tis-associated colorectal tumors [47, 49–52]. Expression of

mucosal PGE2 is decreased in TLR4-deficient mice and

TLR4-deficiency protects mice from colitis-associated

neoplasia. Exogenous administration of PGE2 in TLR4-

deficient mice increases colitis-associated tumor incidence

and tumor size. These data suggest that PGE2 is a central

downstream molecule involving TLR4-mediated intestinal

tumorigenesis [53].

In contrast to TLR4, TLR2 signaling protects mice from

tumor development of colitis-associated colorectal cancer

(CAC) [54]. TLR2-deficient CAC mice develop signifi-

cantly more and larger colorectal tumors than CAC

littermates with wild-type (WT) TLR2. TLR2-deficient

colons have more advanced dysplasia compared to WT

colons. TLR2-deficiency leads to increased early formation

of aberrant crypt foci and early intestinal tumorigenesis.

TLR2-deficiency increases cell proliferation and reduces

apoptosis during early CAC development. TLR2-deficient

mice show increased IL-6 and STAT3 activation during

early intestinal tumorigenesis and have an increased Th17

immune response during CAC development. Colonic tis-

sues from TLR2-deficient mice recruit inflammatory cells

that have reduced nitric oxide (NO) production and fail to

mount an adequate defense against tumor growth, which

leads to inflammatory growth signals and predisposition to

accelerated neoplastic growth [54]. Interestingly, more

immune cells express TLR2 in oral squamous cell carci-

noma and dysplasia than in hyperplasia. No hyperplastic

samples show positive TLR2 staining on keratinocytes,

whereas keratinocytes in 64% of cases of carcinoma and

74% of cases of dysplasia are TLR2 positive [55].

Although the authors suppose that TLR2 expression in the

tumor microenvironment may indicate activation of

immune surveillance against the altered epithelium,

whereas TLR2 expression by malignant keratinocytes is

probably indicative of resistance to apoptosis as a pro-

survival mechanism, the result seems inconsistent with

what has been observed in colorectal cancer.

Activation of TLR3 on human cancer cells with poly(I:C)

inhibits cell proliferation, triggers apoptosis [56–58], and

keeps tumors more differentiated [59]. Implanted prostate

tumors in TLR3-defecient mice grow markedly larger

compared with WT mice, and type I Interferons contribute

938 L. Yu et al.
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to TLR3-mediated tumor suppression [59]. Treatment with

polyadenylic–polyuridylic acid [poly(A:U)], which only

signals through TLR3, induces the secretion of a large

amounts of CCL5/RANTES and CXCL10/IP-10 by mouse

melanoma and glioma cells, primary human breast cancer

cells, and tumor in a mouse model, suggesting that

poly(A:U) can directly trigger TLR3 on tumor cells to

stimulate the production of chemokines both in vitro and in

vivo [60].

It has been reported that functional expression of TLR9

promotes cell proliferation and survival in human hepato-

cellular carcinomas [61]. Synthetic TLR9 ligands induce

tumor invasion in human breast, prostate and lung cancer

cells in vitro [62–66]. TLR 9 agonist CpG-ODNs up-reg-

ulates the expression of COX-2 and promotes the

expression and secretion of immunosuppressive cytokines

TGF-b1 and IL-8 through NF-jB activation in human

prostate cancer cells, which may be implicated in tumor

invasion and metastasis [67, 68]. However, CpG-ODNs

stimulation inhibits the proliferation of TLR9-expressing

neuroblastoma (NB) cells, induces caspase-dependent

apoptotic cell death, and significantly prolongs the survival

of mice bearing NB tumor xenografts [69]. TLR9 expres-

sion in primary human NB specimens has been found to

correlate inversely with disease stage [69]. TLR9 expres-

sion in bone marrow cells of myelodysplastic syndromes is

also down-regulated during transformation to overt leuke-

mia [70]. The role of TLR9 signaling in tumorigenesis

appears dependent on the tumor type.

