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Abstract Transmissible spongiform encephalopathies

(TSEs) are neurodegenerative diseases associated with

progressive oligo- and multimerization of the prion protein

(PrPC), its conformational conversion, aggregation and

precipitation. We recently proposed that PrPC serves as a

cell surface scaffold protein for a variety of signaling

modules, the effects of which translate into wide-range

functional consequences. Here we review evidence for

allosteric functions of PrPC, which constitute a common

property of scaffold proteins. The available data suggest

that allosteric effects among PrPC and its partners are

involved in the assembly of multi-component signaling

modules at the cell surface, impose upon both physiolog-

ical and pathological conformational responses of PrPC,

and that allosteric dysfunction of PrPC has the potential to

entail progressive signal corruption. These properties may

be germane both to physiological roles of PrPC, as well as

to the pathogenesis of the TSEs and other degenerative/

non-communicable diseases.
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Introduction

The prion protein (PrPC) was discovered and characterized

amid the search for the infectious pathogen involved in the

transmissible spongiform encephalopathies (TSEs), a

family of severe, still incurable and invariably fatal neu-

rodegenerative diseases [1, 2]. Studies of the pathogenesis

of TSEs pointed to the central role of an abnormal con-

former of PrPC because of changes in the secondary

structure of this protein [1, 3]. The infectious pathogen was

designated prion, an acronym for proteinaceous infectious

only, after which PrPC was named, and that also led to the

alternative term ‘prion diseases’ to denominate TSEs [4].

The cognitive and motor signs and symptoms of the

TSEs are attributed to progressive neurodegeneration,

associated with oligo- and multimerization, aggregation,

occasional amyloid fibrillization, and precipitation of the

abnormal protein conformer [5, 6]. In line with present

trends in Alzheimer’s disease [7, 8], current thinking favors

the hypothesis that TSEs are caused by protein oligomers

within a certain range of sizes, on their way to eventually

precipitate as the relatively large, compact deposits

detectable by light microscopical examination of autopsy

specimens [5, 9, 10].

Clinical assays of new treatments for prion diseases

have been so far designed on the basis of robust therapeutic

effects in prion-infected cell cultures, mostly related to

either the prevention or disassembly of aggregates of the

abnormal conformer of PrPC. Heretofore the results have

been disappointing [11–13]. A significant hurdle is the

absence of reliable pathognomonic markers of the TSEs in

living patients [14]. Postmortem confirmation of diagnosis

is required, through the observation of end-stage spongiosis

and cell death in brain tissue, together with immunohisto-

chemical detection of compact, insoluble and protease-
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resistant aggregates of the abnormal conformer of PrPC

[15]. Notably, neuron death, the immunohistopathological

marker, and the neurodegenerative disease proper often do

not fit together in autopsy specimens [16–18].

An additional, recurrent and frequently underappreciated

issue in experimental approaches is the variability of the

kinetics of formation of the aggregated, presumably toxic

forms of the prion protein in vitro, and the uncertain corre-

lation between those and the actual rates of building up their

counterparts in human TSEs, or even in experimental animal

models [19–26]. Survival of TSE patients is of the order of

several months after diagnosis, varies among distinct forms

of TSE [27, 28], and the events required to produce diag-

nostic symptoms are still unclear. Also, the time courses of

experimental approaches may differ from those of the

corresponding TSEs by several orders of magnitude. It is,

therefore, still difficult to equate human prion diseases with

the corresponding animal models, not to mention the

responses of cell lines to prions in vitro.

Despite significant advances in the field, fundamental

questions remain unanswered [3, 29–33]. Unknown vari-

ables include the mechanisms of conformational conversion

of PrPC into prions; the events that cause neuronal dys-

function and degeneration; the signal transfer molecules that

transduce the pathogenic signals derived from the progres-

sive aggregation of toxic species; the roles of either

dysfunction or death of neurons and glia in the diverse

symptoms associated with TSEs; the differential topography

of brain lesions associated with distinct TSEs; why specific

mutations in the prion gene (PRNP) lead to conformational

conversion; why specific mutations associate with distinct

TSEs; the determinants of the so-called prion strains; the

role, if any, of nucleic acids in the composition of prions; and

last, but not least, the functional properties of the normal

prion protein, together with the role of loss of its func-

tion(s) in the pathogenesis of the TSEs.

We have proposed that the prion protein functions as a

cell surface scaffold for the assembly of signaling modules,

based on which selective interactions with many ligands

and transmembrane signaling pathways translate into wide-

range consequences upon both physiology and behavior

[34]. The assembly of molecular complexes both entails

and depends on orchestrated allosteric structural changes

propagated in the various components of the complex

[35, 36], and scaffold proteins are proposed to act as

allosteric effectors on their partners. Thus, they do not only

allow the proximity between ligands, but may also impose

on the conformation of those binding molecules, thereby

affecting their activity [37]. This review attempts to pro-

vide a framework for the study of such allosteric properties

of PrPC, which may be germane both to the roles of the

prion protein in physiological context, as well as to the

pathogenesis of the TSEs.

Structure, topology and trafficking of the prion protein

Mammalian prion protein (Fig. 1) is found at the cell surface

as a glycosylated, GPI-anchored protein of 208–209 amino

acids. PrPC contains an N-terminal flexible, random coil

sequence comprising approximately residues 23–124,

which is flexible and disordered in solution [38, 39], and a

C-terminal globular domain of about 100 amino acids. The

latter are arranged in three a-helices corresponding to resi-

dues 144–154, 173–194 and 200–228, interspersed with an

antiparallel b-pleated sheet formed by b-strands at residues

128–131 and 161–164 in human PrP. A single disulfide bond

connects cysteine residues 179 and 214 [39].

PrPC can be non-, mono- or di-glycosylated with a

variety of N-glycans in one residue contained within

a-helix 2 and another between a-helices 2 and 3 [40].

Protein glycosylation reportedly affects the recognition of

various species of PrPC by monoclonal antibodies [41–43],

as well as PrPC trafficking and biophysical features [44–46].

Similar to other GPI-anchored proteins, PrPC molecules

attach to low-density, detergent-insoluble membrane

domains (DRM) dubbed ‘membrane rafts,’ rich in choles-

terol and sphingolipids [47–55]. Membrane attachment

through the GPI anchor, as well as other PrPC-membrane

interactions, modulate, if only slightly, the structure of the

protein [56–59].

