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Abstract Chromosome 22q11 deletion is the most com-

mon chromosomal deletion syndrome and is found in the

majority of patients with DiGeorge syndrome and velo-

cardio-facial syndrome. Patients with CHARGE syndrome

may share similar features. Cardiac malformations, speech

delay, and immunodeficiency are the most common man-

ifestations. The immunological phenotype may vary widely

between patients. Severe T lymphocyte immunodeficiency

is rare—thymic transplantation offers a new approach to

treatment, as well as insights into thymic physiology and

central tolerance. Combined partial immunodeficiency is

more common, leading to recurrent sinopulmonary infec-

tion in early childhood. Autoimmunity is an increasingly

recognized complication. New insights into pathophysiol-

ogy are reviewed.
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Introduction

Deletion of the q11.2 region of chromosome 22 is found in

a heterogeneous group of disorders sharing a common

genetic basis. It is the most common chromosomal deletion

syndrome with an estimated incidence of 1:4,000 live

births [1]. The majority of patients with DiGeorge syn-

drome and velo-cardio-facial syndrome have monosomic

deletions of chromosome 22q11.2 [1]. Other syndromes

have occasionally been associated with this deletion

including conotruncal anomaly face syndrome, Opitz/GBB,

and CHARGE (coloboma, heart disease, choanal atresia,

retarded growth and central nervous system development,

genital hypoplasia and ear abnormalities and/or deafness)

syndrome [2]. Cardiac malformations, speech delay, and

immunodeficiency are the most common manifestations [2]

but there is a wide phenotypic spectrum including neuro-

psychiatric disorders and otolaryngological disorders. No

clinical features are diagnostic and size of the deletion does

not predict disease severity [3]. The clinical phenotype

may vary widely between patients, including monozygotic

twins with identical mutations, suggesting non-genetic

factors contribute to disease phenotype [4].

The pharyngeal arches and pouches are a common

embryonic precursor for the thymus, parathyroid, and co-

notruncal regions of the heart. Defects in these organs in

22q11.2 deletion syndrome are believed to be caused by

impaired migration of neural crest cells into pouch ecto-

derm [5]. Disruption in the pathways of neural crest cell

development in mice results in malformations similar to the

22q11.2 deletion phenotype [4]. This review will focus

on the immunological features associated with 22q11.2

deletion.

Genetics of 22q11.2 deletion syndrome

The clinical association of thymic aplasia and hypopara-

thyroidism was first recognized as a syndrome when

Dr. Angelo DiGeorge described the postmortem findings of

a group of infants with a congenital absence of the thymus

and parathyroid glands [6]. Subsequently, conotruncal

cardiac abnormalities and facial dysmorphism were added
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as characteristic features, but it was not until the early

1980s that deletions within chromosome 22 were identified

as the cause of DiGeorge syndrome [7, 8]. Subsequently,

the same deletion has been discovered in other disorders

including velo-cardio-facial syndrome [9], conotruncal

anomaly face syndrome [10], and sporadic cases of Opitz/

GBB syndrome [11] and CHARGE syndrome [12]. The

classic features of DiGeorge syndrome have been described

in patients with point mutations in the gene TBX1, found in

the 22q11.2 region [13], and with other chromosomal re-

arrangements including chromosome 10p deletion [14–16].

The nomenclature is somewhat confusing and evolving.

Patients without the classic 22q11 deletion, but phenotypic

features of DiGeorge syndrome are often described as

having 22q11.2 deletion syndrome, and the immunological

phenotype bears no relationship to the size of the deletion,

or its absence [17]. Many patients with CHARGE syn-

drome have a deletion in the gene CHD7 [18], and some

have a similar immunological phenotype [19]. This review

will focus on immunological defects found in patients with

genetic or clinical features found above, using the term

22q11.2 deletion syndrome to encompass all of the phe-

notypes and diagnoses, particularly for DiGeorge and

CHARGE syndrome.