Upon the activation most TLRs recruit adaptor MyD88

for the downstream signal. Oncogenic MyD88 mutations

have been associated with the activated B-cell-like (ABC)

subtype of diffuse large B-cell lymphoma (DLBCL) [71].

Substitution of Leu265Pro at an evolutionarily conserved

residue in the hydrophobic core of MyD88 TIR domain is

observed in 29% of ABC DLBCL, whereas the mutation is

rare or absent in other DLBCL subtypes and Burkitt’s

lymphoma. The Leu265Pro substitution promotes cell

survival by spontaneously assembling a protein complex

containing IRAK1 and IRAK4, leading to activation of

downstream signaling of MyD88 and secretion of cyto-

kines [71].

It seems that each TLR signaling has its particular effect

on tumors. Outcomes of TLR activation not only rely on

receptors but also vary according to different tumor types.

As we described above, activation of TLR4 shows a pro-

tumorigenic effect in most tumor types such as prostate and

lung cancers [14, 46]. But mice with a mutated TLR4

develop more skin tumors than WT mice treated with a

mutagenic agent, suggesting that TLR4-dependent antitu-

mor responses are important for inhibiting tumorigenesis in

skin [72]. However, the underlying mechanism has not

been well investigated.

In addition to triggering of TLRs in tumor cells, TLR-

stimulated immune cells play a pivotal role in tumor

development and progression. For example, transfer of

macrophages with WT TLR4 to TLR4-deficient mice with

experimental metastatic melanoma reduces survival time,

but it has no effect on WT TLR4 recipient mouse, sug-

gesting that functional TLR4 on macrophages can enhance

tumor growth [14]. TLR3 engagement promotes DC mat-

uration and T cell activation [73]. Treatment of human DC

in vitro with poly(I:C12U) (rintatolimod), a modified form

of poly(I:C), results in up-regulation of a number of DC

markers, such as CD86 and MHC molecules, which are

central to antigen presentation and immune cell activation

[73]. Poly(I:C12U) induces the release of various proin-

flammatory chemokines and cytokines by DC, which are

associated with specific T cell responses and immune

regulation. Poly(I:C12U) boosts the DC mediated antigen-

specific T cell response in vitro. Importantly, poly(I:C12U)

significantly enhances prostate specific antigen-specific T

cell and antibody responses in a prostate-specific antigen

transgenic mouse model [73]. TLR3 activation of periph-

eral blood mononuclear cells significantly enhances

antibody-dependent cellular toxicity against tumors [73]. In

addition, when poly(I:C)- or imiquimod-treated tumor cells

are cocultured with cd T cells, activation of TLR3 or TLR7

on tumor cells enhances cytotoxic activity of cd T cells of

cancer patients and tumor cell lysis by human cd T cells

[74]. Moreover, in a mouse xenograft model of human

colon cancer, it has been revealed that the production of

neutrophil attracting chemokines and ensuing neutrophil

infiltration are dramatically reduced in TLR5-deficient

tumor xenografts, indicating that TLR5 signaling could be

a potential immunotherapeutic target [75]. The roles

mediated by different TLR are summarized in Table 2.

Due to the importance of TLR signaling in tumorigen-

esis, TLR agonists have potential for antitumor therapy.

Poly(A:U) has been used for treating breast or gastric

cancers [76, 77]. Imiquimod, a synthetic TLR7 ligand, was

licensed in 1997 by the US Food and Drug Administration

for the treatment of malignant tumors of the skin and

genital warts caused by human papilloma virus (HPV)

infection [78]. TLR9 ligand, CpG-ODNs, has been used in

a phase I trial of non-Hodgkin’s lymphoma [79]. Several

other synthetic TLR ligands are in clinical trial for treat-

ment of different cancers.