A critical issue is that association of PrPC with lipid rafts

is highly dynamic [60]. A large fraction of the protein is

found at any time in non-raft membrane, on its way to

A

C
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E

F

B

extracellular medium

Fig. 1 The cell surface, GPI-anchored prion protein. Drawing

approximately to scale of the prion protein, showing (a) the

N-terminal flexible domain; (b) location of the octapeptide repeat

domain; (c) the C-terminal globular domain; (d) glycosylation chains,

representing a di-glycosylated form; (e) GPI-anchor; (f) plasma

membrane. Amino acid sequences are described in the legend to

Fig. 4. Globular domain is depicted with Pymol software, from PDB

record 1XYX of mouse PrP121-231; GPI anchor and glycosylation

residues are from [142]. Modified from [239]
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endocytosis [61]. Conversely, cross-linking can induce the

recruitment of PrPC from a large pool of non-raft to raft

membrane domains [62]. Circulation of PrPC between the

cell surface and intracellular compartments is rapid and

cyclic [61], and may follow various pathways (reviewed in

[34, 60]). Some of the endocytosed PrPC is degraded by

lysosomes, but most molecules return to the cell surface for

several rounds of recycling. In addition, part of the recy-

cled PrPC may be secreted to the extracellular medium

associated with exosomes derived from multi-vesicular

bodies [63, 64].

The low-density lipoprotein receptor-related protein

(LRP1) is required for clathrin-mediated PrPC endocytosis in

individual cells [49, 51, 65], although its role upon the traf-

ficking of PrPC in organized tissue is still unclear (R.J. Morris,

personal communication). Other transmembrane proteins,

such as the laminin receptor precursor (LRP), may also play a

role in the subcellular traffic of PrPC [66]. Endocytosis of PrPC

can be regulated by Cu2? ions [67, 68], by its binding partner

hop/STI1 [69], and by sulfated glycans and suramin [70, 71],

as well as by antibody cross-linking [72].

Trafficking of the prion protein, particularly along

endocytic pathways, allows the encounter of significant

variations of local pH. It has been argued that the pH does

not significantly affect the three-dimensional structure of

PrPC [73]. However, changes in pH were shown to modify

the stability of the protein [74, 75], and a folding inter-

mediate was isolated by incubation of PrPC at acidic pH

[73–76]. Previous work showed that the conformation of

the C-terminal domain (from residue 90) of PrPC is sen-

sitive to pH [56, 74, 76–78]. Acidic pH also imparts

changes in antibody binding in the N-terminal flexible

domain [78]. Changes in conformation along the progres-

sive acidification of trafficking endocytic vesicles may be

relevant for functional properties of PrPC, such as the

selection of partners as well as binding affinity.

Minor truncated, transmembrane and cytosolic forms of

PrPC were described, usually following abnormal treat-

ments or overexpression in cultured cells. Proteolytic

cleavage of PrPC may occur, and clipping usually removes

the N-terminal region, leaving a GPI-anchored, truncated

C-terminal domain of the protein [79]. PrPC is also released

in a soluble form [80, 81], which may be relevant for the

modified disease characteristics found associated with

anchorless forms of the prion protein in mice [82–84]. Still,

the cell surface, GPI-anchored form constitutes almost all

of PrPC found during its normal life cycle [49].

The prion protein as a cell surface scaffold protein

Work in various laboratories showed that: (1) the engage-

ment, cross-linking, deletion, overexpression or otherwise

change in the content and distribution of PrPC affects

proliferation, differentiation, sensitivity to cell death and

additional cellular properties not only of neurons, but also

of other cells and tissues; (2) multiple signal transduction

pathways are involved in such biological responses;

(3) several metal ions, proteins, glycoconjugates and

nucleic acids bind to PrPC in either its native, normal form

or in the anomalous conformation; (4) in some cases, such

ligands induce PrPC-dependent cellular responses in

physiological context, and their binding sites have been

mapped in both the PrPC molecule and the ligand; (5) PrPC

undergoes multiple cycles of endocytosis and retrieval to

the cell surface, before finally entering a degradation route

at a relatively fast turnover rate ([34] for review).

The lack of an overt phenotype in the first reported

PrPC-null mice [85] delayed the recognition of physiolog-

ical properties of the prion protein, and curtailed the

hypothesis that the corruption or loss of these functions

may hold important clues as to the pathogenesis of TSEs

[86]. Further work, nonetheless, eventually disclosed a

number of functional consequences of deletion of the prion

protein [34, 87].

In particular, evidence is now compelling that the prion

protein is involved in signal transduction. Early work

showed that engagement of PrPC leads to activation of the

soluble tyrosine kinase Fyn, [88], and of the cyclic AMP/

protein kinase A and Erk MAP kinase pathways, [89, 90].

The latter work led to the identification of hop/STI1 as a

binding partner of PrPC and the mapping of their cognate

binding domains [90].

Engagement of PrPC with hop/STI1 leads to neuropro-

tection through the cAMP/PKA pathway and neurite

outgrowth through the ERK pathway, and endocytosis is

required for the latter, but not for the former signaling

event [69, 91, 92]. Thus, engagement of PrPC leads to the

activation of distinct intracellular signaling pathways with

differing biological effects, similar to most membrane

receptor-mediated signal transfer systems [93, 94]. A

noncommittal interpretation of the functional interaction of

hop/STI1 and PrPC, thus, ascribed the role of a neurotro-

phic factor for the co-chaperone, whereas PrPC may play

the role of either a receptor or co-receptor for secreted hop/

STI1 [95]. Similar neurotrophic effects follow the binding

of PrPC to a defined domain within the laminin gamma

chain [96], as well as to vitronectin [97].

Although the physiological relevance of certain cellular

responses and ligands has been challenged [98], and in

some cases the topology of the presumptive ligands seems

inconsistent with interactions in living cells [34], compel-

ling evidence accumulated that PrPC may interact with

multiple partners [34, 99, 100], particularly at the cell

surface. Indeed, several other transmembrane proteins,

such as the neural cell adhesion molecule (N-CAM) and
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the laminin receptor precursor/laminin receptor (LRP/LR),

had been reported both to bind to and to mediate PrPC-

dependent signals [34, 66, 101].

An ongoing phage display screening (T.A. Americo,

M.H. Magdesian and R. Linden, unpublished) has identi-

fied several new candidate PrPC-binding proteins, of which

group I metabotropic glutamate receptors (mGluR1 and

mGluR5) were validated as mediators of calcium signals

triggered by the interaction of laminin gamma chain with

the prion protein [102]. Another PrPC phage display hit, the

a7 nicotinic acetylcholine receptor (a7nAChR), was also

shown to mediate calcium signals that follow the interac-

tion of PrPC with hop/STI1 [103].

