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Abstract Phosphatidylinositol 4,5-bisphosphate [PI(4,5)

P2] is a minor lipid of the inner leaflet of the plasma

membrane that controls the activity of numerous proteins

and serves as a source of second messengers. This multi-

functionality of PI(4,5)P2 relies on mechanisms ensuring

transient appearance of PI(4,5)P2 clusters in the plasma

membrane. One such mechanism involves phosphorylation

of PI(4)P to PI(4,5)P2 by the type I phosphatidylinositol-4-

phosphate 5-kinases (PIP5KI) at discrete membrane loca-

tions coupled with PI(4)P delivery/synthesis at the plasma

membrane. Simultaneously, both PI(4)P and PI(4,5)P2

participate in anchoring PIP5KI at the plasma membrane

via electrostatic bonds. PIP5KI isoforms are also selec-

tively recruited and activated at the plasma membrane by

Rac1, talin, or AP-2 to generate PI(4,5)P2 in ruffles and

lamellipodia, focal contacts, and clathrin-coated pits. In

addition, PI(4,5)P2 can accumulate at sphingolipid/choles-

terol-based rafts following activation of distinct membrane

receptors or be sequestered in a reversible manner due to

electrostatic constrains posed by proteins like MARCKS.
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Abbreviations

FERM Band 4.1-ezrin-radixin-moesin homology

BTK Bruton’s tyrosine kinase

DAG Diacylglycerol

DAGK Diacylglycerol kinase

EGF Epidermal growth factor

IP3 Inositol trisphosphate

MDCK Madin-Darby kidney cells

MARCKS Myristoylated alanine-rich C kinase

substrate

GAP43 Growth-associated protein 43

OCRL1 Oculocerebrorenal syndrome of Lowe 1

phosphatase

OSBP Oxysterol-binding protein

PTEN Phosphatase and tensin homologue on

chromosome 10

PA Phosphatidic acid

PI Phosphatidylinositol

PIPK Phosphatidylinositol phosphate kinase

PI3K Phosphatidylinositol 3-kinase

PI4K Phosphatidylinositol 4-kinase

PI(3)P Phosphatidylinositol 3-monophosphate

PI(4)P Phosphatidylinositol 4-monophosphate

PI(5)P Phosphatidylinositol 5-monophosphate

PI(4,5)P2 Phosphatidylinositol 4,5-bishosphate

PI(3,4,5)P3 Phosphatidylinositol 3,4,5-trisphosphate

Fapp Phosphatidylinositol-4-phosphate adaptor

protein

IPP 5-Ptase Inositol polyphosphate 5-phosphatase

PLC Phospholipase C

PLD Phospholipase D

PTB Phosphotyrosine-binding

PH Pleckstrin homology

PIP5KI Type I phosphatidylinositol-4-phosphate

5-kinase

PIP4KII Type II phosphatidylinositol-5-phosphate

4-kinase

OSH2 Yeast oxysterol-binding protein homologue
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Introduction

During the five decades that have passed since the discovery

of phosphoinositide turnover in the cell [1], it has been

established that phosphatidylinositol 4,5-bisphosphate

[PI(4,5)P2] is located mainly in the plasma membrane and

serves as a source of second messengers: inositol trisphos-

phate (IP3), diacylglycerol (DAG), and phosphatidylinositol

3,4,5-trisphosphate [PI(3,4,5)P3]. IP3 and DAG are gener-

ated by phospholipase C (PLC)-catalyzed hydrolysis of

PI(4,5)P2, while PI(3,4,5)P3 arises by phosphorylation of

PI(4,5)P2 by the class I phosphatidylinositol 3-kinases

(PI3KI). Aside from the fundamental signaling role of its

derivatives, PI(4,5)P2 itself controls the activity of several

integral membrane proteins, like ion channels and trans-

porters, and affects a myriad of proteins associating with

the membrane due to PI(4,5)P2 binding. The latter group

includes proteins of the actin cytoskeleton that recognize

PI(4,5)P2 using either specific domains, like the pleckstrin

homology (PH) domain or the band 4.1-ezrin-radixin-moe-

sin homology (FERM) domain, or unfolded stretches of

basic amino acids. Despite PI(4,5)P2 comprising only 1% of

all plasma membrane phospholipids, its extraordinary ver-

satility puts PI(4,5)P2 in the center of plasma membrane

dynamics governing motility, cell adhesion, endo- and

exocytosis. Some of these subjects have been discussed

extensively in recent excellent reviews [2, 3].

