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Abstract Proline-rich antimicrobial peptides are a group

of cationic host defense peptides of vertebrates and inver-

tebrates characterized by a high content of proline residues,

often associated with arginine residues in repeated motifs.

Those isolated from some mammalian and insect species,

although not evolutionarily related, use a similar mecha-

nism to selectively kill Gram-negative bacteria, with a low

toxicity to animals. Unlike other types of antimicrobial

peptides, their mode of action does not involve the lysis of

bacterial membranes but entails penetration into suscepti-

ble cells, where they then act intracellularly. Some aspects

of the transport system and cytoplasmic targets have been

elucidated. These features make them attractive both as

anti-infective lead compounds and as a new class of

potential cell-penetrating peptides capable of internalising

membrane-impermeant drugs into both bacterial and

eukaryotic cells
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Abbreviations

AMP Antimicrobial peptide

CPP Cell-penetrating peptide

LPS Lipopolysaccharide

PR-AMP Proline-rich AMPs

HDP Host defence peptide

Introduction

The term ‘antimicrobial peptide’ (AMP) is used to describe

a diverse group of innate immune effector molecules uti-

lized by multicellular organisms to prevent or combat

microbial infections. Endogenous AMPs, as distinct from

artificial ones, are also referred to as host defense peptides

(HDPs). Several categories of AMPs have been described

based on common structural features or conserved

sequence motifs. These molecules recur throughout the

living world and have been extensively reported in

numerous reviews (for examples, see [1–3]).

AMPs typically do not target specific microbial mole-

cules, but rather interact directly with and rapidly

permeabilize microbial membranes—in other words, they

act principally via ‘lytic’ mechanisms. Their amino acid

compositions lead to structural properties, in terms of

amphipathicity, cationic charge, shape and size, which

favor interaction with the microbial surface, insertion into

the lipid bilayer and induction of membrane lesions. Sev-

eral different models have been proposed to depict the

consequences of this mode-of-action, including the ‘barrel-

stave’ and ‘toroidal-pore’ mechanisms, the formation of

‘aggregate channels’ and the detergent-like ‘carpet’ effect

(reviewed in [2]). ‘Lytic’ AMPs generally have broad

spectrum activity covering both Gram-positive and Gram-

negative bacteria as well as fungi, while their selectivity for

microbial with respect to host cells is proposed to derive

from distinctive features of microbial membranes [4].

Some AMP classes, and in particular the proline-rich

antimicrobial peptides which are the focus of this review, do

not conform to this predominant lytic mode of action. Pro-

line-rich AMPs (PR-AMPs) are a group of peptides of

widespread natural origin, whose quite diverse sequences

show some common characteristics: (1) the unusually high
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content of proline residues, (2) a net cationic charge due

mainly to the presence of arginine residues, and (3) the fact

that they act without extensive membrane damage, mostly

targeting Gram-negative bacteria [5–10]. Furthermore,

unlike ‘lytic’ AMPs for which the all-D enantiomers gen-

erally display the same activity as the natural all-

L counterparts, all-D PR-AMP analogues are much less

active or completely inactive [7, 8, 11]. These observations,

together with the fact that some PR-AMPs have been shown

to penetrate into bacterial cells by translocating across the

membrane [7, 12], suggest a stereospecific mode of action

involving interactions with a transport system followed by

inhibition of specific intracellular target(s), rather than a

non-specific disruption of membrane integrity. This

hypothesis is consistent with the narrower activity spectrum.

Diversity of proline-rich antimicrobial peptides

PR-AMPs were first reported from organisms as diverse as

honeybees [5] and cattle [10], and were subsequently found

in a number of other insect and mammalian species [9, 13]

and also in amphibians [14], crustaceans [15–17] and

molluscs [18]. There are sufficient differences in origin,

gene structure and primary sequence to suggest that the

different families are the product of convergent evolution,

although they are all characterized by a high content of

proline (typically from 25 to 50%), as well as of arginine

(conferring a net positive charge), often arranged in short

recurrent motifs.

All mammalian PR-AMPs belong to the cathelicidin

group of host defence effectors, which with the defensins

represent the two most widespread families of vertebrate

HDPs. Cathelicidins are characterized by a well-conserved

N-terminal pre-proregion and a highly variable C-terminal

domain, corresponding to the AMP, which becomes active

after proteolytic release [19–21]. To date, mammalian

proline-rich cathelicidins have been found only in artio-

dactyls. The first to be identified, Bac5 and Bac7, were

isolated in our laboratory from bovine neutrophils (see

Table 1) [10, 22], later followed by a putative pseudogene

containing the sequence of a third bovine PR-AMP, Bac4

[23]. Their orthologues have been identified in other bovids,

including sheep and goat [24], while additional members

have been detected or purified in sheep, including OABac11

and OABac6 [25]. Pig leukocytes express other PR-AMPs,

PR-39 [26] and prophenins [27]. Sequence analyses indi-

cate these peptides have an active and complex

evolutionary history, with some duplication events pre-

ceding and others following species radiations. Thus, while

an evolutionary relationship likely exists between PR-39

and the bovine and ovine PR-AMPs, despite quite divergent

sequences [28], the primary structure of the *80 residue

prophenins, formed from ten-residue repeats, appears to

have no counterpart in the other artiodactyls [27].

Despite all belonging to the cathelicidin family of pre-

cursors and having the characteristic high content of Pro

and Arg residues, mammalian PR-AMPs have quite dif-

ferent lengths and primary sequences, and are characterized

by the presence of different types of repeated tetramer

motifs of the type PPRX or PRPX, where X is most often a

bulky hydrophobic residue or Gly (see Table 1).