The demonstrations of consistent signaling behavior of

PrPC in multiple scenarios reiterate the fundamental ques-

tion as to how a GPI-anchored protein mediates such

context- and cell type-specific signal transfer across the

plasma membrane. Molecular interactions involved in

varied, PrPC-mediated signaling events probably differ

among distinct cell types because of the availability of the

specific binding partners at the surface and extracellular

matrix of the various cells. Importantly, although some

overlap has been occasionally shown, spatially segregated

binding sites may allow the simultaneous interaction of

several such ligands with PrPC [34].

Our concept of the prion protein as a cell surface scaf-

fold protein [34] both follows and extends the current

definition of scaffold proteins, which provide physical

contact and allosteric interaction of intracellular compo-

nents of signaling pathways (reviewed in [35, 37]). This

hypothesis accounts for both its association with multiple

partners, multiple signals and multiple biological respon-

ses, as well as with the functional consequences of the

presence of PrPC at the cell surface in the immune system

and other organs besides the nervous system. It also pre-

dicts that the functional properties of PrPC depend on the

presence of specific PrPC-binding partners at the cell sur-

face, stoichiometric relationships among PrPC and its

partners, and trafficking of PrPC relative to all members of

putative signaling complexes (Fig. 2).

Multiple binding partners and allosteric function

of the prion protein

High-resolution structural data are available for the prion

protein of various species, as determined both by NMR and

by protein crystallography, but none in the presence of

PrPC ligands. Instead, only limited information is available

concerning the latter’s probable binding domains in PrPC.

Their distribution along the entire PrPC molecule allows for

non-competitive binding mechanisms [34], but steric

interaction between ligands cannot be ruled out, which

might lead to competition even at quite separate regions

along the primary structure of PrPC. Moreover, it is not yet

possible to infer the consequences of binding on the con-

formation of PrPC, which might result in rearrangement of

protein domains.

It follows that many of the hypotheses about the

mechanisms and consequences of ligand binding remain

speculative, because they rest solely upon the currently

available, high-resolution structures of monomeric, isolated

PrPC. Our aim here is, nevertheless, to stimulate an

approach to the problem of how PrPC deals with multiple

partners, and the consequences of the dynamic making and

breaking of such multicomponent signaling assemblies.

The following sections will discuss whether, and to what

extent, the concept of the prion protein as a cell surface

scaffold protein may fit the hypothesis of allosteric regu-

lation of signal transduction in both physiological and

pathophysiological contexts.

Prion protein assembly in the membrane: monomer

or homodimer?

The self-assembly of misfolded PrP molecules is a widely

accepted model of the infectious scrapie agent [104].

A

DC

B

PrPC
L1

L3 L2

PrPC

L1

L3 L2

in

ex

Fig. 2 Recruitment of a PrPC-mediated signaling complex. The

diagram illustrates a model of the recruitment of multicomponent cell

surface complexes dependent on the presence of monomeric prion

protein. a PrPC is present at the cell surface, together with nearby,

non-interacting ligands, which may be either extracellular (ex)

molecules (L1) or membrane proteins (L2, L3); b primary ligand L1

binds PrPC, leading to c conformational changes in either PrPC or L1,

or both; d membrane partners of either PrPC (L2) or of the primary

ligand L1 (L3) bind to their partners and transfer signals into the cell

(in). Allosteric interactions are required to allow progression from

b to c
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However, the mechanisms of conformational conversion

are still poorly defined [105]. Moreover, the supramolec-

ular assembly of the normal prion protein remains elusive.

It has long been assumed that PrPC is monomeric, based

on both physicochemical studies [106–112] as well as NMR

structures in solution [38, 39, 73, 113–119]. Notwith-

standing, the typical conditions for either physicochemical

or NMR studies are usually far from physiological, such as

the lack of glycosylation, the use of partial constructs

instead of the full-length protein, physical and chemical

variables, as well as the absence of physiological interac-

tions with putative binding molecules and cells at close

range. Furthermore, membrane anchoring restricts diffusion

to a two-dimensional space and ultimately results in the

decrease of the dissociation constant of membrane-

anchored protein complexes [120, 121].

In contrast, dimerization of native, rather than recom-

binant, prion protein has been suggested [122], and

interactome studies support the hypothesis that normal

PrPC can undergo self-assemby [99, 123]. PrPC structure

has been solved also by protein crystallography, and data

are consistent with extensive dimerization interfaces

between monomers (Table 1), either from symmetry-rela-

ted chains or by the swapping of helix 3 between

monomers (Fig. 3). These data suggest a possible func-

tional role for such interfaces in the self-assembly of the

prion protein into dimers (Table 1), the molecular mecha-

nisms of which await full elucidation. It should be stressed

that a dimeric arrangement of the prion protein at the cell

surface of normal cells may impart stoichiometric con-

straints upon signaling complexes scaffolded by PrPC.

Thus, biophysical data support the potential of PrPC to

form functional self-oligomers regardless of conforma-

tional conversion, and an allosteric function may involve

both homo-oligomerization and dissociation equilibria in

the extracellular microenvironment of the membrane-

anchored PrPC. This may have important physiological

consequences, and indeed, evidence for dimerization of

the prion protein in trans has been reported, whereby

capping of PrPC induced by antibody cross-linking leads to

PrPC-mediated homophilic cell adhesion required for

the stability of adherens cell junctions during embryogen-

esis, through a mechanism mediated by reggie/flotillin

membrane-associated molecules [124].

Copper binding and structural changes of PrPC

Copper is a well-characterized ligand of the prion protein

[125, 126], the functions of which are still unclear, though

deemed of major physiological and pathophysiological

importance [127–129]. Here we focus on copper-induced

modifications of the structure of the prion protein.

Human PrPC can bind Cu2? at a minimum of five sites,

four of which are located in the octarepeat domain at the

N-terminus and coordinate one Cu2? ion each; an addi-

tional Cu2? binding site is composed of His96 and His111,

and can bind two copper ions [130, 131]. Interaction with

copper reportedly affects the structure and folding stability

of the prion protein [132], and Cu2? binding leads to

structuring of the N-terminal domain [133, 134]. It has

been reported that the octarepeat segment PrP61–84
C is well

structured in solution in the absence of divalent cations

[135], with a conformation similar to the Cu2?-bound

complex [127, 136]. Further molecular dynamics simula-

tion of the N-terminal domain of human PrP (residues

23–120) loaded with four or five copper ions led to an even

more rigid conformation in the octapeptide repeats [134].