Approximately 90% of individuals with the classical

22q11 deletion have a heterozygous deletion of identical

three million base pairs (3 Mb) of 22q11.2, the ‘common

deletion’ [20]. This region is prone to rearrangements,

likely due to homologous recombination events occurring

within two complex highly homologous low-copy repeat

areas that are 3 Mb apart [21]. The 3 Mb sequence of

genomic DNA contains approximately 30–50 genes [22]. A

further 8% of patients have smaller deletions of 1.5 Mb

encompassing 24 genes [21]. However, there are no consis-

tent phenotype differences associated with smaller deletions

[23]. Numerous candidate genes have been proposed based

on their location within the region or expression pattern

consistent with a DiGeorge syndrome phenotype. So far

it has not been possible to identify which, if any, fea-

tures of the phenotype can be specifically linked to one

gene or combinations of genes affected by this deletion

[24].

Murine models identified Tbx1 as a candidate gene for

the 22q11.2 deletion syndrome. TBX1 belongs to a family

of transcription factors that contain a DNA-binding domain

called ‘‘T-box’’. A homozygous deletion of the murine

Tbx1 gene is embryonic lethal. However, phenotypic fea-

tures of 22q11.2 deletion were detectable in the embryos

including abnormal facial features, thymic and parathyroid

hypoplasia, and cardiac abnormalities. Heterozygous

mutants exhibited a less penetrant phenotype, with varying

degrees of absence or reduction in fourth pharyngeal arches

[25]. Other implicated genes include the Crkl gene, which

encodes an adaptor protein implicated in growth factor and

adhesion molecule signaling, which is highly expressed in

neural crest derived tissue during development. Homozy-

gous Crkl gene deletion results in gestational death in mice

with multiple defects in neural crest derivatives including

aortic arch arteries, thymus, and craniofacial structures

[26], but heterozygous mutants do not display this pheno-

type. Compound heterozygosity of murine homologs of

CRKL and TBX1, results in a more penetrant phenotype

compared to heterozygosity at either locus, suggesting that

dose-sensitive interaction of these genes is important to

establish the phenotype [27]. It is clear that at least some of

the genes in the deleted region are critical for development

of pharyngeal ectoderm, endoderm, and mesenchyme, and

disruption of these genes leads to disruption of structures of

the pharyngeal arch, including the cardiac outflow tract,

parathyroid glands, and thymus, as well as craniofacial

morphology. Some of these effects may be mediated

through downstream signaling [28], and it is not yet clear

why there is such a variable morphological and clinical

phenotype.

CHD7, mutated in CHARGE syndrome, is a member of

the chromodomain helicase DNA-binding domain family

of adenosine-50-triphosphate-dependent chromatin remod-

eling enzymes. The related CHD1, CHD3, and CHD4

proteins contribute to nucleosome remodeling and histone

deacetylation, which regulates dynamic changes in chro-

matin structure during transcription, recombination, repair,

and replication [29, 30], and is important in regulating

early embryonic development and cell-cycle control. These

proteins lead to transcriptional activation or repression of a

gene or region. It is likely that CHD7 has a similar function

[31]. CHD7 is expressed throughout the neural crest con-

taining mesenchyme of the pharyngeal arches [31, 32].

Seven of ten CHARGE fetuses were found to have thymic

hypoplasia or agenesis [32]. The clinical overlap of

CHARGE and 22q11.2 deletion syndrome reported previ-

ously [33, 34] suggests a common neural crest defect. In

22q11.2 deletion syndrome, defects in thymus, parathyroid

and conotruncal regions of the heart are caused by impaired

migration of neural crest cells into pouch exoderm. TBX1

contains a DNA-binding domain, and may be a functional

target for CHD7, perhaps explaining some of the overlap-

ping features in CHARGE syndrome and 22q11.2 deletion

syndrome.

Thymic development

Segmentation of the posterior pharynx initiates thymic

development. There follows a series of incompletely

understood developmental events culminating in endoder-

mally derived epithelial cells of the third pharyngeal pouch
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forming the thymus anlage [35]. Neural crest-derived

mesenchymal cells of the pharyngeal arches give rise to the

thymic connective tissue as well as smooth muscles of the

great cephalic arteries and aorto-pulmonary septum, and

the parathyroid gland connective tissue [36]. Thymic

mesenchyme promotes thymic epithelium development

and signaling between the two cell types controls initial

thymic morphogenesis and mesenchymal cells regulate

proliferation and differentiation of immature thymic epi-

thelial cells. Once thymic development is able to support

immature thymocytes, further thymic epithelial differenti-

ation is largely independent of mesenchymal cells.