Expression of Toll-like receptors is associated

with the progression and prognosis of cancer

Since TLR signaling is involved in tumorigenesis, the

expression of TLRs on tumor cells is associated with

progression of cancer and disease prognosis. Consistent

with pro-tumorigenic effects of TLR4, the high expression
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of TLR4/MyD88 in colorectal cancer (CRC) is associated

with liver metastasis, earlier relapse, and poor disease-free

survival and overall survival. Thus, TLR4 is an indepen-

dent predictor of poor prognosis in patients with CRC [51,

80]. However, TLR4 expression gradually diminishes as

the prostate cancer becomes more aggressive [81]. We

have observed a decreased expression of TLR4 during

the progression of cervical neoplasia and have found that

the down-regulation of TLR4 appears to be associated with

the expression of P16INK4A which is a crucial marker of

HPV integration into host cells [82]. It is most likely that

infection factors such as HPV are involved in the regula-

tion of TLR4 expression.

The expression of TLR9 is associated with poor differ-

entiation in prostate [83], breast, and ovarian cancers [84]. It

has been found that TLR9 overexpression and stimulation

with hypomethylated DNA augment the migratory capacity

of cancer cells [84]. In addition, highly metastatic human

breast cancer cells express high levels of TLR2 in contrast

to poorly metastatic breast cancer cells and homogenous

untransformed breast cells [85]. TLR8 expression is also an

independent prognostic factor for CRC [86]. Prostate car-

cinomas with high TLR3 or TLR9 expression levels exhibit

a higher probability of biochemical recurrence [87].

Moreover, the expression levels of TLR3, TLR4 and TLR9

may indicate the aggressiveness of human breast cancer.

For example, the tumors with high TLR3 expression by

tumor cells or with high TLR4 expression by mononuclear

inflammatory cells are significantly associated with a higher

probability of metastasis [88].

The role of exogenous and endogenous Toll-like

receptor ligands in tumorigenesis

TLR signaling plays a critical role in tumorigenesis, but the

key question is what has triggered TLR signaling.

According to the current evidence, it appears that both

exogenous and endogenous TLR stimulators contribute to

the activation of TLRs.

Exogenous Toll-like receptor ligands

It is well known that chronic bacterial infection can

increase the risk of many solid tumors. Usually, this is

attributed to bacterial-caused inflammation, but the

underlying mechanism has not been well evaluated. Recent

studies demonstrate that microbial components, serving as

exogenous TLR ligands to trigger TLR signaling, induce

the production of cytokines and proangiogenic factors,

promote invasiveness and adhesiveness of the cancer cells,

and enhance tumor metastasis, which play an important

role in chronic inflammation-promoting tumor develop-

ment and progression (Fig. 1).

TLR4 ligand LPS is one of key mediators. TLR4 acti-

vation in tumor cells by LPS induces the synthesis of

various protein factors or proinflammatory cytokines, pro-

motes tumor growth, and results in resistance of tumor cells

to CTL attack and paclitaxel [21, 22]. LPS stimulation

activates the NF-jB in many tumor types, induces the

production of immunosuppressive and proangiogenic

cytokines such as TGF-b, VEGF and IL-8, enhances

Table 2 Roles of TLR signaling in tumorigenesis observed in humans and mice

TLRs Human tumors Human cells Mouse tumors Mouse cells

TLR2 Promote invasion (breast [85]) Suppress tumor development (colon [54])

TLR3 Promote metastasis (breast

[88]) and recurrence

(prostate [87])

Induce chemokines (breast [60]); inhibit

proliferation and induce apoptosis

(HNSCC, pharynx and prostate [56–58])

Induce chemokines (melanoma [60]);

suppress growth (prostate [59]);

antitumor immunity (prostate [73],

pancreas, HNSCC and lung [74])

Induce

chemokines

(melanoma

and glioma

[60])

TLR4 Promote immune escape (lung

[24]); metastasis and poor

prognosis (colon [51, 80])