Table 1 Crystal structures of the prion protein consistent with dimeric assembly

PDB ID Description Buried surface

area (Å2)a
Reference

3HAF.pdb–Human

PrP90–231
C

Monomer in the asymmetric unit, with helix 3 swap between both monomers 6,660 [236]

1I4 M.PDB–

Human

PrP119–226
C

Monomer in the asymmetric unit, with helix 3 swap between both monomers 6,800 [237]

3HJ5.PDB–Human

PrP90–231
C

Dimer in the asymmetric unit, with helix 3 swap between both monomers 6,310 [236]

3O79.pdb–Rabbit

PrP127–231
C

Dimer in the asymmetric unit; extensive interaction through H2 and H2-loop-H3; symmetry-

related monomers performs only small, local interaction

3,130 [238]

3HER.pdb–Human

PrP90–231
C

Dimer in the asymmetric unit; subunits disposition in the asymmetric unit reveals

supperposition with helix-3 swapped dimers

1,302 [236]

3HEQ.pdb–Human

PrP90–231
C

Dimer in the asymmetric unit; subunits disposition in the asymmetric unit reveals

supperposition with helix-3 swapped dimers

1,102 [236]

a Buried surface area was calculated with PISA (http://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver), based on the assemblies shown in

Fig. 3
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This suggests that, depending on the copper/PrPC molar

ratio, the dynamics of PrP is changed, which may alter the

availability of the N-terminal domain to other ligands.

Recent studies of full-length recombinant PrP (rPrP)

showed that copper binding induces both novel interactions

between the flexible N-terminal and globular C-terminal of

PrPC, as well as a compaction of the prion protein, without

signs of aggregation at physiological temperature [137].

These data offer new insights into copper-induced structural

transitions of rPrP and suggest that the interaction of PrPC

with ligands recognized by either the domain PrP144–147
C in

a-helix 1, as well as by the domain PrP174–185
C in a-helix 2,

may be allosterically affected by copper binding.

It has also been suggested that copper binding leads to

dissociation of PrPC from a lipid raft-resident partner, thus

initiating the former’s journey towards non-raft membrane

domains, on its way to endocytosis through clathrin-coated

vesicles [138]. In addition, glycosaminoglycans (GAGs)

bind PrPC, and the heparan sulfate-derived, GPI-anchored

GAG glypican-1 (Gpc-1) interacts with copper-loaded

PrPC [139, 140]. N2a neuroblastoma cells co-internalize

PrPC and Gpc-1 upon induction by copper, indicating that

copper loading of PrPC may impose on the endocytosis of a

distinct GPI-anchored molecule.

In turn, binding of PrPC to Cu2? may be influenced by

the glycosylation pattern of the prion protein. Full-length,

non-glycosylated PrPC from sheep brain bound to IMAC

resin loaded with either copper or cobalt ions, with higher

efficiency than glycosylated forms [141]. This suggests that

the access to the copper-binding sites of PrPC is controlled

by the level of glycosylation of the prion protein. This may

also affect other PrPC-binding partners, either through

analogous allosteric effects or through steric hindrance by

the relatively bulky sugar moieties attached to the prion

protein [142].

The interaction of recombinant PrP with the constitutive

chaperone Hsc70 was investigated in the presence of

copper ions at differing pH values, using an ELISA-based

assay [143]. Binding of native PrP to Hsc70 was the

greatest at low pH, thus disclosing an allosteric effect of

protonation upon rPrP. At low pH, pre-incubation with

Cu2? also increased the binding of Hsc70 to rPrP. Two

regions within the PrPC globular domain were mapped as

the main Hsc70-binding sites at acidic pH, thus high-

lighting the allosteric effect of both Cu2? and protonation.

The physiological relevance of this interaction is, however,

questionable, because measurements were carried out in

vitro, using recombinant, non-glycosylated PrPC, and the

binding of extracellular PrPC to Hsc70 has not been vali-

dated either in vivo or ex vivo. On the other hand, a

cytosolyic form of PrPC, which accumulates abnormally

upon proteasome inhibition, often forms aggregates that

contain Hsc70 [144]. Such molecular chaperones may, in

fact, participate in conformational transitions of PrP or

protein-protein interactions that lead to TSEs.

Nucleic acids as molecular partners of the prion protein

Nucleic acids (NA) have long been shown to bind to and lead

to aggregation of PrPC [145]. The prion protein is, however,

prone to transient aggregation upon binding to polyanions

[146–149]. Thus, binding to NA was initially thought of as

non-specific, such as typically found for NA-binding pro-

teins and non-specific DNAs, or even between interacting

polycations and polyanions [150]. However, further studies

A B

Fig. 3 Schematic diagram of the interchange between PrPC mono-

mers and dimers. The diagram is based on PrPC crystal structures and

shows hypothetical conformational transitions among two monomeric

forms (A for 3HEQ.pdb and B for 1I4 M.pdb) and three possible

dimers, as derived from their crystal structures. In addition to the

interchain contacts stabilizing such dimers, the association between

these monomers would result in the exclusion of surface area to the

solvent. The a-helix of each PrPC monomer is shown in the dimers by

red or cyan colors
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showed that nucleic acid binding to PrPC is selective [147],

and that both aggregation and its time-dependent reversal are

tightly regulated, and depend on ligand stoichiometry [151,

152]. In fact, at certain PrPC:NA ratios a soluble complex is

formed, in which the prion protein features a conformation

similar to pure PrPC [148, 152]. Thus, the binding of mem-

brane-anchored PrPC to NA at the cell surface may not

necessarily prompt amyloid formation, and functional

properties of the prion protein may be preserved.

Solution-binding studies in equilibrium, achieved after

complete reversal of the transient aggregation induced by

NA, indicated that small double-stranded DNA binds to the

C-terminal domain of PrPC at a 1:1 ratio, accompanied by

structural changes in the N-terminal domain [152]. This

event is favored by acidification [75], in a condition that

produces only minor conformational changes of the

C-terminal domain of PrPC [73].

Current data indicate that the binding of NA to either the

N- or C-terminals of PrPC results in substantial rearrange-

ment of both protein and nucleic acid [147, 148, 151–153].

Although the NA binding domain in PrPC is still unknown,

predictive analysis with dbd-PSSM [154] points to a

potential for the PrP153–174
C domain to recognize DNA (A.F.

Marques and L.M.T.R. Lima, unpublished results). Inter-

estingly, this domain of PrPC has a high degree of identity

with human DNA polymerases 1CLQ.pdb and 1IG9.pdb,

differing only in 4 out of 22 amino acids at a region in

close proximity to the active site of the latter enzymes.