Lymphoid stem cells begin to populate the thymus by

the eighth week of embryogenesis [37]. T lymphocyte

progenitors colonize the thymus before it is vascularized,

transmigrating through the mesenchyme to the epithelial

cells. Molecular interaction between the developing

lymphoid and the epithelial cell is critical for further thy-

mic development [38]. Defects in genes that promote T

lymphocyte development lead to defective thymic devel-

opment. Complete deficiency of thymocytes (e.g., null

mutations in AK2, IL2RG, ADA) results in a severely

atrophic thymus with lack of corticomedullary demarca-

tion. Thymocyte development arrested at a later develop-

mental stage (e.g., null mutations in RAG) leads to normal

cortical development but only rudimentary medullary

regions [39].

T lymphocyte development

The thymus plays a crucial role in T lymphocyte devel-

opment. Immature T lymphocytes develop from the

common lymphoid progenitor in the bone marrow and

traffic to the thymus. Developing CD4–CD8- (double

negative) T lymphocytes (thymocytes) enter the thymus at

the cortico-medullary junction. During cortical migration,

double-positive thymocytes express both CD4 and CD8.

Following successful T lymphocyte receptor gene rear-

rangement, positive selection occurs in the thymic cortex

upon successful engagement of the T lymphocyte receptor

in the context of MHC class I or class II molecules to

differentiate into single positive CD8? or CD4? T lym-

phocytes, respectively. Only cells that recognize MHC

expressed by thymic cortical epithelial cells are selected.

Single positive cells are predominantly found in the

medulla where they closely interact with thymic epithelial

cells. Bi-directional cross-talk between thymocytes posi-

tively selected in the cortex is essential to preserve thymic

architecture, and hence function. Positively selected thy-

mocytes promote maturation of thymic epithelial cells and

formation of thymic medullary regions through molecular

signaling [40]. Some mature medullary thymic epithelial

cells and thymic dendritic cells, directed by the transcrip-

tional regulator, AIRE, express organ-specific self-antigen.

Autoreactive thymocytes that recognize these self-antigens

are deleted (negative selection) [41], although some auto-

reactive thymocytes may be converted into FOXP3? reg-

ulatory T lymphocytes through interaction with thymic

dendritic cells [42]. Surviving thymocytes leave the thymic

medulla and enter the peripheral circulation.

The importance of all of these elements of immune

development is emphasized by examining human disease

severely affecting thymic and T lymphocyte development.

Null mutations leading to absence of T lymphocyte devel-

opment lead to thymic atrophy, reversed when developing

thymocytes re-populate the thymus, which then develops

normally [43]. Hypomorphic mutations, which lead to

restricted T lymphocyte development, give rise to abnormal

thymic development, resulting in partial immuno-deficiency

in which T lymphocyte and B lymphocyte deficiency are

manifest, as well as autoimmune features [38]. Defects in

AIRE expression give rise to normal T and B cell immunity,

but a predisposition to T lymphocyte-mediated organ-

specific autoimmune polyendocrinopathy [44], caused by

the escape of normally deleted auto-reactivce thymocytes

into the peripheral circulation. Lack of FOXP3? regulatory

T lymphocytes, as seen in IPEX syndrome, gives rise to auto-

immunity manifest particularly by cytopenias, severe auto-

immune enteritis, and insulin-dependent diabetes mellitus

caused by pancreatic islet cell destruction by auto-reactive T

lymphocytes [45].

Given the critical nature of molecular interaction

between developing lymphoid and thymic epithelial cells

for thymic development, and the disordered immune

function that can arise from primary partially permissive T

lymphocyte development defects leading to secondary

disordered thymic architecture [46], it can be conjectured

that primary disordered thymic architecture may give rise

to secondary disordered immunity. It is likely that the

following descriptions of immunodeficiency found in

patients with 22q11.2 deletion syndrome and CHARGE

syndrome relate to this.

Immunological features of 22q11.2 deletion syndrome

Immunodeficiency is one of the key features of 22q11.2

deletion syndrome, and was one of the initial triad

described by Angelo DiGeorge [6]. Defective immunity is

also increasingly recognized in CHARGE syndrome

[19, 47]. The observed immunodeficiency is secondary to

thymic aplasia or hypoplasia with subsequent impaired

thymocyte development. The spectrum of severity of the

immune deficit varies widely and the frequency and

severity of the immunodeficiency does not appear to be
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related to other phenotypic features [17]. Patients with

complete thymic aplasia present with severe or complete

T lymphopenia, manifesting with a severe combined

immunodeficiency phenotype. However, the degree of

immunodeficiency seen in patients with 22q11.2 deletion is

highly variable and may include defects of T lymphocyte

number and function as well as humoral defects (Table 1).