Promote tumor development (HNSCC

[43]); growth (breast [45]); proliferation

and migration (colon [48]); invasion

(prostate [46]); progression and

chemoresistance (ovary [22, 44])

Inhibit tumorigenesis (skin [72]);

promote tumor development (colon

[47, 52, 53]), growth (prostate [46],

lung [14]), and immune escape (colon

[21])

Immune

suppression

(colon [21])

TLR5 Inhibit tumor growth (breast

[98]); promote tumor

necrosis and antitumor

immunity (colon [75])

Promote proliferation (stomach [97])

TLR7 Antitumor immunity (pancreas, HNSCC

and lung [74])

TLR9 Related to poor differentiation

(prostate [83], breast and

ovary [84]) and recurrence

(prostate [87])

Promote proliferation (liver [61]) and

invasion (prostate [63], lung [64, 65] and

breast [62, 66])

Inhibit growth and induce apoptosis

(neuroblastoma [69])
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apoptosis resistance, and promotes immune escape and

metastasis [24, 44, 89]. These findings clearly link LPS/

TLR4 signaling to inflammation, tumor growth, immune

escape, and chemoresistance. It has been reported that

phosphatidylinositol-30-kinase (PI3K)/Akt signaling path-

way is involved in CRC growth and progression [90].

TLR4 activation treated with LPS increases Akt phos-

phorylation in colon cancer cells [91, 92]. LPS stimulation

increases adherence of CRC cells in vitro and in vivo, and

enhances liver metastasis of human TLR4-expressing CRC

cells after intrasplenic graft of nude mice [92]. Enhanced

adherence induced by LPS could be blocked by TLR4

antagonist, PI3K inhibitor, or anti-b1 integrin blocking

antibodies. The results indicate that LPS-induced TLR4

signaling activates the PI3K/Akt pathway and promotes

downstream b1 integrin function, thereby increasing the

adhesiveness and metastatic capacity of CRC cells. This

may be the reason that infectious complications resulting

from resection of CRC elevate the risk of cancer recur-

rence and metastasis [92].

The fact that gut-derived LPS amplifies the tumorigenic

response of the liver further supports a role of exogenous

TLR ligand in tumor development [93]. The circulating

levels of LPS are elevated during tumor progression in

animal models of diethylnitrosamine (DEN)-induced he-

patocarcinogenesis, indicating that plasma endotoxin may

be a critical cofactor in chemically induced hepatocarci-

nogenesis [93]. Depletion of host microflora in rats treated

with antibiotics significantly reduces the levels of LPS in

animal plasma, the production of TNF-a and IL-6, and liver

fibrogenesis after DEN treatment. The number of detect-

able tumors, maximal diameters of tumors and the relative

liver weight significantly decrease in rats treated with

antibiotics and DEN. Ki-67 immunostaining indicates that

antibiotic-treated rats have a significantly lower level of

cell proliferation. Similarly, genetic deficiency of TLR4 in

mice greatly decreases chemically induced hepatocarcino-

genesis. These data suggest that the microbial LPS

contributes to tumor induction after DEN treatment and

that sustained LPS accumulation represents a pathological

mediator of inflammation-associated hepatocellular carci-

noma [93]. The pro-tumorigenic effect of endotoxin is

mainly due to elevated NF-jB activity in premalignant

epithelial cells, which suppresses apoptosis, thus promoting

the cell survival and subsequent tumor development [93].

It has been found that Listeria monocytogenes (Lm)

infection promotes tumor growth in a TLR2-dependent

manner. Lm activates MAPKs and NF-jB in tumor cells

Fig. 1 Potential effects of

different TLR ligands on tumor

progression and host immunity
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through TLR2 signaling, resulting in the increased pro-

duction of NO and IL-6 and increased proliferation of

tumor cells [94]. Activation of TLR2 in breast cancer cells

by peptidoglycan (PGN) from infectious bacterium

Staphylococcus aureus (PGN-SA) induces TLR2-depen-

dent NF-jB activation and secretion of IL-6 and TGF-b
and promotes the invasiveness and adhesiveness of the

cancer cells in vitro, illustrating a new link between com-

ponent of infectious bacteria and the cancer [85]. PGN-SA-

stimulated NF-jB activity results in STAT3 and Smad3

sequential activation, which contributes to invasiveness

and adhesiveness [85]. STAT3 and Smad3 were identified

as important factors responsible for malignant tumor pro-

gression [95, 96].