Apart from cathelicidins, other types of proline-rich

AMPs are apparently not common in mammals. A 1,905-Da

cationic peptide, named basic proline-rich peptide or SP-B,

was isolated as the main component of porcine salivary

gland granules, being present as multiple repeated units in a

large polypeptide precursor [29]. This weakly cationic

peptide (net charge ?1) is extraordinarily rich in proline

residues (see Table 1), and was found to possess antifungal

activity, but negligible antibacterial activity. It is unclear if

similar proline-rich peptides from the salivary glands of

other mammals, including cattle and primates, act in a

similar manner. Regarding other vertebrates, a proline-rich

peptide named PR-bombesin has been isolated from the

skin of the toad Bombina maxima (see Table 1). Despite

sharing features with the well-known bombesin family of a-

helical amphibian AMPs, an 8-residue, N-terminal segment

comprises four proline and three basic residues, including

the Pro-Arg-Pro (PRP) motif considered to play a relevant

role in some insect PR-AMPs. PR-bombesin displays a

moderate antimicrobial activity, but with a wider spectrum

than mammalian PR-AMPs, and may adopt a loose beta-

hairpin structure, normally only observed in AMPs stabi-

lized by one or more disulfide bonds [14].

Most known PR-AMPs have been isolated from insects

(various species of Hymenoptera, Diptera, Hemiptera and

Lepidoptera) and have been subdivided into two types:

short-chain and long-chain peptides [30] (see Table 2).

Their names reflect their origin rather than a systematic

subdivision among the individual sequences [13]. Com-

parison of the primary sequences as well as the gene

structure of vertebrate and invertebrate PR-AMPs suggests

that they are not evolutionarily related. Rather, the pres-

ence of similar motifs comprising proline and arginine

residues suggests the convergent evolution to a similar

mechanism for both accessing and inactivating their

microbial targets (see below).

Drosocin, a 19-residue peptide isolated from Drosophila

melanogaster, contains three repeats of the PRP motif,

evenly distributed along the sequence, and is also charac-

terized by an O-glycosylation site in the middle (Thr11)

[31] (see Table 2). Apidaecins are the earliest insect PR-

AMPs to be described, having been isolated from lymph

fluid of honeybees (Apis mellifera) infected with bacteria,

with three isoforms present in a multipeptide precursor [5].
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They are the most prominent components of the honeybee

humoral defence against microbial invasion [32]. Several

more peptides belonging to this family have since been

isolated from other bees, wasps and hornets belonging to

the Apocrita suborder of Hymenoptera, as outlined in

Table 2. They share a high degree of sequence identity

with clearly conserved residues, notably an RP or PRP

motif in the N-terminal portion and the eight-residue

PRPPHPRL motif at the C-terminus (see Table 2) [33].

The central and N-terminal regions are more variable.

Several different isoforms present on the same insect

derive from a single precursor [32].

Pyrrhocoricin, a well-studied PR-AMP isolated from a

hemypteran insect, the fire bug (Pyrrhocoris apterus) [34],

presents some similarities to drosocin. A close pyrrhoco-

ricin analogue from the bean bug (Riptortus clavatus), [35]

is expressed as a multipeptide precursor with 14 tandem

repeats. Twelve of these repeats (from the 2nd to the 13th)

are identical and have an N-terminal stretch that closely

resemble pyrrhocoricin, followed by a C-terminal stretch

which may be an anionic spacer region. In the first repeat,

however, the N-terminal stretch has the typical apidaecin

eight-residue sequence (see Table 2). Metalnikowin, an

inducible PR-AMP from a third hemypteran, the shield bug

Palomena prasina [34], is also clearly related, albeit with a

truncated sequence.

A distinguishing feature of pyrrhocoricin, in common

with drosocin and the ant PR-AMPs formaecins [36], is the

O-glycosylation of a conserved, centrally located threonine

residue (see Table 2), which is relevant for the antimicro-

bial activity (see below).

Long-chain PR-AMPs have been isolated from Dro-

sophila (metchnikowin) [37] and moths (lebocins) [38], as

well as from several hymenopteran species (abaecins) [39]

(see Table 2). The fact that they, respectively, derive from

dipteran, lepidopteran and hymenopteran species likely

explains the relatively low sequence identity among them.

Lebocins, like some short-chain PR-AMPs, are also gly-

cosylated at a central threonine residue [38], as are the

heliocins, PR-AMPs with putative analogues in several

moth species. Heliocin-like peptides seem to derive from

an upstream sequence in lebocin-like polypeptide precur-

sors [40, 41]. Both types of PR-AMPs are principally active

against, and their expression is induced by, Gram-negative

bacteria.

PR-AMPs are also common in other types of arthropods,

and several have been recently identified in different crus-

tacean species [42]. The first of these to be isolated and

partially sequenced, a 6.5-kDa peptide found in the hemo-

cytes of Carcinus maenas (see Table 3), curiously shows a

significant sequence similarity with the bovine Bac7 [15]. It

has, however, yet to be fully characterized, and the known

Table 1 Proline-rich antimicrobial peptides from vertebrate animals

a Tandem repeats present in some sequences are underlined with alternating single and dashed underlines

b Sequence is from a putative pseudogene
c Net charge, His residues are considered neutral
d Putative peptide size. Charge and percentage of proline residues are based on this sequence
e Œ Pyroglutamic acid
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fragment might be part of a bipartite proline-rich/cysteine-

rich AMP as found with other crustacean peptides. An

abundant family of peptides, named penaeidins, has recently

been described from several species of shrimp [42–43].