Attempts made to identify a PrPC-binding consensus

sequence, with the use of various DNA and RNA aptamers,

reported NA:PrPC binding affinities in the nanomolar

concentration range [155], consistent with the typical

affinity of regulatory proteins. Moreover, the strict depen-

dence of binding affinity upon both NA sequence and the

investigated PrPC domain is also consistent with the typical

behavior of classic NA-binding proteins [156–158].

Possible effects of copper, which induces structural gains

in the N-terminal domain (see above), upon the interaction

of PrPC with NA remain to be investigated.

Interaction of glycosaminoglycans with the prion

protein

Glycosaminoglycans have been implicated in the patho-

genesis of prion diseases [159–164]. It was shown that

GAGs bind the prion protein both when the latter is

anchored at the plasma membrane, as well as in a non-

glycosylated form in vitro [165, 166], and it was proposed

that GAGs in general interact with PrPC through its

N-terminal domain [166, 167].

Interaction of the N-terminal of PrPC with pentosan

polysulfate (PPS) led to structuring of the octarepeat

domain, exposing a hydrophobic surface composed of

aligned tryptophan side chains [168]. Similar to the case of

nucleic acids, it remains to be investigated whether copper

loading of PrP would affect the binding of GAGs, as well

as conformational changes [168].

Conflicting results have been reported of the interaction

of heparin and heparan sulfate with PrPC (reviewed in

[164]). Certain studies suggested that these GAGs prevent

PrP aggregation and conformational conversion [169, 170].

Other studies, in contrast, reported that GAGs either induce

or accelerate the structural conversion implicated in TSEs

[161, 162].

Recently, the interaction of recombinant prion protein

with low molecular weight heparin was investigated as a

function of pH. Several binding sites for heparin had

already been located in the N-terminal domain of PrPC

(reviewed in [34]), but, surprisingly, at pH 5.0, PrP pre-

sented 2 heparin-binding sites, in contrast with the unique

site found at pH 7.4 [148]. This result implies that changes

in pH significantly affect the structure of the complex

formed by PrPC and GAGs.

As pointed out above, the evidence for pH-dependence

of PrPC:heparin interaction may be otherwise relevant for

functional properties of PrPC along progressively acidic

endocytic compartments [171, 172], such as the selective

requirement of endocytosis for the activation of MAP

kinases after binding of hop/STI1 to PrPC [91, 92]. It may

also be important for putative pH-dependent effects among

microdomains with distinct local pH determinants, such as

negatively charged oligosaccharides attached to surface

glycoproteins, including PrPC itself [173, 174].

Reciprocal remodeling upon binding of PrPC

and hop/STI-1

Several spectroscopic techniques provided evidence that

interaction of PrPC with the co-chaperone hop/STI1 indu-

ces reciprocal conformational changes in both proteins

[175]. Thus, the binding of murine, recombinant PrPC to

recombinant hop/STI1 entailed a loss in a-helical second-

ary structure of PrPC, at least part of which was located in

a-helix 1 (PrP143–153
C ). This may, for example, affect the

interaction of PrPC with ligands such as LPR and N-CAM,

which are transmembrane proteins that bind a-helix 1, and

transduce PrPC-dependent signals [66, 176] (Fig. 4a–c).

In turn, three-dimensional, low-resolution models

generated from small angle X-ray scattering (SAXS)

measurements demonstrated a compaction of the C-termi-

nus of hop/STI1 upon binding (Fig. 4d, e). Such tertiary

structural changes may either attract or repel ligands of

hop/STI1 proper, thus engaging higher order components

of the signaling complex in addition to PrPC ligands.
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Pertaining to this issue, our data indicated that either the

full-length hop/STI1 or a 16 amino acid peptide containing

the sequence cognate to PrPC (hop/STI1230–245) induced

similar changes in the secondary structure of PrPC [175].

This may allow either the full ligand hop/STI1 or the

peptide alone to engage the same PrPC ligand(s) and pro-

duce the same intracellular signals (Fig. 5). Indeed, in

various cell types, either the full-length hop/STI1 or the

hop/STI1230–245 peptide produced similar PrPC-dependent

neurotrophic effects [89–91, 177] (Fig. 6a), suggesting that

signaling was transferred by a PrPC ligand. As discussed

above, one such ligand, detected both by phage display

(T.A. Americo et al., unpublished) and validated by

biochemical methods may be the a7 nicotinic acetylcholine

receptor [103].

Notably, however, whereas full-length hop/STI1

induced proliferation of glioblastoma cells in culture, and

deletion of the sequence hop/STI1230–245 prevented this

effect [178], the hop/STI1230-245 peptide alone did not

induce glioma cell proliferation (S. Kahn et al., unpub-

lished observations) (Fig. 6b). Accordingly, it was recently

shown that hop/STI1 enhanced self-renewal of stem/pro-

genitor cells through its interaction with PrPC, and, again,

the hop/STI1230–245 peptide by itself had no effect [179]. A

likely explanation for these data is that signaling leading to

proliferation of either the glioma or the stem/progenitor

Fig. 4 Reciprocal remodeling

of binding partners PrPC and

hop/STI1. a Diagram of the

prion protein, with indicated

domains and sequences of

amino acids in mouse PrPC (SP,

signal peptide 1–22; OR,

octapeptide repeats 51–91; CC,

charged cluster 95–110; HC,

hydrophobic core 112–133; H1,

H2, H3, a-helices 144–153,

172–194 and 200–224,

respectively; GPIp, GPI-

anchoring signal 231–254),

glycosylation sites (stars 180

and 196), and location of

binding domains (double arrows
with amino acid sequences in

parentheses) of hop/STI1 (blue),

neural cell adhesion molecule

(N-CAM, green) and the

laminin receptor precursor/

laminin receptor (LRP/LR, red);

b, c tri-dimensional depiction of

the globular domain of PrPC,

highlighting the binding

domains indicated in a with the

same colors; spectrometric

techniques unraveled changes in

alpha-helix 1 upon binding of

hop/STI1230-245 to PrPC. The

flexible N-terminal tail was

omitted for clarity; d, e low-

resolution models (sets of grey
spheres) of either hop/STI1

alone (d), or the hop/STI1:PrPC

complex (e), generated from

SAXS measurements, reveal a

compaction of the tertiary

structure of hop/STI1 upon

binding to PrPC (arrow points to

PrPC, where the globular

domain is shown in yellow and

the flexible N-terminal tail is

shown in pink). Modified from

[34, 175, 240]
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cells depends on the binding of hop/STI1 to PrPC, but

transmembrane signal transfer requires the recruitment of a

hop/STI1 ligand (Fig. 7). An ongoing hop/STI1 phage

display screening (M. Magdesian, R. Linden et al.,

unpublished) has identified several potential candidates for

such signal transfer, which are currently under scrutiny.