The role of flagellin-mediated TLR5 signaling in tumor

development is controversial. Flagellin enhances the pro-

liferation of human gastric cancer cells in a TLR5-

dependent manner [97]. But flagellin-activated TLR5

signaling in breast cancer cells inhibits cell proliferation

and an anchorage-independent growth, exhibiting a potent

antitumor activity [98]. The in vivo inhibitory effect has

been confirmed in mouse xenografts of human breast

cancer cells [98]. In addition, knockdown of TLR5

expression dramatically enhances tumor growth and

inhibits tumor necrosis in mouse xenografts of human

colon cancer. Activation of TLR5 by flagellin substantially

increases tumor necrosis, leading to significant tumor

regression [75]. A further study on other tumor types will

be valuable for the evaluation of flagellin/TLR5 signaling.

Endogenous Toll-like receptor ligands

In addition to exogenous ligands from microorganisms,

TLRs recognize the endogenous molecules released from

injured tissues, triggering an inflammatory response to

increase the risk of cancer. Thus, understanding endoge-

nous ligands-mediated TLR signaling in tumorigenesis is

becoming an important issue for tumor prevention and

therapy. It has been reported that dying tumor cells release

endogenous TLR ligands that are involved in tumor pro-

gression [14, 23].

HMGB1 is a critical mediator of ischemia-induced

inflammation. In the case of tumors, HMGB1 recognition

has a paradoxical dual effect: promoting tumor develop-

ment or triggering anti-neoplastic immune responses [13,

23]. HMGB1 released by necrotic keratinocytes recruits

inflammatory cells and triggers a TLR4-dependent

inflammatory response, promoting TLR4-mediated skin

carcinogenesis [13]. But HMGB1 released from chemo-

therapy-induced dying cancer cells activates TLR4

expressed by DCs and induces antitumor T cell immunity

[23]. Therefore, the ability of chemotherapeutic agents to

kill tumors is decreased in TLR4- and MyD88-deficient

mice. Moreover, breast cancer patients with an unfunc-

tional TLR4 allele relapse more quickly than those carrying

the normal TLR4 allele after radiotherapy and chemo-

therapy [23]. Endogenous HMGB1-mediated TLR2

activation on tumor-infiltrating myeloid DCs leads to

TLR2-dependent brain tumor regression in mice [99]. The

supernatants from the drugs-treated tumor cells specifically

activate TLR2, and specific HMGB1 inhibitor or anti-

HMGB1 antibodies can block TLR2 signaling and abolish

therapeutic efficacy in a mouse model, highlighting the

critical role of HMGB1-mediated TLR2 signaling to elicit

tumor regression [99]. Actually, treatment of radiation or

chemoagents results in release of HMGB1 from many other

cancer cells such as melanoma, small cell lung carcinoma,

and glioma cells, and therapeutic efficacy is positively

correlated to the level of circulating HMGB1 [99].

Heat shock proteins (HSPs) are a class of endogenous

TLR ligands. HSPs released from tumor cells can activate

TAMs through TLR4. HSP60, HSP70, and HSP90 are

expressed by melanoma cell K1735-M2 [14]. Pretreatment

of K1735-M2 cells with neutralization antibodies against

these molecules significantly reduces the production of

TNF-a by WT macrophages that are cocultured with

K1735-M2 cells. In contrast, K1735-M2 cells have no

effects on TNF-a production by TLR4-deficient macro-

phages. HSP/TLR4-mediated secretion of growth factors

by TAMs in turn promotes tumor growth via the NF-jB

signaling pathway [14]. Thus, HSPs from tumor cells

represent the endogenous ligands that dictate the TLR4-

dependent inflammatory response in macrophages [14].