These 47- to 63-residue peptides display a proline-rich

N-terminal domain, justifying their inclusion among the

PR-AMPs, but also a C-terminal domain characterized by the

presence of three conserved disulfide bonds, more typical of

beta-sheet AMPs such as the defensins (see Table 3). The

solution NMR structure of recombinant penaeidin-3a from

Litopenaeus vannamei, in fact showed that the proline-rich

domain (residues 1–28) was unconstrained, while the cys-

teine-rich domain (residues 29–58) displayed a well-defined

structure stabilized by the three disulfide bonds [44].

Penaeidins are polymorphic, and three distinct classes

(PEN2, PEN3, and PEN4) are expressed in the hemocytes of

L. vannamei [45]. Unlike the insect peptides, however, these

PR-AMPs have a broad spectrum of antibacterial activity

covering fungi and Gram-positive bacteria. This character-

istic is also reported for the 14-amino acid long astacidins,

PR-AMPs isolated from different crayfish species, despite

the absence of a Cys-rich domain. Astacidin sequences

present a characteristic repeated RPxY motif (Table 3) [46].

The bipartite arrangement of Pro-Arg-rich and disul-

phide bridged domains is also found in arasins, recently

identified in spider and mud crabs [47–48], and callinectin

from the blue crab [49] (see Table 3). They both present a

disordered N-terminal Pro-Arg-rich domain and a struc-

tured C-terminal domain, in this case stabilized by only

two disulfide linkages. Arasin-1 is expressed as a

Table 2 Insect proline-rich antimicrobial peptides

a A representative sequence amongst several variants is shown. Residues in uppercase are highly conserved; those in lowercase are less

conserved. Glycosylated residues are in bold. Gaps have been inserted to improve proline-rich motif alignment. Variants were obtained by

blasting the respective type sequence [8, 31, 32, 34–36, 38, 39, 106–108] against the Uniprot database
b Net charge, His residues are considered neutral. Variants may have different cationicity as indicated
c O-glucosylated threonine residues are bold and underlined
d From repeats 2 to 13 of the Riptortus clavatus prosequence [35]
e From repeat 1 of the Riptortus clavatus prosequence [35]
f Putative peptide size. Charge and percentage of proline residues are based on this sequence
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64-residue propeptide with a 25-residue hydrophobic pro-

piece. A synthetic version of mature arasin-1 has been

confirmed to have antibacterial activity [48].

The fact that the crustacean peptides often show a

bipartite Pro-rich/Cys-rich structure, and that the Pro-rich

stretch on its own is active against Gram-positive micro-

organisms, indicates that these are a functionally different

class of PR-AMPs to the mammalian and insect ones

mainly targeting Gram-negative bacteria.

A first putative PR-AMP from a mollusc has been

recently reported in the oyster Crassostrea gigas [18],

consisting of a cDNA sequence encoding a 61 amino acid

polypeptide precursor with a hydrophobic signal peptide/

propiece. On release, the 37-residue mature peptide is

composed of an acidic region and a cationic Pro-rich

region. The antimicrobial activity is limited, although it

seems to synergise with oyster defensins in killing bacteria.

Antimicrobial and other host defence activities of PR-

AMPs

One of the more striking features of mammalian and insect

PR-AMPs is a remarkably similar and selective activity

spectrum directed against Gram-negative bacteria, and

especially Enterobacteriaceae, being active in the low

micromolar concentration range (see Table 4). At these

concentrations, most Gram-positive microorganisms are

not affected.

Susceptible microorganisms for mammalian PR-AMPs

are Escherichia coli, Salmonella enterica, Enterobacter

cloacae, Klebsiella pneumoniae and Acinetobacter bau-

mannii. Among the Gram-positive species, only those that

are in any case known to be easily killed by AMPs in

general, such as Bacillus megaterium, Bacillus subtilis and

Listeria monocytogenes, are affected, albeit at higher

concentrations [10, 24, 26, 50, 51]. PR-39 was found to be

active against drug-susceptible and multi-drug-resistant

clinical isolates of Mycobacterium tuberculosis [52], while

Bac5 and Bac7 were reported to be active against various

species of Brucella [53] as well as against spirochetes, such

as Leptospira but not Borrelia species [54]. These

PR-AMPs are ineffective towards Burkholderia cepacia

[55], a species which is resistant to most tested AMPs.

When tested against fungi, the functional N-terminal

fragment Bac7(1-35) was active against collection strains

and isolates of Cryptococcus neoformans, but not of Can-

dida albicans [55].

A similar spectrum of activity has been reported for the

ovine orthologues of Bac5 and Bac7, as well as their

Table 3 Other invertebrate proline-rich antimicrobial peptides

a A representative sequence amongst variants is shown. Residues in uppercase are highly conserved; those in lowercase are less conserved. Cys

residues involved in disulfide bonds are in bold. For penaeidins, Pro-rich and Cys-rich domains, aligned separately, are connected by a stretch of

different size, indicated as brackets. Variants were obtained by blasting the respective type sequence [15, 18, 42, 47–49, 109] against the Uniprot

database
b Based on Pro-rich domain only
c Net charge, His residues are considered neutral
d The nomenclature of the PenBase penaeidins database is used (see [109])
e Disulfide bridging pattern
f Putative disulfide pattern
g Only the N-terminal sequence of a 6.5-kDa protein is known
h Putative mature peptide
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functional fragments. The concentrations required to kill

Gram-negative bacteria such as E. coli and S. enterica are

about two orders of magnitude lower than those needed to

kill the Gram-positive bacteria Staphylococcus aureus,

Staphylococcus epidermidis, and Enterobacter faecalis

[56].