The diversity of PI(4,5)P2 functions poses the question

of the nature of the mechanisms governing the local and

discrete character of PI(4,5)P2-dependent processes. This

review covers work dealing with this puzzle and pointing

to the existence of various pools of PI(4,5)P2 in the plasma

membrane. The ideas proposed as a solution to the above

problem include local control of PI(4,5)P2 synthesis and

confinement of PI(4,5)P2 in the plasma membrane due to

an involvement of membrane rafts and positively charged

membrane proteins.

PI(4,5)P2 synthesis in the plasma membrane

Major role of type I phosphatidylinositol-4-phosphate

5-kinases

Phosphatidylinositol 4-monophosphate [PI(4)P] and

PI(4,5)P2 are two major derivatives of phosphatidylinositol

(PI), their amounts reaching about 5% each of the total

cellular PI [4]. Due to the relative abundance of PI(4)P, its

phosphorylation at the D-5 position of the inositol ring is

the prevailing route of PI(4,5)P2 synthesis in the cell

(Fig. 1). This reaction is catalyzed by kinases named the

type I phosphatidylinositol-4-phosphate 5-kinases (PIP5KI)

belonging to the family of phosphatidylinositol phosphate

kinases (PIPK). Alternatively, minor amounts of PI(4,5)P2

arise from phosphorylation of phosphatidylinositol

5-monophosphate [PI(5)P] due to action of the type II

phosphatidylinositol-5-phosphate 4-kinases (PIP4KII), a

second PIPK subfamily (Fig. 1). Finally, PI(4,5)P2 can also

be generated by PTEN- (phosphatase and tensin homo-

logue on chromosome 10)-driven dephosphorylation of

PI(3,4,5)P3 [5]. Although crucial for termination of

PI(3,4,5)P3 signaling, the importance of this process for

PI(4,5)P2 generation in the plasma membrane remains

questionable. Of note, PI(4,5)P2 can also undergo

dephosphorylation catalyzed either by inositol polyphos-

phate 5-phosphatases (IPP 5-Ptases) such as

oculocerebrorenal syndrome of Lowe 1 phosphatase

(OCRL1) and synaptojanins [6–8] or by PI(4,5)P2

4-phosphatases type I and II [9]. These enzymes dephos-

phorylate the D-5 and D-4 phosphoester linkage of

PI(4,5)P2 yielding PI(4)P and PI(5)P, respectively. Activity

of IPP 5-Ptases is important for controlling the PI(4,5)P2/

PI(4)P balance at defined cellular locations and its distur-

bances lead to homeostatic PI(4,5)P2 defects bearing

serious consequences to health. These are exemplified by

the devastating human developmental disorder named

Lowe syndrome caused by loss-of function for the OCRL1

[10, 11], mortality of synaptojanin 1-deficient mice [12]

and possibly, Down’s syndrome connected with trisomy of

the synaptojanin 1 gene [13]. On the other hand, PI(4,5)P2

4-phosphatases seem to play an essential role in the

synthesis of PI(5)P since PI(4,5)P2 4-phosphatase I was

shown to control nuclear levels of PI(5)P and thereby

p53-dependent apoptosis [14].

The third member of the PIPK family, the type III PIPK

named PIKfyve in mammals, is a phosphatidylinositol-3-

phosphate 5-kinase that phosphorylates phosphatidylinosi-

tol 3-monophosphate [PI(3)P] to PI(3,5)P2, a lipid that

controls membrane trafficking in the endosomal pathway

(see [15] for review). Of note, PIKfyve is also implicated in

synthesis of PI(5)P either by direct phosphorylation of PI

Fig. 1 PI(4,5)P2 metabolism and activity. PI(4,5)2 is generated

mainly by phosphorylation of PI(4)P by PIP5KI (the pathway

indicated by thicker arrows) and, to lower extend, by PIP4KII-

catalyzed phosphorylation of PI(5)P. PI(4,5)2 directly affects activity

of numerous proteins, serves as a source of second messengers: IP3,

DAG, and PI(3,4,5)P3. The lipid can be also dephosphorylated at the

D-4 and D-5 positions of the inositol ring
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(see Fig. 1) or by production of PI(3,5)P2 which can be