Careful evaluation of patients is necessary to ensure

prompt and appropriate treatment (Table 2).

Severe T lymphocyte defects

Presenting features

Complete thymic aplasia with severe or complete T

lymphopenia, presenting with a severe combined immu-

nodeficiency phenotype (T-B ? NK?) is the most widely

appreciated immunodeficiency associated with 22q11.2

deletion. It is however, extremely rare, with less than 1.5%

of patients having this phenotype [48]. Patients present

within the first few months of life with similar clinical

features to infants with other forms of severe combined

immunodeficiency, namely, failure to clear infection and

presentation with persistent viral respiratory tract or gut

infection, and failure to thrive. Occasionally, infants pres-

ent with disseminated BCG. Other features of 22q11.2

deletion syndrome may be apparent, including facial dys-

morphism, hypocalcemia due to hypoparathyroidism,

occasionally presenting with seizures or neonatal tetany,

and congenital cardiac defects. The diagnosis may be

delayed, as normal cytogenetic analysis may fail [49], due

to the fact that leucocyte cultures for chromosome analysis

rely on phytohemagglutinin to stimulate T lymphocytes

into a transient blastic transformation so that metaphase

chromosomes can be obtained after 3 days in culture.

Similarly, cytogenetic analysis specifying fluorescent in

situ hybridization for the 22q11.2 region will fail to give a

result. Investigation usually shows severe lymphopenia

from birth, demonstrated on a complete blood count and

differential leucocyte count. Lymphocyte phenotyping

shows severely depleted T-lymphocyte numbers, typically

completely absent or present in extremely low numbers

(\50 CD3? cells/mm3); B lymphocytes and NK cells are

normal. There is an absent or extremely reduced prolifer-

ative response to mitogens such as phytohemagglutinin.

Mitogen responses are usually absent. Immunoglobulin

estimations show low levels of IgG, IgA, and IgM although

residual trans-placental maternal IgG in the first few weeks

of life may give a falsely reassuring result. Chest radio-

graphs show an absent thymus and, if infection is present,

hyperinflation and/or interstitial pneumonia (Table 1).

Occasional patients show unusual patterns of mature T

lymphocyte markers; in such cases, maternal engraftment

should be excluded [50]. Congenital GvHD occurs because

infants with severe combined immunodeficiency are unable

to reject foreign lymphocytes acquired either from the

mother in utero [51], or from a non-irradiated blood trans-

fusion, particularly likely if severe congenital heart disease,

requiring urgent open heart surgery, is present. When

clinically apparent, there is typically a mild reticular skin

rash, sometimes with abnormal liver function tests. GvHD

Table 1 Initial immunological investigations

Full blood count and differential leukocyte count

Immunoglobulins (IgM, IgA, IgG,)

Lymphocyte phenotyping (CD3, CD4, CD8, CD19, or CD20, CD16/CD56)

Lymphocyte proliferations to phytohemagglutinin if T lymphocyte counts low

Post-vaccination antibody responses to tetanus, and polysaccharide-protein conjugated Haemophilus influenzae type B capsular (Hib) and/or

pneumococcal antigens

Beyond 2 years of age—assessment of polysaccharide antigen response

Assessment of autoantibodies, if clinically indicated, including direct antiglobulin test and thyroid antibodies

Table 2 Key immunological management decisions

Irradiated, CMV negative blood products if immune status severely affected or unknown

Urgent referral to specialist center for further treatment if absent or very low T lymphocytes

Assess vaccination status—live viral vaccines not contra-indicated unless severe immunocompromisation is present. (If tetanus or Hib, responses

are normal and CD4 [ 400, should receive measles mumps, and rubella vaccine - MMR)

If recurrent respiratory infection—refer to an immunologist to exclude underlying immunodeficiency

Consider antibiotic prophylaxis if recurrent respiratory infection or evidence of poor specific antibody response to vaccine antigens

Patients with recurrent or severe respiratory symptoms should be assessed by a respiratory pediatrician or physician.