Insect drosocin, pyrrhocorycin and apidaecins have

overlapping activity spectra directed towards E. coli,

S. enterica, K. pneumoniae, and Agrobacterium tumefaciens,

and are active in the sub- to low micromolar concentration

range [11, 13] (see Table 4). Apidaecins are also effective

against Pseudomonas aeruginosa, while drosocin-suscepti-

ble Gram-negative strains include E. cloacae and Erwinia

carotovora [13]. As with the mammalian PR-AMPs, the

only Gram-positive species that show some susceptibility

are Micrococcus luteus and B. megaterium; otherwise, in

their native forms, they do not appear to affect major Gram-

positive bacterial or fungal pathogens [13].

The activity of crustacean PR-AMPs, and in particular

the penaeidins, is instead quite different: Pen-2 and -3a

have broad spectrum antifungal properties and their

antibacterial activities are essentially directed against

Gram-positive bacteria, with a strain-specific inhibition

mechanism [16]. This quite different specificity does not

seem to be dependent on the presence of the cysteine-rich

domain, as the proline-rich domain on its own maintains

activity against Gram-positive species [46, 57].

In addition to their antibacterial action, some PR-AMPs

exert other functions within the immune system of the

producing animals that contribute to host defence. PR-39

seems to have a plethora of such functions, among which

the capacity to up-regulate the expression of cell surface

proteoglycans in fibroblasts [58], to induce chemotaxis of

neutrophils [59], to promote angiogenesis [60] and to alter

macrophage viability by inhibiting apoptosis [61], as has

been reviewed in detail elsewhere [9]. In addition to this, in

a mouse model of endotoxaemia, PR-39 induced elevated

levels of NO in liver [62] and was effective in improving

survival of animals following a septic episode [63]. At

variance with the wealth of information on the effects of

PR-39 on host cells, relatively little is known about the

role(s) of other proline-rich AMPs besides their direct

antimicrobial activity. The functional fragment Bac7(1-35)

[64] and Bac5 [65] are rapidly internalized into 3T3 and

U937 cells by a nontoxic energy- and temperature-depen-

dent process, apparently via the concurrent contribution of

macropinocytosis and direct membrane translocation [64].

On cell penetration, they may have stimulatory functions,

such as enhancing S phase entry of 3T3 cells, but whether

this correlates with host defence functions has as yet to be

determined.

PR-AMPs are well tolerated by eukaryotic cells, and

generally display a very low toxicity. Peptides based on

both mammalian and insect PR-AMPs have been used in

animal model studies, at concentrations well above the

antimicrobial ones, without showing adverse effects [66,

67].

Conformation and structure–activity relationships

For many mammalian and insect PR-AMPs, over 30% of

residues are proline, an amino acid with unique effects on

secondary structural elements, and which is incompatible

Table 4 Antimicrobial activity of some representative PR-AMPs

MIC (lM)a

Peptide E. coli K12b E. coli ATCC 25922 S. typhimurium ATCC 14028

Bac7 1 1 1 [10, 55]

Bac7 (1-35) 0.5 0.5 0.5 [55, 80]

Bac5 1 0.5 1 [10, 55, 65]

PR-39c nd 1 1 [50]

PR-39 (1-15) 0.5 nd 0.25 [51]

Apidaecin Ibd 8 8 4-8 [75, 80]

Pyrrhocoricind 2 nd nd Unpublished

a MICs of the peptides were all determined using an identical protocol to allow direct comparison: the broth microdilution susceptibility test was

carried out following the guidelines of the NCCLS with mid-log phase cultures. Serial twofold dilutions of each peptide were prepared in 96-well

polypropylene microtiter plates in Muller–Hinton (MH) broth (final volume of 50 lL). A total of 50 lL of the adjusted inoculum

(1–5 9 105 cells/mL) in MH broth was then added to each well. The MIC value was defined as the lowest peptide concentration that prevented

visible bacterial growth after incubation for 18 h at 37�C
b The following K12 strains were used: HB101 to test Bac7 (1-35), Bac5 and apidaecin Ib; MC4100 to test Bac7 (1-35) and pyrrhocoricin; D21

to test Bac7 and PR-39 (1-15)
c A slightly different broth microdilution method was used [50]
d MICs were determined as above described but with 50% Muller–Hinton (MH) broth in phosphate-buffered saline (PBS)
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with a-helical or b-sheet conformations. Proline-rich

sequences tend to adopt the poly-L-proline type II helical

conformation (PP-II helix), an extended structure with

three residues per turn. The circular dichroism spectrum of

porcine PR-39 in water is indeed compatible with this

conformation, and is not affected by the presence of lipo-

somes, indicating that interaction with membranes does not

markedly modify its structure [68]. CD or NMR spectro-

scopic studies of Bac5 and its functional fragments, in

aqueous solution and in the presence of lipid vesicles, led

to similar conclusions [69–71]. Apidaecins and drosocin

are also reported to form the PP-II helix [32, 72]. This

suggests that the PP-II helix may be the biologically active

conformation for all these peptides. NMR studies of

penaeidins Pen-3 and Pen-4 provided a direct visualization

of the unconstrained proline-rich domain, which is exten-

ded and contrasts markedly with the cysteine-rich domain

that has a similar fold to that observed for defensins [73].