then converted into PI(5)P by PI(3)P phosphatases of the

myotubularin family [16–18]. Both PIP5KI and PIP4PII

also utilize PI(3)P as a substrate in vitro and are indicated

to produce PI(3,4)P2, PI(3,5)P2, and PI(3,4,5)P3 in the cell

[19, 20]. However, the physiological consequences of this

substrate promiscuity of PIPKs are beyond the subject of

this review.

The type I PIP5Ks, central to PI(4,5)P2 synthesis in the

plasma membrane, are of three isoforms, a, b, and c,

encoded by distinct genes. PIP5KIa and Ib of human and

mouse origin were cloned simultaneously by two groups

and given reciprocal names [21–23]. In this work, names

adopted for the human enzymes by Anderson’s group are

used. PIP5KIa1 consists of 549 amino acids while PIP5-

KIb1 of 540 amino acids, and they represent one of three

(PIP5KIa) and two (PIP5KIb) splicing variants, all of

molecular weight of about 62 kDa [22]. PIP5KIc has three

well-characterized splicing variants: PIP5KIca of 668

amino acids (661 amino acids in murine PIP5KIca),

PIP5KIcb of 635 and PIP5KIcc of 688 amino acids (present

in rodents), also called PIP5KIc90, Ic87 and Ic93 based on

their migration in gel electrophoresis [23, 24]. Although all

these PIP5KI isoforms coexist in most tissues, PIP5KIa is

highly expressed in skeletal muscles and PIP5KIb in the

heart, whereas PIP5KIc is abundant in the brain, which

suggests specific functions for these isoenzymes in distinct

cells. The physiological importance of PIP5KIc is indicated

by early mortality of PIP5KIc knockout mice [25]. The

three PIP5KI isoforms display about 80% identity in the

amino acid sequence of their catalytic domain consisting of

330–380 amino acids and located in the center of the

molecule [22, 23]. Another unique feature of the PIP5KIs

common to all the isoforms is the up-regulation (up to

tenfold) of their enzymatic activity by phosphatidic acid

(PA) [21, 23, 26]. Consequently, phospholipase D (PLD)

and diacylglycerol kinase (DAGK), enzymes producing

PA, can regulate PIP5KI activity, as discussed below. All

PIP5KI isoforms undergo autophosphorylation and phos-

phorylation catalyzed by protein kinase A within the

catalytic domain, which strongly suppresses their lipid

kinase activity [27, 28]. The variable amino- and carboxy-

terminal tails of PIP5KIa, Ib, and Ic are involved in the

regulation of their activity [23] and are likely to participate

in the targeting to distinct cellular locations. For example,

the C-terminal 28 amino acids (26 in murine kinase) were

found to govern interaction of PIP5KIca with talin at focal

contacts organized during adhesion of cells to the matrix

[29, 30]. The C-terminus (amino acids 440–562) of PIP5-

KIa2 targets the enzyme to the nucleus [31]. A search of

the human and mouse genome sequence databases for an

amino acid motif conserved in all PIPK has revealed a

PIPK homolog composed of 395 amino acids (about

40 kDa). This protein is abundant in brain and testis, has no

intrinsic kinase activity but homodimerizes with PIP5KIa
and Ib, thus affecting their activity [32].