It should also be noted that extracellular hop/STI1 may

induce biological effects irrespective of the presence of the

prion protein. Thus, either full-length hop/STI1 or a

recombinant protein lacking the PrPC-binding domain (hop/

STI1D230–245) equally reduced the proliferation of retinal

progenitor cells in either wild-type or PrPC-null retinas in

vitro [180], and a similar result was reported for cultures of

brain-derived astrocytes [181]. In addition, antibodies

against full-length hop/STI1 prevented cell death of distinct

retinal cell types induced by differing means, in either wild-

type or PrPC-null retinas in vitro, whereas antibodies to the

PrPC-binding domain hop/STI1230–245 did not [180]. The

simplest interpretation for these findings is that hop/STI1

may, by itself, activate transmembrane signal transfer

molecules irrespective of PrPC (Fig. 8a).

However, in neither of the studies above nor, for that

matter, in most studies comparing biological effects

between wild-type or PrPC-null cells have kinetic para-

meters been thoroughly examined. In fact, the conditions in

which antibodies to full-length hop/STI1, but not to the

PrPC-binding domain, prevented cell death induced by

blockade of protein synthesis [180], were the same in

which increased levels of either the full-length hop/STI1 or

only of the PrPC-binding peptide hop/STI1230-245 produced

a PrPC-dependent neuroprotective effect [90]. The results,

therefore, suggest that the hop/STI1 protein may have

PrPC-dependent, neuroprotective effects, as well as PrPC-

independent, neurodegenerative effects on the same cells.

It is possible that transmembrane transfer of either

cytodegenerative or cytoprotective signals actually

involves the same group of molecules, but the relative

concentrations of extracellular hop/STI1, PrPC, as well as

their ligands dictates the final result (Fig. 8b, c). The

conflicting signals may either activate distinct downstream

pathways or, alternatively, interact due to intracellular

networking of multiple signal transfer molecules, condi-

tioned by allosteric effects at the cell surface (Fig. 8c, d).

The overall data are, thus, consistent with biologically

relevant, allosteric interaction of PrPC and hop/STI1,

involving ligands of both partners, and fits the concept that

PrPC scaffolds multicomponent, cell surface signaling

complexes [34]. Further studies, especially of kinetic

parameters and stoichiometric requirements of signal

transduction, are warranted to critically test this hypothesis.

Allosteric dysfunction of the prion protein and signal

corruption

The preceding sections focused mainly on functional

properties of the prion protein, as well as on the effects of

certain PrPC partners upon protein conformation. Although

the possibility of loss-of-function components in prion

diseases has long been put forward [86, 182, 183], little

attention has been directed at the importance of physio-

logical functions of PrPC in the context of the TSEs. The

following discussion will consider hypotheses as to how

the scaffold concept, together with allosteric functions of

PrPC, may contribute to the understanding of the patho-

genesis of prion disease.

The presentation, course, evolution, histo- and molecu-

lar pathology of TSEs are highly variable [184, 185].

Notwithstanding, the prevalent idea is that prion diseases

are caused by either a single toxin or by oligomeric toxic

species of a defined range of sizes [10]. Although this

hypothesis cannot be discarded, it fails to account for the

coexistence of three ongoing processes in the course of

protein conformation diseases: (1) progressive accretion of

monomers to growing oligomers and/or fusion of oligo-

mers; (2) progressive conformational conversion; and

(3) their progressive compaction. Most importantly, these

events likely occur asynchronously both within and among

A

C D

B

L2

hoppep
PrPChop

L3

in

ex

L2

PrPChop

L2
L3

Fig. 5 PrPC-dependent signaling mediated by similar allosteric

effects of either hop/STI1 or the PrPC-binding peptide hop/

STI1230–245: the diagrams depict a model of the behavior of PrPC,

when its engagement by either the full-length hop/STI1 (a, hop) or

only the peptide containing the PrPC-binding domain (b, hoppep)

result in the same biological response (c, d, black arrow, see Fig. 6a).

This scenario probably requires the recruitment of a PrPC-binding,

transmembrane signal transfer molecule (L2), as a consequence of

allosteric effects of hop/STI1 upon PrPC (see Fig. 4b, c). Engagement

of a secondary, hop/STI1-binding transmembrane protein (L3) may

produce additional signals (dotted arrow) not required for the current

biological response
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distinct areas of the brain, and their coexistence implies

that the set of exposed residues of both PrPC and its

anomalous conformer change with time, asynchronously

across the affected tissue. This would constantly change the

reactivity of the growing aggregates of the prion protein,

and their allosteric effects upon the binding and function of

physiological or pathophysiological partners in brain

tissue.

Notwithstanding the notorious association of anomalous

PrP conformers with prion disease, it is still unclear

whether or how much conformational conversion is actu-

ally required for oligomerization and toxicity. For example,

severe overexpression of wild-type PrPC in mice led to

neurological dysfunction accompanied by the finding of no

more that 10% of insoluble, mildly protease-resistant

aggregates among the whole content of the prion protein at

advanced stages of the disease [186]. Unfortunately, that

study addressed neither the oligomeric state nor the sec-

ondary structure of the protein, albeit the authors have

acknowledged the hypothesis that ‘…high levels of PrP

may be toxic in some other way, for example, by saturating

or over-stimulating a normal metabolic or signaling path-

way activated by PrPC’ [186]. In another study, cross-

linking of PrPC with divalent monoclonal antibodies, but

not monovalent Fab fragments, led to neurodegeneration in

wild-type mice, with no reported hint of conformational

conversion [187]. The latter authors interpreted their

BA

Fig. 6 Comparison of PrPC-dependent biological effects of hop/STI1

and hop/STI1230–245. a Neuroprotective effects upon undifferentiated

potmitotic cells within the mouse retina. Counts of pyknotic nuclei

were done in the ganglion cell layer of retinal explants cultured for

24 h with the inhibitor of protein synthesis anisomycin, either in the

absence or the presence of full-length hop/STI1 or the hop/STI1

peptide containing the PrPC-binding domain (adapted from [90]).