Although structural aspects for mammalian and insect

PR-AMPs are mostly inferred from low resolution methods

such as CD, PR-AMPs of different origin clearly seem to

assume similar extended, unconstrained conformations

which, in contrast to other types of AMPs, are not mark-

edly altered in the presence of biological membranes or

environments that mimic them. This is compatible with a

mode-of-action that does not involve major rearrangement

of microbial membranes or their permeabilization.

Most of what is known about the mechanism of action of

PR-AMPs comes from studies on the insect peptides pyr-

rhocoricin, apidaecin and drososcin, and from the

mammalian cathelicidins Bac7, Bac5 and PR-39. These

studies often made use of overlapping synthetic peptide

fragments covering the whole sequence of the natural

peptides, to dissect the role of different regions (reviewed

in [9]). From these studies it is evident that the antimi-

crobially active domains generally correspond with specific

segments of the peptides.

The three cathelicidin-derived peptides Bac5, Bac7 and

PR-39 can be shortened from the C-terminus until a min-

imum length of 15–16 residues, while maintaining a

substantial antimicrobial activity [51, 55, 74]. Shortening

from the N-terminus, the most cationic region in all three

peptides, is instead deleterious, and fragments comprising

the central or C-terminal regions such as Bac7(29-56),

Bac5(19-43) and PR-39(11-26) are poorly active or inac-

tive, despite having a considerable residual cationicity

[9, 55]. This trend has also been observed in naturally

occurring N- and C-terminal fragments of the sheep bac-

tenecins OaBac5 or OaBac7.5 [56].

The N-terminal arginine residues appear to be particu-

larly important for activity. Bac7(1-23) and (1-35) are fully

functional fragments of Bac7, but N-terminal truncation to

Bac7(5-23) and Bac7(5-35), removing the RRIR stretch,

greatly reduced antimicrobial activity. Conversely, adding

this stretch to the inactive fragment Bac7(29-56) partially

restored activity [55]. Substitution of the three N-terminal

arginines in the functional PR-39(1-15) fragment with

three polar uncharged Asn residues also resulted in a

poorly active molecule [51]. Even substitution of the RRIR

stretch of Bac7(1-35) with the equally charged KKIK

resulted in a reduced activity [9]. This suggests that

specific features of arginine, apart from its charge, are

important for antimicrobial activity. Recent studies in our

laboratory with Bac7(1-23), using various charged or

neutral arginine analogues, indicate that both the stereo-

chemistry and H-bonding capacity of the side-chain are

relevant (in preparation).

It would thus appear that the bactericidal activity of the

mammalian PR-AMPs is concentrated in the N-terminal

portion, while the rest of the peptide sequence (which can

be quite long) seems to have an accessory function, at least

as far as the direct cidal activity is concerned. Apart from

the N-terminal residues, however, others at specific posi-

tions within the sequence can be important determinants

for activity. For instance, altering the sequence of the

functional PR-39(1-15) fragment in the region comprising

residues 9–13 (LPRPR in the native PR-39), by permuta-

tions to LPPRR or LRPRP, or by single substitutions such

as L9 W or P10 N, resulted in 4- to 32-fold reduction of

antibacterial activity, depending on the target bacterial test

strain [51].

Structure activity studies in insect PR-AMPs followed

similar lines, but also needed to take into account the fact

that some of these are glycosylated. Analogously to

mammalian PR-AMPs, deletion of 5 N-terminal residues in

drosocin completely abolished its antimicrobial activity

[11]. Furthermore, removal of the disaccharide

Gal(bl ? 3)GalNAc(al ? O) from the central threonine

residue, or replacement with a monosaccharide, consider-

able reduced its potency. SAR studies with apidaecins

indicated that the conserved C-terminal region was

responsible for the general antibacterial capacity, while the

variable N-terminal region was responsible for the anti-

bacterial spectrum [32]. Replacement of a single arginine/

leucine residue in apidaecin 1b with the N-substituted

glycine analog (peptoid), to improve resistance to prote-

olysis, has shown that the antibacterial efficacy depended

markedly on the position of the peptoid residues. At the

N-terminus, these modified residues increased stability

without affecting activity, but when moved into in the

C-terminal end of the molecule, and especially into the

conserved PRPPHPRL motif, activity was progressively

reduced. Substitution of the C-terminal Leu with its peptoid

analog also abrogated activity [75].

A common conclusion coming from SAR studies with

mammalian and insect PR-AMPs, or their functional

Non-lytic proline-rich antimicrobial peptides 2323
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fragments, was that they did not act in a lytic manner, as

there was no indication of membrane permeabilization.

Rather, a significant body of evidence points to a mecha-

nism involving cellular internalization and binding to a

cytoplasmic target. It is rather interesting that studies on

the unrelated vertebrate and invertebrate PR-AMPs should

lead to a quite similar outcome.

Mode of action for antimicrobial activity

The first clues suggesting that PR-AMPs might act through

a non-lytic mechanism came from experiments showing

that light scattering by an E. coli cell suspension treated

with either insect apidaecin or bovine PR-39 remained

unchanged at incubation times at which bacteria were

killed, indicating that microorganisms were not lysed

[5, 6]. The absence of membrane permeabilization was

subsequently confirmed at concentrations exceeding lethal

doses by four orders of magnitude, while on the other hand,

apidaecin-resistant mutants showed undiminished sensi-

tivity to pore-forming peptides [8]. Similar observations

were made for pyrrhocoricin [76] and Bac7 fragments [7].