Studies on the functions of individual isoenzymes have

yet to produce a comprehensive picture. However, it is

becoming increasingly clear that the different PIP5KI iso-

forms play specific roles in individual cell types and one

kinase isoform can not compensate for the loss of another

[33–37]. PIP5KIa is implicated in actin remodeling that

governs ruffling, expansion of the leading edge of migrat-

ing cells, and phagosome formation [38–40]. Nevertheless,

participation of PIP5KIb (murine PIP5KIa) in the uncap-

ping of actin filaments leading to actin polymerization in

thrombin-activated platelets [33], actin polymerization

accompanying cell volume changes [34], and actin reor-

ganization during oxidative stress should also be noted

[41]. A growing body of evidence suggests that PIP5KIa
and Ib can shuttle between the plasma membrane and

cytoplasm being recruited to the membrane upon activation

of cell motility [39, 40, 42, 43]. Overexpression of PIP5KIa
or Ib induces various changes of the actin cytoskeleton

including the appearance of unusual structures like actin-

rich needles and comets [23, 44, 45]. Therefore, both these

kinase isoforms have been postulated to generate PI(4,5)P2

affecting the actin cytoskeleton organization in the cell.

However, since the cellular localization of the overex-

pressed kinases is often different than that of the

endogenous ones (see below), and the final outcome of a

kinase’s activity can be different depending on the cellular

context including the activity of the Rho family members

[45, 46], it is hard to ascribe a particular aspect of actin

remodeling to one of the kinase isoforms based solely on

those data. Besides the role in actin cytoskeleton reorga-

nization, PIP5KIa is also found in the nucleus at sites of

pre-mRNA processing where it interacts with non-canoni-

cal poly(A) polymerase to control the formation of selected

mRNAs [31, 47]. On the other hand, PIP5KIb is engaged in

formation of clathrin-coated pits during receptor endocy-

tosis [48]. Participation of PIP5KIca in the formation of

clathrin-coated pits has also been documented in great

detail [49–51]. Additionally, the activity of PIP5KIca-c

emerges as crucial for assembly of focal contacts and cell–

cell contacts and for association of the actin cytoskeleton

with the plasma membrane mediated by proteins of these

structures [29, 30, 35, 52–54].

Mammalian PIP5KIa and Ib, but not PIP4KIIb, were

able to restore PI(4,5)P2 synthesis and rescue lethality of

yeast mutants lacking Mss4p, the only yeast PIP5KI [55,

56]. The cells do not have PIP4KII but express the type III

PIPK called Fab1p, which does not participate in PI(4,5)P2

synthesis and, hence, is not able to substitute for Mss4p

[55]. The Mss4p kinase is localized to the plasma mem-

brane and is required for yeast viability, actin organization,

Various pools of PI(4,5)P2 in the plasma membrane 3929



and cell wall integrity [57]. These data suggest that an

involvement of PIP5KI-derived PI(4,5)P2 in actin skeleton

remodeling is evolutionarily ancient.

PIP4KII provides a clue on PIP5KI–membrane

interaction: role of PI(4)P

The second pathway for the production of PI(4,5)P2 relies

on phosphorylation of PI(5)P on the D-4 position of the

inositol ring catalyzed by type II PIP4K (Fig. 1). Three

isoforms of PIP4KII (a, b, c) have been identified in

mammalian cells, with PIP4KIIa being the first PIPK

cloned [58–60]. The distinct substrate specificity of

PIP5KI and PIP4KII was established by Rameh et al.

[61], who also found evidence for the presence of PI(5)P,

a PIP4KII substrate, in fibroblasts. Kinases of the PIP4KII

subfamily share about 35% amino acid identity with the

enzymes of the PIP5KI subfamily within the kinase cat-

alytic domain. A structure-based alignment of the

catalytic domain of human PIP4KIIa and IIb, PIP5KIa
and Ib, Mss4p (yeast PIP5KI), and Fab1p (yeast type III

PIPK) as well as protein kinase A allowed three residues

conserved in all these enzymes to be identified: Lys150,

Asp278, and Asp369 (numbering as in PIP4KIIb) engaged

in ATP and Mg2? binding [62]. Accordingly, mutation of

the corresponding Lys138 in PIP5KIb abolished the

kinase activity [23]. Outside the core kinase domain, as

well as in the so-called insert of the domain, very little

amino acid identity is found between type I and type II

PIPKs [22].