Notice the protective effects of both the full-length protein and the

PrPC-binding peptide in wild-type, but not in PrPC-null nervous

tissue. b Mitogenic effects on glioblastoma cell cultures. Incorpora-

tion of radioactive nucleotide was measured in cultures of the A172

glioblastoma cell line incubated for 24 h with the indicated full-

length, truncated proteins or peptides (adapted from [178] and

unpublished data). Notice that only the full-length protein induces cell

proliferation, whereas no effect was elicited by the PrPC-binding

peptide, by an irrelevant peptide nor by the truncated protein lacking

the PrPC-binding domain

PrPC
hop

L3

B

hoppep

A

Fig. 7 PrPC-dependent signaling mediated by a secondary ligand of

hop/STI1: a, b the diagrams depict a model of the events underlying

responses induced by hop/STI1, but not by hop/STI1230–245 nor by

hop/STI1D230–245 lacking the PrPC-binding domain (Fig. 6b). The

lack of response to the latter protein indicates that the response (black
arrrow) depends on PrPC-hop/STI1 interaction, but the signals

produced by the similar allosteric effects of either the full-length or

the binding peptide (L2 and dotted arrow) upon PrPC are innefective

to produce the biological response. This scenario probably requires

engagement of a productive hop/STI1-binding transmembrane signal

transfer molecule (L3), as a consequence of allosteric effects of PrPC

upon hop/STI1 (see Fig. 4d, e)
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findings as a sign that dimerization of PrPC led to the toxic

events. However, the evidence for natural dimerization of

PrPC (see above) raises the hypothesis that the cross-link-

ing antibodies may have also led to the assembly of higher

order oligomers of the prion protein. Finally, recent spec-

troscopic studies of brain tissue sections have failed to

detect anomalous conformers of the prion protein at a stage

where both synaptic alterations and behavioral signs are

already detectable in a mouse model of infectious prion

disease (V.H. Perry, personal communication). It is possi-

ble that toxic PrP species that contribute to early

pathological events may be too small, diffuse or rare, thus

making their detection difficult by the techniques used in

the studies mentioned above. Nonetheless, those results are

also consistent with an alternative hypothesis that confor-

mational conversion may not be required for PrPC

aggregate-dependent toxicity, at least at early stages of the

TSEs.

The dynamics of changes among a heterogeneous

population of oligo- and multimers, slack and compact

aggregates, with variable content of anomalous conform-

ers, is probably relevant for the heterogeneity and the

course of the prion diseases. Still, both the time and the

asynchrony factors are often ignored in the interpretation of

experimental data of TSEs, as well as in other neurode-

generative disorders. In contrast, recent work raised the

hypothesis that the pathogenesis of Alzheimer’s disease

may actually be linked to the dynamic events of incorpo-

ration of b-amyloid monomers into growing protofibrils

rather than to a specific class of oligomers [188]. Analo-

gous events involving the prion protein may be relevant to

the TSEs as well, and deserve thorough investigation.

It is, thus, questionable that a defined toxic molecular

species, at a specific time, is responsible for the complex

cellular events that underlie the pathogenesis of TSEs.

Misfolded and aggregated anomalous conformers of the

prion protein may, by themselves, have toxic gain-of-

function properties. Even so, disturbances of the scaffold

and allosteric functions of PrPC probably add to the effects

of such toxic species, or, alternatively, are responsible for

specific pathogenic events. A likely scenario is that, in

the course of prion diseases, the brain progresses toward

neurodegeneration from a framework of physiological

functions of normal PrPC, through either several stages or a

continuum of corrupted cellular signals, leading to patho-

logical events, such as the early changes of synapse

morphology and function, followed by progressive neuron

death [189–191]. It follows that the nature of the molecular

interactions of PrPC and their disruption at the earliest

stages of the TSEs is pivotal for the understanding of

homeostatic corruption associated with prion diseases.

It is particularly noteworthy that the GPI-anchoring of

the prion protein to the membrane seems to be required

for the full-blown disease in vivo, though not for the

A hop

L4 L5

C PrPChop

L5 L2L4

PrPChopB

L5 L2L4

D PrPChop

L5 L2
L4

Fig. 8 Hypothetical balance of PrPC-independent and PrPC-depen-

dent effects of a PrPC-binding protein. The diagrams depict the

presumptive behavior of the PrP-binding protein hop/STI1 together

with various transmembrane signal transduction molecules, in various

scenarios. a hop/STI1 may bear upon various biological functions,

such as cell proliferation and cell death (hatched and white arrows),

independent of PrPC (see text), and signal transfer may be mediated

by either one or more transmembrane molecules; b, c in certain cases,

however, hop/STI1 produces conflicting signals (white vs. black
arrows) via PrPC-independent and PrPC-dependent mechanisms, and

the resulting biological effect may depend on stoichiometric

relationships among the various components of the cell surface

signaling modules; d alternative events may include intracellular

networking of signaling pathways, the net result of which would also

depend on the relative amounts of cell surface components
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accumulation of the pathognomonic compact, protease-

resistant aggregates, nor for infectious transmission

[82, 83]. These data further highlight the importance of

the interactions of PrPC with cell surface and transmem-

brane molecules, the ensuing allosteric effects, as well as

their consequences for signal transduction. The scaffold

hypothesis predicts that, in the course of TSEs, the

assembly of cell surface signaling complexes organized by

the prion protein, together with their downstream effects,

change along with progressive oligomerization, confor-

mational conversion and compaction of the aggregates.

Such signal corruption may include either the gain or the

loss of specific signals associated with PrPC partners [192],

as well as effects upon signaling kinetics due to the

derangement of multicomponent complexes scaffolded by

PrPC [34, 193], both of which are likely to occur upon

either the masking or the exposure of specific domains of

the prion protein.

Multiple effects can be expected from oligomerization,

cross-linking or merely an increased content of the GPI-

anchored prion protein. Events may include the disassem-

bly of signaling modules, due to disruption of

stoichiometric relationships between PrPC and its partners

(Fig. 9a). In fact, the possible interplay of monomers and

dimers of PrPC (see above) should also be taken into

account to understand the physiological framework of

PrPC-mediated signaling, while the accruing of each

monomer (or dimer) to a growing oligomer would further

disrupt local stoichiometry of cell surface signaling

complexes.

This, as well as further accretion of monomers, is

expected to exact either physiological or pathological

oligomerization of PrPC-binding signal transducers, such as

membrane receptors (Fig. 9b). Thus, in cells bearing

oligomers of PrPC at their surface and/or internal mem-

branes, abnormal homo- or hetero-oligomerization of

receptors may robustly affect ligand affinity, kinetics of

signal transduction and receptor trafficking [194–198]. In

addition, oligomerization imparts changes in short-term,

lateral diffusion at the plasma membrane [199, 200], with

likely consequences upon both the kinetics of recycling of

the cell surface PrPC, as well as of PrPC-mediated

signaling.