Another indication that proline-rich peptides have a dif-

ferent mechanism of action than lytic peptides is their

relatively slow bacteria-killing kinetics (from several

minutes to some hours) compared to lytic AMPs, which are

in general very fast killers (often a reduction of viable cells

of several logs is observed within a few minutes exposure).

The relevance of peptide stereochemistry to the anti-

microbial activity is another feature that further

convincingly points to a different mechanism of action for

PR-AMPs. It has been extensively established that the all-

D enantiomers of lytic AMPs generally display the same

activity as the natural all-L counterparts, consistent with a

non-stereospecific mode of interaction with the membrane

[77, 78]. Conversely, the all-D enantiomers of PR-AMPs

generally show a marked loss of activity [7, 8, 13]. All-

D apidaecins could associate with bacterial cells as rapidly

as the natural all-L counterparts, but unlike these could

then be recovered almost entirely by exhaustive washing,

indicating they did not internalize [12]. Uptake appeared to

be energy-driven and irreversible and could be partially

antagonized by free proline, in a stereospecific fashion,

which supports a model with a permease/transporter-mediated

process as part of the antimicrobial mechanism. Similarly, the

uptake of fluorescently labeled all-D Bac7(1-35) was signifi-

cantly reduced with respect to the all-L analogue [79].

A membrane protein involved in uptake of both cathelicidin-

derived PR-AMPs and apidaecin has now been identified in

our laboratory (see below) [80].

Regarding the putative internal target for PR-AMPs,

Otvos et al. reported that pyrrhocoricin, drosocin and

apidaecin could all bind the 70-kDa bacterial heat shock

protein DnaK (Hsp70) in a specific manner, and could also

bind to the 60-kDa bacterial chaperonine GroEL, but in a

non-specific manner. It was suggested that peptide binding

to DnaK could be correlated with antimicrobial activity

[81]. DnaK assists a large variety of protein folding pro-

cesses in the cell by transient association of its substrate

binding domain with short hydrophobic peptide segments

within the substrate proteins [82]. Deletion of the dnaK

gene may severely affect bacterial cells [83], so that DnaK

inhibition could be the ultimate mechanism of PR-AMPs

activity. Active L-pyrrhocoricin was in fact found to

diminish the ATPase activity of recombinant DnaK [84],

while the inactive all-D-pyrrhocoricin enantiomer, as well

as membrane-active antibacterial peptides cecropin A or

magainin 2, did not. In addition, the refolding function of

DnaK was reduced upon incubation with L-pyrrhocoricin

and drosocin but not with D-pyrrhocoricin, with the lytic

AMP magainin 2, or with the non-lytic helical AMP

buforin II [84]. The mechanism of inhibition is as yet still

unclear, although it has been proposed that the binding of

drosocin or pyrrhocoricin to DnaK prevents the movement

of the multi-helical lid over its peptide-binding pocket,

permanently closes the cavity, and thus inhibits chaperone-

assisted protein folding [84]. Others suggest that these

peptides interact with DnaK by binding to its conventional

substrate-binding site so that their antimicrobial activity is

a consequence of the competitive inhibition of bacterial

DnaK [85]. A dual-mode of inhibition has also been pro-

posed, based on the latter competitive mechanism and

interference with an allosteric mechanism that determines

the lid-mediated regulation of the chaperone cycle [86].

With respect to the mammalian PR-AMPs, in a search

for bacterial cytoplasmic interactors using affinity resins

functionalized with L-Bac7(1-35), it is striking that the

only protein specifically retained with high affinity from

E. coli protein lysates was DnaK, while the all-D enantio-

mer failed to retain it. In addition, the peptide was found to

inhibit in vitro the protein refolding activity of the com-

plete DnaK/DnaJ/GrpE/ATP molecular chaperone system,

in a dose-dependent manner [87].

The mechanism by which insect and mammalian PR-

AMPs inactivate susceptible bacteria might thus depend on

their ability to inhibit protein folding and refolding by

binding to DnaK. Significantly, the homologue of DnaK in

S. aureus, a Gram-positive species not susceptible to

PR-AMPs, does not bind pyrrhocoricin. It cannot be

excluded, however, that PR-AMPs inactivate bacteria by

binding to other internal targets apart from DnaK that have

as yet to be identified. In this respect, the in vitro sensitivity

of DnaK-deficient E. coli strains to Bac7(1-35), under

growth permissive conditions, was not decreased signifi-

cantly compared to the wild-type strains, supporting our
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impression that, apart from DnaK, other vital targets for the

proline-rich AMPs are present in susceptible bacteria.

The mechanism underlying the antibacterial activity of

Bac7(1-35) was extensively investigated against both

S. enterica and E. coli. At 0.25–0.5 lM concentrations,

the all-L enantiomer rapidly killed bacteria by a non-lytic,

energy-dependent mechanism, being rapidly internalized

into bacterial cells, while the inactive all-D enantiomer

was excluded. At higher concentrations (C64 lM), both

L- and D-enantiomers of Bac7(1-35) killed bacteria by

permeabilization of the cytoplasmic membrane [7]. This

PR-AMP could thus inactivate bacteria via two different

modes of action, depending on the concentration: a ste-

reospecific mechanism based on uptake and target

binding at concentrations near the MIC value, and an

additional non-stereoselective membranolytic mechanism

relevant only at concentrations several times the MIC

values [7].