Type II PIP4Ks are found in the cytoplasm, nucleus, and

endoplasmic reticulum and their cellular functions remain

unclear (see [63] for review). In contrast to PIP5KI, both

endogenous and overexpressed PIP4KII are only weakly

associated with the plasma membrane and are insensitive to

PA [56, 60, 64]. When first purified from erythrocytes,

PIP4KIIa was found unable to phosphorylate the intrinsic

PIP in isolated erythrocyte membrane [65]. This is in

agreement with the finding that very small quantities of

PI(5)P are present in the cell, reaching only about 2% of

the PI(4)P level [61]. Accordingly, in cells subjected to

radioactive labeling of phosphoinositides, phosphorylation

at the D-5 position of the inositol ring was found to exceed

that of the D-4 hydroxyl group two to threefold [66]. It

seems, therefore, that PIP4KII activity does not contribute

substantially to PI(4,5)P2 production in the plasma

membrane.

Yet, it was the crystallization of PIP4KIIb that shed

light on the PIPK-membrane interaction [62]. The enzyme

is a homo-dimer made up of subunits linked head-to-head

at their amino-termini. In the dimer, the N-terminal frag-

ments of the catalytic core of both subunits jointly form a

highly basic flat surface proposed to provide a site for the

kinase-membrane attachment. When modeled on a mem-

brane bilayer, the dimer appeared as a peripheral protein

not penetrating the membrane. Its membrane binding was

thought to be directed by electrostatic interactions between

the dimer’s flat positively charged surface and the anionic

lipid head groups.

The importance of electrostatic interactions for plasma

membrane binding was also shown for PIP5KIb. The data

presented by Anderson’s group indicated that amino acids

involved in this linkage were located in the so-called

activation loop of about 20 amino acids localized at the

C-terminal part of the kinase catalytic core (Fig. 2a). After

substitution of two adjacent lysine residues Lys359Lys360

of the activation loop with two asparagine residues, PIP5-

KIb expressed in osteosarcoma cells no longer bound to the

plasma membrane. On the other hand, substitution of the

dilysine motif with positively charged arginine residues did

not interfere with the membrane association of the protein

[56]. The dilysine motif is conserved among all PIPK

subfamilies [62], suggesting its key role in the membrane

binding of the enzymes. However, the membrane associa-

tion based solely on this dilysine motif cannot explain the

targeting of PIP4KII and PIP5KI to diverse cellular

membranes, with some PIP5KI isoforms recruited prefer-

ably to defined locations at the plasma membrane.

A partial answer to this question lies in the amino acid

sequence of the aforementioned activation loop. Aside

from the amino acids common to all PIPKs, some amino

acids are highly conserved only within the PIP5KI, PIP4-

KII, and type III PIPK subfamilies, but different between

them. Further mutational studies confirmed the participa-

tion of the activation loop in the selective recognition of

either PI(4)P or PI(5)P as well as proved its involvement in

the association of PIP5KI with the plasma membrane.

Swapping of the activation loop between PIP4KIIb and

PIP5KIb resulted in a reversed substrate specificity of the

obtained protein chimeras. Introduction of the PIP4KIIb
activation loop into PIP5KIb converted the PIP5KIb
chimera into a kinase phosphorylating PI(5)P and

simultaneously abolished its binding to the plasma mem-

brane. Reciprocally, PIP4KIIb with the activation loop of

PIP5KIb phosphorylated PI(4)P and gained the ability to

localize to the plasma membrane [56]. A similar reversion

of specificity was achieved after substitution of a single

amino acid in the activation loop, A381E in PIP4KIIb, and

E362A in PIP5KIb. Moreover, the E362A PIP5KIb
mutant, using PI(5)P as the preferred substrate, no longer

associated with the plasma membrane [67]. Thus, the sin-

gle amino acids determining the substrate specificity of

PIP5KI and PIP4KII were identified (Fig. 2a). The data

also suggested that the plasma membrane binding by

PIP5KIb is correlated with its ability to recognize and

phosphorylate PI(4)P but not PI(5)P. However, a line of
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data argue against PI(4)P as the only factor recruiting

PIP5KIb to the plasma membrane. Firstly, analysis of the

kinetic properties of the E362A PIP5KIb mutant revealed

that the protein still displayed a relatively high affinity

towards PI(4)P. The significant reduction of the mutant

kinase activity toward PI(4)P, below that toward PI(5)P,

resulted from a low Vmax of PI(4)P phosphorylation by the

mutated kinase. Secondly, other fragments of the PIP5KIb
activation loop were also shown to participate in an optimal

plasma membrane binding by the kinase. Thirdly, the

A381E PIP4KIIb mutant, despite its efficient PI(4)P

binding and phosphorylation, did not associate with the

plasma membrane [67]. Therefore, the binding of PI(4)P

is required but not sufficient to target PIP5KIb, and

presumably other PIP5KIs, to the plasma membrane.