Two members of the S100 protein family, S100A8 and

S100A9, have recently been identified as endogenous

activators of TLR4 and have been shown to promote lethal,

endotoxin-induced shock [100]. In addition to involvement

in promoting the inflammatory response to infection,

S100A8/S100A9 complex (also called calprotectin) is also

associated with tumor development and spread [101, 102].

It has been demonstrated that the S100A8/S100A9 com-

plex binds to colonic tumor cells, promoting NF-jB

activation and cell proliferation [101]. It also enhances

colitis-associated carcinogenesis in vivo [101]. Moreover,

the growth of lymphomas and sarcomas in S100A9-defi-

cient mice is significantly inhibited [102]. This effect is

attributed to a reduced generation of myeloid-derived

suppressor cells (MDSCs), which are immature myeloid

cells that inhibit DC differentiation and lead to suppression

of antitumor immune responses. Pancreatic adenocarci-

noma up-regulated factor (PAUF) has been found to be a

novel endogenous TLR2 and TLR4 ligand [103]. PAUF

promotes metastasis by regulating TLR/CXCR4 activation.

PAUF induces TLR2-mediated ERK activation to increase

expression of the pro-tumorigenic cytokines RANTES and

MIF in leukemia cells [103]. TLR4 also acts as a functional
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receptor for serum amyloid A (SAA) 3 in the pre-meta-

static lungs, and SAA3 stimulates NF-jB signaling and

facilitates metastasis [104]. In addition, small fragments of

hyaluronan induce TLR4-dependent matrix metallopro-

tease- and cytokine-expression to promote melanoma

invasiveness [105]. The extracellular matrix proteoglycan

versican from Lewis lung carcinoma (LLC) strongly

enhances LLC metastatic growth via TLR2/TLR6-medi-

ated TNF-a secretion [106].

Angiogenesis is important for the development of tumor.

The end products of lipid oxidation, x-(2-carboxyethyl)

pyrrole (CEP) as well as other related pyrroles, are generated

during inflammation and wound healing and accumulate at

high levels in highly vascularized tumors in both murine and

human melanoma [107]. Carboxyalkylpyrroles-mediated

TLR2 signaling promotes angiogenesis in hindlimb ische-

mia and wound healing models [107]. Neutralization of

endogenous carboxyalkylpyrroles diminishes tumor

angiogenesis. TLR2/MyD88 signaling is required for CEP-

induced endothelial migration [107]. In addition, peroxire-

doxin 1 (Prx1), an antioxidant and molecular chaperone, can

control prostate cancer growth through TLR4-dependent

regulation of tumor vasculature. Prx1 is overexpressed in

human prostate cancer specimens. Inhibiting Prx1 expres-

sion in prostate tumor cells reduces tumor vascular

formation and the levels of angiogenic proteins such as

VEGF within the tumor microenvironment. Prx1 induces

endothelial cell proliferation, migration, and differentiation

in a TLR4-dependent manner [108]. These findings suggest

that endogenous TLR signaling is involved in the angio-

genesis during tumorigenesis [107, 108].