Subsequently, a genetic approach was set up with the

aim of identifying the protein(s) involved in the trans-

membrane transport of PR-AMPs. This was based on

mutagenesis to select bacterial mutants that were either

more resistant or more susceptible to peptide action [88]. It

allowed the identification of the sbmA gene, which, if

mutated or deleted, conferred partial resistance to several

PR-AMPs, including Bac7, PR-39, Bac5 and apidaecin, but

not to representative a-helical membranolytic peptides [80,

89]. This gene codes for SbmA, a inner membrane protein

predicted to be part of an ABC transporter, which is also

necessary for the antimicrobial activity of the microcins

J25 and B17, antibacterial peptides of bacterial origin [90,

91], as well as the glycopeptide antibiotic bleomycin [92].

Deletion or mutation of SbmA in E. coli markedly

decreased the ability to internalize fluorescently labeled

Bac7(1-35), and this correlated with a reduced suscepti-

bility to PR-AMPs, indicating that SbmA is necessary for

the transport process [80]. The oligomerization state of the

transporter, and the other membrane or cytoplasmic inter-

actors that may be required to constitute it, are under

investigation.

Although sbmA is not an essential gene, at least in the

growth conditions tested thus far, its importance in vivo

can be inferred from the functions of its homologue bacA

in the endosymbiont Sinorhizobium meliloti as well as in

the intracellular parasite Brucella abortus. In these alpha-

proteobacteria, BacA is essential to establish a chronic

intracellular infection in their respective hosts [91]. It is

worth noting that both species are susceptible to some

PR-AMPs [89] as are several Enterobacteriaceae, in which

SbmA is present [89]. In contrast, those species in which

sbmA has no close homologues, such as P. aeruginosa, are

less susceptible to Bac7. SbmA/BacA may thus be part of a

general transport system essential for the internalisation of

PR-AMPs in bacteria and in making them susceptible to

these AMPs.

Studies underway in our laboratory, aimed at dissecting

the regions in Bac7 responsible for cell penetration, indi-

cate that an N-terminal region of at least 15 residues is

necessary for internalization (unpublished data). A

reversed situation has found by others for pyrrhocoricin in

which the N-terminal part (residues 2–10) is required for

target binding and its C-terminal part for bacterial entry

[93].

What has been learnt about the mode-of-action of

mammalian and insect PR-AMPs, mainly from studies with

pyrrhocoricin, Bac7, apidaecin and their analogs is collated

in Fig. 1, and this unified scheme might be extendable to

other PR-AMPs. These are transported into the bacterial

cells at sub- to low micromolar concentrations, by a ster-

eoselective transport system involving the membrane

protein SbmA, and act intracellularly. At higher concen-

trations, they act on bacteria in a non-stereoselective

Fig. 1 Model for the mode-of-action of mammalian and insect PR-

AMPs. PR-AMPs like Bac7 and apidaecin can penetrate into

susceptible bacterial cells in a stereoselective manner using a

transport system involving the membrane protein Sbma/BacA, likely

part of an ABC transport system for which the oligomerization state

and other interactors are as yet unknown. The natural all-L PR-AMPs

are internalized by this system at sub- to low micromolar concen-

tration, while the all-D enantiomers are not. At considerably higher

concentrations, both L- and D-isomers of PR-AMPs like Bac7 are

capable of killing bacteria via a membranolytic mechanism. Other, as

yet unknown, transporters may internalize these peptides at interme-

diate concentrations. Once internalized, PR-AMPs such as

pyrrhocoricin and Bac7 can interact with the bacterial chaperone

DnaK, affecting the ATPase activity or its peptide binding domain

(PBD) or both. There are likely also other intracellular interactors,

alongside the chaperone, or downstream from it

Non-lytic proline-rich antimicrobial peptides 2325
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membranolytic manner. It is feasible that they have other

transport systems acting at intermediate concentrations, but

this has to be verified. The only intracellular target iden-

tified to date is the bacterial chaperone DnaK, where they

could inhibit the essential ATPase activity or protein

folding activity or both. There are indications that other

targets exist, and it may also be that events subsequent to

DnaK binding play a relevant role in the killing action.

In vivo application of PR-AMPs and potential

for development

Studies have been performed recently with selected

PR-AMPs to explore their potential as lead compounds for

development of novel anti-infective drugs. The interest for

their exploitation is twofold: (1) as direct antimicrobials

they combine a mode of action different to those of lytic

AMPs or conventional antibiotics with a very low in vivo

toxicity; and (2) as cell penetrating peptides they may be

capable of internalising useful molecular cargo into either

bacterial or host cells. Attempts to improve their potential

are mostly aimed at increasing serum stability without

affecting their antimicrobial or cell-penetrating properties.

Optimization of pyrrhocoricin led to designer peptides

which entered bacterial cells and maintained their DnaK-

binding ability combined with a high stability and low

toxicity in mice [94]. The most promising of these,

A3-APO, retained full antibacterial activity in the presence

of serum and was effective for the treatment of systemic,

Gram-negative bacterial infections in mouse models

[95–97]. This peptide appears to have a dual mode of action,

being capable of interacting with and lysing bacterial

membranes, as well as interacting with the intracellular

target DnaK. (reviewed in [98]). Interestingly, A3-APO

derivatives would seem to have a greater in vivo than in vitro

bactericidal efficacy, which might be explained by addi-

tional immunostimulatory properties of these peptides [97].