PI(4,5)P2 also acts as an anchor for PIP5KI

in the plasma membrane

Recent data obtained in several laboratories has under-

scored the idea about electrostatic interactions of PIP5KI

with the plasma membrane pointing simultaneously to an

involvement of PI(4,5)P2, the product of the kinases, in

PIP5KI binding. Recombinant PIP5KIa fused with the GST

tag interacted, apart from PI(4)P and PA, also with

PI(4,5)P2, as shown by ELISA, protein-lipid overlay assay,

and binding to PI(4,5)P2-containing liposomes [68, 69]. A

fragment of PIP5KIa encompassing amino acids 374–440

and containing the activation loop of the kinase was found

to interact preferably with PI(4,5)P2 over PI(4)P. Con-

versely, the affinity of the whole kinase for PI(4)P

exceeded that for PI(4,5)P2 about 1.8-fold, indicating that

multiple electrostatic interactions govern the membrane–

kinase interaction [43, 69]. When expressed in cells, the

aforementioned fragment of the kinase evoked a significant

reduction of the PI(4,5)P2 level, affected the organization

of actin filaments, and inhibited phagocytosis. Similar

results were obtained after expression in cells of a

recombinant protein containing the PH domain of PLCd1, a

probe known to bind PI(4,5)P2 with high affinity

(KD * 1.2 lM, [70]). When looking for the mechanism of

the probe action, it was found that both its expression and

treatment of cells with the Ca2? ionophore ionomycin,

which activates PLC leading to PI(4,5)P2 hydrolysis,

reduced the amount of endogenous PIP5KIa associated

with the plasma membrane [43, 69]. Altogether, the data

indicated that PI(4,5)P2 can serve as an anchor for PIP5KIa
in the plasma membrane. Sequestration of PI(4,5)P2 by the

Fig. 2 Organization of PIP5KI molecule. a Amino acid sequence of

activation loop regions of human PIP5KIa, human Ib, and murine Ic
(upper panel) and human PIP4KIIb (lower panel). The first and the

last amino acid of the regions as well as the total number of amino

acids composing the proteins are indicated. Dark gray background
marks amino acids conserved between PIP5KI and PIP4KII subfam-

ilies; amino acids conserved only within the PIP5KI and PIP4KII

subfamilies, but different between them are shown by the light gray
background [22, 23, 59]. Bar below the alignment indicates regions

exchanged between PIP5KIb and PIP4KIIb by Kunz et al. [56].

Asterisks indicate two lysine residues participating in membrane

binding of PIPKs while glutamic acid residue and alanine residue

determining substrate specificity of PIP5KI and PIP4KII, respec-

tively, are marked by boxes. b A schematic representation of murine

PIP5KIca (661 amino acids) and PIP5KIcb (635 amino acids).

PIP5KIcc of rodents is composed of 687 amino acids and contains a

26-amino-acid insert at Ph635 [23, 24]. AL, activation loop. In the

lower panel, the amino acid composition of 26-amino-acid tail of

murine PIP5KIca is shown. The motifs engaged in the binding of

talin, AP-2b and AP-2l, are marked by bars. In human PIP5KIca, two

amino acids are inserted between Arg652 and Pro653 with the Arg652

exchanged for Glu652 [132]
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lipid-binding probes or PI(4,5)P2 hydrolysis displaced the

kinase from the plasma membrane, thus inhibiting

PI(4,5)P2 synthesis and affecting the PI(4,5)P2-dependent

actin reorganization. Taking into account the accumulation

of PI(4,5)P2 in the plasma membrane [71], an involvement

of the lipid in the binding of PIP5KI to the membrane can

explain why various kinase isoforms, when overexpressed

in the cell, all display submembraneous location [67, 69,

72]. The endogenous enzymes are located in different

cellular compartments presumably because their distribu-

tion is under more subtle regulation by several other

factors.