Regular monitoring for autoimmunity, particularly autoimmune cytopenias, and thyroid disease.
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following transfusion with non-irradiated blood or white

cell or platelet concentrates is generally more severe and

can be fatal. In these cases, the skin rash is severe and

lymphadenopathy and hepatosplenomegaly may be present.

In atypical forms, characterized by oligoclonal peripheral

T lymphocyte expansion, often associated with erythro-

derma and lymphadenopathy giving an Omenn syndrome-

like picture, the diagnosis is based on a lack of naive

T lymphocytes (\50 CD3? CD45RA? CD62L? cells/mm3),

indicating absence of recent thymic emigrants [52].

Investigation and treatment

General

Children with absent T lymphocytes should be referred

urgently to a designated specialist immunology center for

further evaluation and treatment. If erythrocyte transfusions

(for cardiac surgery) are required before the immunological

results are available, they should be from cytomegalovirus

seronegative donors, and irradiated to prevent potential

transfusion-associated graft versus host disease. Anti-pneu-

mocystis, antiviral, and anti-fungal prophylaxis, and

immunoglobulin replacement therapy should be commenced.

Adoptive transfer of mature T lymphocytes

Athymic patients with completely absent T lymphocytes,

or with an atypical oligoclonal T lymphocyte expansion,

present a therapeutic challenge. Unlike patients with other

forms of severe combined immunodeficiency, the absence

of T lymphocytes is due to an absence of thymic envi-

ronment rather than an intrinsic hematopoietic defect.

Patients receiving hematopoietic stem cells can achieve

peripheral engraftment of post-thymic donor T lympho-

cytes, but do not demonstrate ongoing T lymphopoiesis

[53]. Indeed, T lymphocyte-depleted grafts unsurprisingly

fail to demonstrate donor T lymphopoiesis [19]. Adoptive

transfer of cells of hematopoietic origin, achieving long-

term survival of the patient, has been published in a few

cases only [53, 54]. Overall survival is poor (41–48%) as

compared to other forms of severe combined immunode-

ficiency ([80%) (Table 3) [55]. Severe pre-existing medico-

surgical conditions are a major cause of death, as is graft

versus host disease (GvHD), which often seems more

severe than expected given that most patients receive cells

from well-HLA-matched donors, and not all receive che-

motherapy conditioning [53]. Indeed, it could be argued

that there is no rational for giving chemotherapy prior to

transplantation, except perhaps in patients with oligoclonal

T lymphocytes and an Omenn-like presentation, as there is

no requirement for donor myeloid cells or B lymphocytes,

and lymphocyte progenitors will not lead to T lympho-

poiesis given the lack of thymic machinery.

Most patients who survive long-term remain well

without frequent infections. Humoral immunity in survi-

vors shows good antibody responses to protein or conjugate

vaccines when tested. Few survivors require ongoing

immunoglobulin replacement. Information on T lympho-

cyte-mediated immunity is incomplete, but where tested,

the majority had CD3? and CD4? lymphocytopenia and

an absence of naive T lymphocytes with a skewed T

lymphocyte receptor repertoire. Data from other studies

indicates that these patients may remain at risk of late

complications, particularly if lymphocyte numbers decline

with time [56].

There are a number of possible explanations for the

severity of GvHD. Firstly, the underlying condition may

predispose to chronically inflamed tissue acting as a sub-

strate for GvHD, for instance lung inflammation secondary

to gastro-esophageal reflux and pulmonary aspiration. Sec-

ondly, an absence of thymus-derived FOXP3 ? regulatory

T lymphocytes may predispose to prolonged and severe

GvHD. Thirdly, GvHD could be related to homeostatic

expansion of donor T lymphocytes as neo-T lymphopoiesis

does not take place in completely athymic patients.

The failure of neo-lymphopoiesis may also explain the

poor outcome of patients presenting with pre-existing viral

infection, with only 2/6 surviving [53], compared with an

overall survival of 59% for patients with other forms of

severe combined immunodeficiency, even after haplo-

identical transplantation, in the European series [55].

Thymic transplantation

In athymic individuals with a typical or atypical presen-

tation, an alternative treatment to hematopoietic stem

cell transplantation is allogeneic thymic transplantation.