Which is the most valuable player

Infection and chronic inflammation are the key factors

contributing to tumorigenesis. As we discussed above, both

exogenous and endogenous TLR stimulators can trigger an

inflammatory signaling, increasing neoplastic transforma-

tion of normal cells and regulating protumor or antitumor

responses. Given that both types of molecules exist in the

microenvironment of some tumors, such as those in the

gastrointestinal tract, genital tract and skin that are exposed

to microbes or microbial components delivered through

blood circulation, the question is, which TLR ligand is the

most valuable player (MVP) in tumorigenesis? Actually, to

our best knowledge, this important issue remains under

investigation. We believe that both exogenous and endog-

enous TLR ligands are equally important for tumor

development and progression, but one of them may play a

predominant role in a specific phase of a particular tumor

type (Fig. 2). When microorganisms or their products are

unavailable, the functional TLR signals are triggered only

by endogenous ligands. As to infection-associated tumors,

microbial components act as stimulatory molecules to sus-

tain a TLR-mediated inflammatory response. This will

benefit the elimination of pathogens and tissue repair during

Fig. 2 Exogenous and

endogenous TLR ligands are

involved in the development of

chronic inflammation-

associated cancers. Microbial

ligands activate TLRs and

induce a chronic inflammation,

resulting in tissue damage and

cell transformation. Tumor cells

and damaged cells/tissues

release endogenous TLR

ligands, which trigger TLRs

expressed on tumor cells and

immune cells such as dendritic

cells and macrophages and

regulate the progression or

regression of tumors through the

induction of cytokines and

growth factors and modulation

of antitumor immunity
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early phases of infection. But chronic inflammation and the

ensuing release of endogenous molecules by inflamed cells

promote cell transformation and carcinogenesis. Necrotic

tumor cells further liberate endogenous TLR ligands,

enhancing tumor cell proliferation and survival, and regu-

lating the antitumor immune response.

Conclusion remarks

TLRs detect microbial infection and trigger an immune

response to eliminate pathogens. In addition to microbial

components, they respond to a great variety of host-derived

molecules and regulate many pathological processes. Thus,

both microbial and host-derived components contribute to

the activation of TLRs. Much evidence indicates that TLR

signaling is involved in tumorigenesis and associated with

tumor development, progression, and prognosis.

Although a link between TLRs, inflammation, and car-

cinogenesis has been drawn, a number of questions still

remain to be addressed. First, we still do not know exactly

how much the TLR-mediated signaling contributes to the

development of chronic inflammation-associated tumor.

Understanding the underlying mechanism will facilitate the

development of a new strategy for tumor therapy. Next,

although accumulating evidence supports that both exoge-

nous and endogenous TLR ligands play an important role in

tumorigenesis, we do not know which is the major actor or

the MVP. Current studies focus on the exogenous or

endogenous TLR signaling independently, but their rela-

tionship or specific effects on tumorigenesis and tumor

progression have not been investigated. Do they function

sequentially or synergistically? Are TLRs able to discrim-

inate exogenous ligands from endogenous ligands and

respond differently? Moreover, according to previous

studies, several endogenous TLR ligands are obviously

implicated in tumor pathogenesis. But most of these host-

derived molecules are the crucial mediators of non-infec-

tious inflammation such as ischemia/reperfusion injury. Are

there any tumor or tumor type-specific endogenous TLR

ligands? Even the same ligand, such as HMGB1, can both

promote tumor development while simultaneously activat-

ing the antitumor immunity. What is the underlying

mechanism? In addition, we notice that the engagement of

various TLRs may induce totally different biological

effects. For example, TLR4 signaling usually promotes

tumor growth, whereas TLR2 activation protects mice from

tumor development. Why does different TLR signaling

result in an opposite outcome? More attention should be

paid to this. It should be mentioned here that some TLR

ligands can also be recognized by other receptors except for

TLRs. For example, the nucleotide binding oligomerization

domain (NOD) receptors recognize specific motifs within

the PGN. Poly(I:C) is recognized by TLR3 and cytosolic

receptor RIG-I. HMGB1 can stimulate multiple receptors

including receptor for advanced glycation end products

(RAGE) and TLR4. Thus, comprehensive studies should be

carried out to discriminate functions mediated by different

receptors. We believe that all these important issues will be

a frontier field of TLR study in the future. Understanding

the role of exogenous and endogenous TLR ligands in

tumorigenesis is of great value for tumor therapy.
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