Results obtained for GFP-tagged PIP5KIa, Ib and Ica,

Icb expressed in RAW macrophages were in full agreement

with the suggestion about the PI(4,5)P2 engagement in the

binding of the kinases to the plasma membrane [72]. In

addition to ionomycin treatment, also depletion of cellular

ATP or termination of polyphosphoinositide synthesis

released the PIP5KI isoforms from the plasma membrane.

Partial dissociation of GFP-PIP5KIb from the plasma

membrane was also observed in cells co-expressing the

kinase and synaptojanin 2, PI(4,5)P2-dephosphorylating

enzyme [72]. A PIP5KIa mutant in which the positively

charged arginine and leucine residues in the activation loop

were substituted with the negatively charged aspartic acid

residues failed to associate with the plasma membrane,

while analogous mutations of amino acids located C-ter-

minally from the activation loop were also effective but to

a lower extent. Those data supported the suggestion that

multiple electrostatic interactions of PIP5KI are crucial for

its binding to anionic lipids of the plasma membrane. The

authors took advantage of the crystal structure of PIP4IIb
described earlier [62] and proposed that PIP5KI isoforms

form homo-dimers with a flat, positively charged surface of

the enzyme oriented towards the plasma membrane. The

amino acids contributing to the positive surface charge of

PIP5KI are presumably present both outside and within the

activation loop of the kinase and are crucial for the proper

positioning of the loop for substrate recognition and of the

catalytic center for substrate phosphorylation. In the

plasma membrane, the negatively charged lipids including

PI(4)P, PI(4,5)P2, PA, and phosphatidylserine can partici-

pate in PIP5KI binding. PA also strongly activates PIP5KI,

possibly overcoming the substrate inhibition of PIP5KI

[68] to create conditions for efficient local generation of

PI(4,5)P2. Subsequent hydrolysis of the lipid by PLC can

facilitate displacement of the kinase form the membrane,

providing an ‘‘electrostatic switch’’, which terminates local

PI(4,5)P2 synthesis [72]. Such a local reduction of

PI(4,5)P2 level, which follows its rapid generation, was

observed during Fcc receptor-mediated phagocytosis [73]

and budding of clathrin-coated vesicles [12]. The existence

of the ‘‘electrostatic switch’’ does not answer, however, the

question about factors recruiting PIP5KI to distinct sites at

the plasma membrane during cell activation. It is con-

ceivable that an interaction of PIP5KIs with specific

membrane proteins provides a key for the plasma mem-

brane recruitment of the individual kinase isoforms.

Coupling between PI(4)P and PI(4,5)P2 synthesis

at the plasma membrane

The considerations on PI(4)P and PI(4,5)P2 as plasma

membrane anchors for PIP5KI need to be reconciled with

the data on the subcellular location of these lipids. Thus,

visualization of PI(4)P with specific antibodies indicated

that about 47% of the lipid is accumulated in the Golgi

apparatus. Very little PI(4)P was found to reside in the

plasma membrane at steady state [74], as confirmed by

studies with the PH domains of phosphatidylinositol-4-

phosphate adaptor protein 1 (Fapp1) and oxysterol-binding

protein (OSBP) as PI(4)P markers [75–77]. This PI(4)P

distribution is opposite to the prevailing plasma membrane

location of PI(4,5)P2 that is well documented by cell

fractionation studies and image analysis [71, 78]. When

combined with reports on PI(3)P enrichment in endosomes

[79], these findings spark an idea that the organelle-specific

composition of phosphoinositides can define the identity

and functions of various cellular organelles by recruiting

specific effector proteins and directing membrane traffic

[3, 74]. In particular, PI(4)P at Golgi, besides serving as a

source for a small local pool of PI(4,5)P2, controls the

vesicular traffic towards distinct compartments like endo/

lysosomes and plasma membrane by recruiting adaptor

proteins including AP-1 complex or GGAs or FAPPs [74,

76, 80, 81], and participates in sphingolipid metabolism

(see [82] for review). However, the analysis of PI(4)P

distribution in the cell based solely on imaging of over-

expressed PH domains of Fapp1 or OSBP can be biased to

the Golgi at the expense of the plasma membrane staining

since the both probes bind not only PI(4)P but also ARF1, a

Golgi marker protein. Recently, a pool of PI(4)P has been

revealed in the plasma membrane in experiments

employing another probe, the PH domain of yeast oxy-

sterol-binding protein homologue (OSH2), or an improved

protocol of plasma membrane preservation for PI(4)P

staining with antibodies [83, 84].