Table 3 Survival after bone marrow or peripheral T lymphocyte

transplant in DiGeorge syndrome

Donor Number

transplanted

Survival (%)

Matched family 13 8 (62)

Marrow 5 4

Peripheral blood lymphocytes 8 4

Matched unrelated 9 3 (33)

Marrow 6 2

Peripheral blood lymphocytes 3 1

Mismatched related 1 0 (0)

Unrelated cord 4 2 (50)

Total 27 13 (48)

Compiled from Janda et al. [53]
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Initially, fetal thymic tissue was used [57, 58]. While some

success was achieved, with evidence of T lymphocyte

reconstitution, hematopoietic stem cell transplantation

superseded as the treatment of choice. More recently, trials

of postnatal allogeneic thymus transplantation have been

pioneered at Duke University Medical Center, North

Carolina [59], and Great Ormand Street Hospital, London,

UK (G Davies, pers. comm.). Thymic tissue, taken from

infants less than 9 months old undergoing open cardiac

surgery, is cultured for 12–21 days to ensure removal of

donor thymocytes, which might otherwise cause GvHD,

before being transplanted into the quadriceps muscle of the

recipient [60]. Immunosuppression is not required, unless

the recipient has atypical, Omenn-like features, in which

case the patient is pre-treated with anti-thymocyte globulin

and receives a calcineurin inhibitor until there is evidence

of thymopoiesis.

While direct comparison with the results following

hematopoietic stem cell transplantation is not possible, as

some patients are excluded from the thymic transplantation

on the basis of pre-existing medical complications, the

procedure seems successful. The results from 60 patients

have been reported [34, 60]. Forty-three of 60 subjects are

alive (72%). The main cause of death was infection, with

four others dying from causes unrelated to the transplant.

Immune reconstitution was very good, with evidence of

thymopoiesis in the donor thymus (Fig. 1). T lymphocyte

numbers are lower than normal for age, but naive T lym-

phocytes are present, indicating thymopoiesis, the cells

proliferate when stimulated with PHA and there is a diverse

T lymphocyte repertoire, which persists [34, 60–62]. Tol-

erance of recipient T lymphocytes to donor thymic tissue,

has been demonstrated [63]. Subsequent to transplantation,

tolerance to donor lymphocytes is also seen.

The major long-term adverse events in this patient group

relate to autoimmunity. Thirteen patients had autoimmune

thyroid disease, and nine patients experienced 1-, 2-, or

3-lineage hematological cytopenia. Other events included

nephritic syndrome and autoimmune enteritis.

The most interesting concept surrounds the issue of

HLA matching. Thymus transplantation is performed

without matching the HLA antigens of the thymus donor to

the recipient, yet outcome is not dependent on the degree of

HLA matching between the donor thymus, and the reci-

pient, and, perhaps surprisingly, there seem to be no

adverse events associated with transplanting across HLA

barriers [64]. Despite the thymus being the site at which

developing T lymphocytes undergo both negative and

positive selection, a completely HLA-mismatched alloge-

neic thymus permits development of recipient T

lymphocytes that protect the recipient from infection. The

process by which this occurs is incompletely understood.

Negative selection is effected by CD83? dendritic cells,

derived from hematopoietic stem cells and which migrate

from the bone marrow to the thymus, and are located

throughout the medulla and at the corticomedullary junc-

tion [65]. Recipient dendritic cells are likely to populate a

transplanted thymus, and so mediate negative selection,

allowing deletion of T lymphocytes with receptors dem-

onstrating high affinity to self MHC. As these dendritic

cells also present organ-specific self-antigens regulated by

AIRE, auto-reactive T lymphocytes will be deleted [66].

The process of positive selection presents more of a

dilemma in the HLA-mismatched thymic transplant. It has

been believed that only T lymphocytes that recognize

MHC expressed by thymic cortical epithelial cells are

positively selected. Thus, when the donor thymus is HLA-

mismatched with respect to the recipient, it can be pre-

dicted that the positively selected T lymphocytes will be

restricted to thymus donor MHC. Subsequently, T lym-

phocytes emigrating from the thymus should not be able to

interact with antigen-presenting cells carrying recipient

MHC in the periphery and these T lymphocytes, because of

MHC mismatching, will not be functional. The successful

reconstitution of recipient T lymphocyte function in the

thymus recipients suggests that alternative cells may pro-

vide positive selection in the allogeneic donor thymus.