The previous events, plus further multimerization and

compaction, tend to progressively favor steric hindrance

[201–204], eventually blocking the assembly of cell surface

signaling modules (Fig. 9c). Notably, several studies sug-

gest that, in various neurodegenerative diseases, the

pathognomonic aggregates detectable at light microscopical

examination may actually offer neuroprotection [205–210],

probably because steric hindrance prevents any productive

association of the compact aggregates with molecular

partners required for neurotoxic signaling.

It should be noted that separation of these three cate-

gories of effects serves only to highlight individual

components of a complex, dynamic scenario of signal

derangement. Simultaneously, combined with the effects

predicted from simple oligomerization, the conformational

conversion would add to both the propensity of protein

aggregation [211, 212] and to changes in ligand binding,

which are expected to follow modification of the secondary

structure of the protein (Fig. 10).

The progressive, asynchronous occurrence of these

dynamic events in any given neuronal population most

likely spreads, also asynchronously, along the intercon-

nections of brain areas and nuclei, therefore adding to both

the pathogenesis of the diseases, as well as to the produc-

tion of specific signs and symptoms.

Fig. 9 Multiple events of signal corruption expected from oligomer-

ization and progressive compaction of aggregates of the prion protein.

a Initial events may disrupt stoichiometrical relationships between

PrPC and nearby ligands, leading to disassembly of cell surface

signaling modules; b further oligo- and multimerization may lead to

abnormal oligomerization of PrPC ligands, such as membrane

receptors, with ensuing corruption of signal transduction through

such receptors; c further compaction of aggregates of the prion

protein favors steric hindrance, thus preventing binding of PrPC

ligands and the assembly of cell surface signaling modules
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It has recently been demonstrated that the prion protein

specifically binds b-amyloid (Ab) oligomers [213],

although the significance of such binding for Alzheimer’s

disease is still under debate [214–223]. Nonetheless, it was

reported that Ab disturbs the trafficking of the prion pro-

tein, leading to an accumulation of PrPC at the cell surface

[224], and that both Ab and monoclonal antibodies cross-

link PrPC, to which synaptic toxicity was attributed [225].

As discussed above, the accumulation and cross-linking of

PrPC are both likely relevant for cell signaling (Fig. 9), and

the scaffold hypothesis may explain, for example, why an

increasing number of differing membrane receptors have

been implicated in toxic signaling induced by various

b-amyloid aggregates [226–232] (Fig. 10).

Data have also been reported of possible interference of

the prion protein in other neurological diseases, such as

primary progressive aphasia [233], or in experimental

models of amyotrophic lateral sclerosis [234, 235]. It

should also be pointed out that changes in the stoichiom-

etry of the components of PrPC-scaffolded signaling

modules may be relevant not only for the nervous system,

but also for other cell types and tissues, such as muscle and

the immune system [34]. An intriguing possibility is that

disturbance of the scaffold and allosteric functions of the

prion protein may be also involved in the pathogenesis of a

variety of diseases other than the TSEs.

Conclusion and perspectives

The preceding sections discussed structural constraints

involved in the interaction of the prion protein with various

binding molecules. The latter include proteins, such as hop/

STI1, nucleic acids and glycosaminoglycans, and extend to

the effects of pH. Possible instances of allosteric control

were discussed, associated with changes in the interaction

of PrPC with a third partner.

Analysis of structural changes due to the interaction of

the prion protein with its multiple partners is still precari-

ous, and little data have so far been gathered as to the

functional properties of molecular complexes scaffolded by

the prion protein. For most putative ligands of PrPC, no

structural data relevant to their binding have been pub-

lished so far. Therefore, this review serves basically to set a

framework for future studies. Notwithstanding, the avail-

able data higlight the importance of understanding the

allosteric function and dysfunction of the prion protein.

One important caveat is that most structural data gath-

ered to date refer to the isolated prion protein in artificial

conditions, which may differ substantially from the envi-

ronment where PrPC resides in living cells. Efforts are

warranted to try and reach conditions as close as possible to

those prevailing in physiological microenvironments, such

as the cell surface, endocytic vesicles involved in the

trafficking of PrPC and also the Golgi, where nascent PrPC

molecules may interact with either nascent or resident

partners. In addition, the events that occur upon the binding

of PrPC with multiple partners must be identified to help

understand the role of PrPC in cell signaling both in the

nervous system as well as in other cell types containing

substantial amounts of PrPC.

The scaffold hypothesis further raises key questions

regarding the composition of PrPC oligomers. There is

pressing need to clarify the components and the kinetics of

growth of PrP oligomers in early stages of TSEs, inclusive

of the relative contributions of either normal or anomalous

conformers, to understand the nature of the cellular signals

associated with these deadly diseases.

In conclusion, both the understanding of the pathogen-

esis of TSEs and the development of their effective

treatment, and perhaps the management of other diseases,

such as Alzheimer’s disease, where both protein oligomers

and the prion protein may play a role, require a change in

paradigm, where instead of targeting an elusive toxic

species, one should aim at the understanding of the kinetic

STERIC
HINDRANCE

ALLOSTERIC
EFFECTS

ACCRETION OF
PrP SUBUNITS

COMPACTION
CONFORMATIONAL

CONVERSION

NEURODEGENERATION

NEUROPROTECTIONSCAFFOLD
NEUTRALIZATION

SIGNAL
CORRUPTION

SIGNAL
CORRUPTION

NON TSE-RELATED
PrPC-AGGREGATING

EVENTS

Fig. 10 Diagram of proposed pathogenic events due to dysfunction

of the scaffold properties of the prion protein. The figure depicts how

the asynchronous accretion of monomeric or dimeric PrPC to growing

oligomers, conformational conversion of an unknown proportion of

the protein molecules within agregates and progressive compaction of

the aggregates may lead to the pathogenesis of TSE and other

neurodegenerations. The cycle of accretion of monomers together

with conformational conversion is thought to heavily impose upon the

properties of PrPC-scaffolded signaling modules, leading to allosteric

effects and ensuing signal corruption, which may result in neurode-

generation (arrows). Conformational conversion is, in turn, expected

to fuel progressive aggregation and compaction, leading to steric

hindrance, which may either cause further signal corruption and

neurodegeneration, or, at late stages, contribute to protect the tissue

from the recurring cycles of monomer accretion and dynamically

changing allosteric effects (dashed arrows). Signal corruption due to

accretion of PrPC subunits may also be triggered by non TSE-related

aggregation events, such as cross-linking by Ab oligomers (dotted
line)
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behavior of rapidly changing oligo- and multimers, toge-

ther with the allosteric effects associated with the making

and breaking of signaling complexes that lead to the

dynamic signal corruption at the root of pathogenic events

due to dysfunction of the prion protein.
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