A synthetic peptide, oncocin (VDKPPYLPRPRPPR-

RIYNR-NH2), was designed starting from a moderately

active analogue of pyrrhocoricin (70% identity), isolated

from the milkweed bug (Oncopeltus fasciatus) [99]. A

number of substituted analogues were then optimized for

treatment of Gram-negative pathogens [100]. These pep-

tides were not toxic to human cell lines and could freely

penetrate lipid membranes without lytic activity. Substi-

tution of arginine residues with ornithine increased both the

activity and the half-live in full mouse serum [100].

We have recently collected data supporting the potential

of the mammalian PR-AMP Bac7 as an anti-infective drug

for the treatment of salmonellosis and other Gram-negative

infections. The fragment Bac7(1-35) was substantially

active in murine serum or plasma even after 24 h

incubation, and was able to significantly reduce the mor-

tality of infected animals in a mouse model of typhoid

fever. Results indicated that the peptide’s efficacy could be

substantially enhanced by decreasing its excretion rate or

modifying the treatment schedule [67]. In addition to its

anti-infective activity in vivo, it was shown that Bac7(1-35)

also neutralized the effects of lipopolysacharide (LPS) in

an experimental rat model of Gram-negative septic shock,

with a potency comparable to that of polymixyn B [101].

The therapeutic potential of PR-AMPs was further

consolidated by a series of experiments showing that

transgenic mice constitutively expressing the pig peptide

PR-39 showed increased resistance to group A Strepto-

coccus skin infection, an effect that was not observed in

transgenic mice overexpressing their only native cathelic-

idin (mCRAMP), which belongs to the a-helical,

membranolytic group [102].

The other potential application of PR-AMPs is their use as

cell-penetrating peptides (CPPs) for the intracellular deliv-

ery of impermeant drugs into both bacteria and eukaryotic

cells. Fluorescently labeled Bac7(1-35) is rapidly detected in

the cytoplasm of exposed Gram-negative bacteria using flow

cytometry or confocal microscopy [79], indicating that it can

efficiently internalize small molecules such as the fluoro-

phores BODIPY or fluorescein. Even more striking results

were obtained with eukaryotic cells, into which Bac7 frag-

ments were capable of delivering a noncovalently linked

protein [103]. More recently, a functionalized derivative of

Pt(II) coproporphyrin I (PEPP0) was conjugated to the

15–24 fragment of Bac7 to make an oxygen-sensitive

phosphorescent probe for intracellular use [104].

The capacity to enter both animal and bacterial cells has

also been observed with insect PR-AMP-derived peptides.

Fluorescently labeled oncocin homogeneously stained

E. coli cells within 50 min [100]. Similarly, native pyr-

rhocoricin entered E. coli cells very efficiently and its more

potent dimeric analogue A3-APO is reported to penetrate

dendritic cells and fibroblasts [105].

The capacity of PR-AMPs to be both eukaryotic and

prokaryotic CPPs is uncommon, and likely derives from

quite different mechanisms: the concurrent contribution of

macropinocytosis and direct membrane translocation in the

first case, and use of a membrane transporter in the second.

Overall, these results indicate that these proline-rich pep-

tides represent a potentially new class of CPPs for

intracellular delivery of impermeant molecular cargo.

Conclusions

Proline-rich antimicrobial peptides from both insects and

mammals are a distinctive group of host defence peptides

with a characteristic selectivity for Gram-negative bacteria
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and a non-lytic mechanism of action. They do not conform

to the widespread view that AMPs act principally at the

microbial membrane, in a non-selective manner. Studies

starting in the early 1990s demonstrated that they could

inactivate susceptible bacterial cells via a stereoselective

mechanism, and likely interfered with cytoplasmic targets.

In the last few years, a concerted effort on peptides of both

vertebrate and invertebrate origin has allowed to identify a

part of the transporter system and a first specific target:

respectively, the membrane protein SbmA/BacA and the

chaperone DnaK. The selectivity of this type of PR-AMP

can thus be explained by the fact that they target bacteria

expressing both the transport system and a vulnerable

internal target (e.g., a molecular chaperone). This is the

first case where specific molecular targets are indicated for

animal AMPs. Studies are underway to verify the presence

of other transport systems for PR-AMPs, as well as further

cytoplasmic targets.

From the point of view of the development of novel anti-

infective agents, PR-AMPs have several advantages,

including: (1) a selective but potent antimicrobial activity in

vitro reflected by a reasonable potency in vivo; (2) a

remarkably low toxicity and the possibility of being modified

to reduce proteolytic degradation and increase activity in

biological fluids; (3) specific druggable targets; (4) an

accessory anti-LPS activity; (5) indications that additional

immunostimulatory activities could augment the direct anti-

biotic action; and (6) the possibility of using them as a new

class of cell-penetrating peptides capable of internalizing

other drug cargo into both susceptible bacterial and host cells.

For all these reasons, it is likely that PR-AMPs will

continue to attract both basic and applied research efforts in

the future, and provide new insights into the perennial

struggle between host and pathogen. In addition to their

exploitation as drug candidates, the PR-AMPs deserve to

be studied for more basic scientific questions, which

include, for instance, the origin and biological significance

of the repeats present in the structure of many PR-AMPs,

whether they effectively play a multifunctional role in the

producer organism beyond their direct antibiotic capacity,

why in mammals they are found only in Artyodactila, and

the reasons underlying the convergent evolution of verte-

brate and invertebrate PR-AMPs.
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