Recipient cells may contribute to positive selection in the

transplanted thymus. Studies in mice have demonstrated

thymocytes that present self MHC to each other [67, 68],

which enables positive selection to recipient MHC. At

present, however, the mechanisms of positive selection

in allogeneic thymus transplantation are not defined and

Fig. 1 Biopsy from the thigh of a patient with thymic aplasia,

following thymic transplantation. Skeletal muscle is shown with

thymic tissue at the top right. Cytokeratin (CK) staining identifies

thymus tissue (inset a), CD1a and Ki-67 identify cortical thymocytes

(inset b, c), and CD3 identifies T lymphocytes (inset d). (Courtesy of

Dr. Graham Davies, Great Ormand Street Hospital, London—

copyright retained)
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further investigation is required. The opportunity to further

unravel the mechanism of central tolerance is anticipated.

Partial combined immunodeficiency

Presenting and immunological features

While the majority of pediatricians associate DiGeorge

syndrome with severe immunodeficiency, it is clear that the

severe phenotype as described above is rare. Much more

common is partial combined immunodeficiency, manifest

predominantly as recurrent upper respiratory tract infection

(URTI) and more rarely, lower respiratory tract infection.

This presents after the first 6 months of life with frequent

coughs, colds, and sino-pulmonary infections, often due to

encapsulated bacteria. Concomitant velo-pharyngeal dys-

function contributes to the increased frequency of URTI,

which are common in these patients even in the absence of

immunological abnormalities. There is often mild to mod-

erate antibody impairment often with a T lymphocytopenia.

This is most marked in infancy [69, 70] and there is a

normal age-related decline in T lymphocyte counts,

although blunted in patients [71]. There is a reduction in

naive cells exiting the thymus [72–74] and in older patients,

an accelerated post-thymic conversion of naive to memory

T lymphocytes due to homeostatic proliferation [75].

Consequently, abnormalities in the TCRVB repertoire

have been described including expanded or contracted

TCRVB families in CD4? and CD8? sub-populations,

and oligoclonal TCRVB populations demonstrated on flow

cytometry and by VDJ region sequencing. Restricted TCR

diversity has been demonstrated by spectratyping, with

altered CDR3 profiles in most TCRVB families investi-

gated, with oligoclonality demonstrated by VDJ region

sequencing [75, 76, McClean-Tooke, pers. comm.]. There

are conflicting accounts regarding the gdTCR population

with reductions and expansions reported [71, 77]. A few

patients with T lymphocytopenia appear to be at greater

risk of significant viral or candidal infection or early

infectious death, particularly those with a combined CD4

and CD8 lymphocytopenia and diminished thymic output,

or associated hypoparathyroidism [78, 79].

A wide spectrum of antibody deficiencies has been

described. Isolated low IgM may be associated with recur-

rent infection [80–83], and there may be poor specific IgM

responses, with low isohemagglutinins. Low IgG with low

IgG subclasses are also described [69, 83]. Poor or absent

specific antibody responses to polysaccharide antigen, par-

ticularly pneumococcal antigen, are relatively common

[82–84], which may be associated with otherwise normal

IgG levels. Absent, low, or elevated IgA levels are described

[69, 71, 81, 83, 85, 86] and may be associated with recurrent

infection or autoimmunity. In many patients, initial low

immunoglobulin levels normalize with increasing age [71].

In some patients, B lymphocytopenia is a feature, particu-

larly in infancy, but with numbers normalizing over time

[69]. Others have described normal B lymphocyte numbers

in patients but low CD27? IgM? IgD? (memory) and

CD27? IgM- IgD- (class-switched memory) B lympho-

cyte numbers. It is not clear if this is a direct effect of

22q11.2 deletion on B lymphocytes or impaired T lym-

phocyte/B lymphocyte interaction [73, 77, 81]. There is also

evidence that in patients with humoral deficiency, there is a

normal IgVH repertoire, but somatic hypermutation is

reduced [87]. Interestingly, in a patient with severe T lym-

phocyte immunodeficiency, there was also a normal IgVH

repertoire, but no somatic hypermutation.

Investigation and treatment

In pre-school children, lymphocyte phenotype should

be evaluated, immunoglobulin levels measured, and the

IgG antibody response to tetanus, Hib, and pneumococcal

antigens evaluated. Inadequate responses should be re-

evaluated after further vaccination. Patients with recurrent

or persistent lower respiratory tract infection should be

considered for thoracic high-resolution computerized

tomographic imaging of the chest and lung function

assessment.

Treatment for this partial form of 22q11 deletion is

largely symptomatic. Patients generally improve as they

become older. Bacterial sinopulmonary infection should be

treated promptly. Prophylactic antibiotics may be given,

particularly over the winter months, but may be required

throughout the year in occasional patients. For a few with

symptomatic hypogammaglobulinemia, or with recurrent

bacterial infection despite adequate antibiotic prophylaxis,

immunoglobulin replacement may be required [83]. Live

vaccines are generally safe to give, even in those with CD4

counts \600cells/ll and are effective at preventing disease

[88–90]. However, vaccine-related infection has occa-

sionally been described in patients with low T lymphocyte

counts [91], and poor T lymphocyte responses to specific

antigens can be found in patients with T lymphocyte

counts \10th centile of normal values [92]. It seems pru-

dent, therefore, that live vaccines are withheld in patients

with total CD4 counts less than 400 cells/ll [93].

Autoimmunity

Presenting and immunological features

As more patients are identified with 22q11 deletion, it is

becoming clear that autoimmunity is found more commonly
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than in the normal population. Currently, there are no bio-

markers to identify or predict which patients will develop

autoimmune features [71]. A range of autoimmune features

have been described including cytopenias, systemic auto-

immunity, particularly rheumatoid arthritis, and organ-

specific autoimmunity, most notably autoimmune thyroid

disease [71, 83, 84, 86, 94–97]. Other immunological

abnormalities, including IgA deficiency may be associated

[85].

The mechanism by which autoimmunity occurs is

unclear, and is likely to be multifactorial. Infections may

lead to autoimmune disease through a variety of mecha-

nisms including the release of sequestered antigens through

tissue damage; ‘bystander’ activation of autoreactive T

lymphocytes by inflammatory cytokines and microbial

products; and ‘molecular mimicry’ due to structural simi-

larity between microbial and endogenous peptides [98].

Patients with immunodeficiency are less able to clear

infectious agents. This results in chronic immune responses

and tissue damage, a situation which favors the breaking of

peripheral tolerance [99]. However, the development of

autoimmunity does not appear to be related to the number

of infections in 22q11-deleted patients. There is some

evidence to implicate skewing of T lymphocyte subsets to a

TH2 phenotype through homeostatic peripheral expansion,

leading to a dysregulated B lymphocyte compartment,

which may contribute to autoimmunity [100].

As previously noted, abnormal thymic development,

resulting in partial immuno-deficiency, can lead to auto-

immune features [38]. Detailed histological examination of

thymii from patients with 22q11 deletion and partial T and

B lymphocyte deficiency has not been reported, but it is

possible that abnormal expression of AIRE may contribute

to some autoimmune features, at least in some patients.

There is little work detailing FOXP3 ? regulatory T

lymphocytes in these patients, but in one study, patients

had proportionately fewer cells than normal controls [73],

although there were no differences in patients with or

without autoimmune features. Interestingly, comparison of

TCRVB repertoire abnormalities between the CD4? and

CD4? CD25Bright population showed no significant dif-

ferences for individual patients, but significant differences

were seen between the CD8? and CD4? CD25Bright T

lymphocytes and expansions/contractions were seen

(McLean-Tooke submitted).

Investigation and treatment

Beyond early childhood, it is a good practice to review

patients annually for evidence of autoimmune disease.

History and examination should be directed towards

symptoms of autoimmunity. Investigations, directed by the

clinical picture, should include appropriate auto-antibodies,

thyroid function, full blood count, and film and direct anti-

globulin test. Treatment should be directed toward specific

symptoms.

Conclusions

Immunological disorders are common in patients with

22q11 deletion, and are not restricted to severe or recurrent

infection. However, most studies are cross-sectional, and

there is still little data on the longitudinal immunological

history. While it is clear that autoimmunity is more com-

mon in these patients, it is not possible to predict who is at

risk of developing disease. Further work on defining

mechanisms of autoimmunity is needed. An awareness of

these problems by physicians caring for children and for

adults is important, so that patients are managed appro-

priately. For patients with a severe phenotype, thymic

transplantation offers an exciting alternative to hemato-

poietic stem cell transplantation, although it may be that

the procedure transforms a patient with complete T lym-

phocyte deficiency into one with partial combined

immunodeficiency, with the associated problems of auto-

immunity and immune dysregulation.
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