While the content of PI(4)P in the cellular membranes

awaits direct estimation, it is well established that the

activity of phosphatidylinositol 4-kinases (PI4K), which

generate PI(4)P by PI phosphorylation, is present in the

Golgi, the plasma membrane, and lysosomes [85]. Four

PI4Ks have been identified in mammalian cells: PI4KIIa
and IIb, and PI4KIIIa and IIIb, with these two classes

being distinguished by the wortmannin-sensitivity of

PI4KIIIs. PI4KIIIa is localized primarily to the
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endoplasmic reticulum. The Golgi apparatus contains

PI4KIIIb, PI4KIIa, and PI4KIIb. Among the kinases,

PI4KIIIb contributes to production of PI(4)P in cis/medial

Golgi, PI4KIIa in trans-Golgi network and PI4KIIb dis-

plays more complex pattern of distribution as described

below [86–90]. Silencing of PI4KIIa expression by RNA

interference led to an about 50% reduction of PI(4)P syn-

thesis and a 60% reduction of PI(4,5)P2 synthesis in HeLa

cells, indicating that the activity of this Golgi-associated

kinase significantly affects the overall level of PI(4,5)P2

[74]. Taken together, the data suggest that PI(4,5)P2 is

generated by phosphorylation of PI(4)P ‘‘en route’’ from

the Golgi to the plasma membrane. Alternatively, the

Golgi-derived PI(4)P can be converted to PI(4,5)P2

immediately upon reaching the plasma membrane. In either

case, the Golgi-plasma membrane trafficking emerges from

these studies as an important factor controlling the plasma

membrane level of PI(4,5)P2. This subject got a new input

with the discovery of Balla’s group that substantial

amounts of PI(4)P appear in the plasma membrane and in

submembrane vesicles during the acute resynthesis of

phosphoinositides following Ca2?-induced PLC activation

and PI(4,5)P2 depletion [77]. Subsequent work of the group

has indicated that also in the course of stimulation of cells

with angiotensin II, an agonist of G protein-coupled

receptor, PLC utilizes PI(4,5)P2 pool whose maintenance is

limited by local PI(4)P synthesis [83]. Based on the wort-

mannin sensitivity and the results of siRNA application, the

delivery of this plasma membrane pool of PI(4)P was

attributed to PI4KIIIa, although the kinase itself was not

detected at the plasma membrane [77, 83, 86]. Therefore,

PI(4)P can reach the plasma membrane not only by

exchange of vesicles between the plasma membrane and

the Golgi but possibly also as a result of PI4KIIIa activity

at sites of close apposition between the endoplasmic

reticulum and the plasma membrane.

On the other hand, early biochemical studies detected

significant activity of PI4Ks, particularly PI4KII, in the

plasma membrane [85, 86]. This activity can likely be

ascribed to PI4KIIb, an enzyme cloned simultaneously by

two groups [88, 89]. In a series of elegant studies com-

bining immunofluorescence observations and biochemical

fractionation it has been determined that PI4KIIb is

recruited to the plasma membrane from the cytosol. This

redistribution is controlled by the monomeric small

GTPase Rac1 in a GTP-dependent manner. Accordingly,

the kinase was found in membrane ruffles evoked by

stimulation of PDGF receptor which employs Rac1 as a

downstream effector. It was established that the respon-

siveness of PI4KIIb to Rac1 was mediated by the catalytic

domain of the kinase. The recruitment of PI4KIIb to the

membrane stimulates its enzymatic activity 16-fold. The

membrane-bound PI4KIIb is palmitoylated and this

acylation is a prerequisite for the high enzymatic activity of

the kinase [88, 91]. Those data indicate that Rac1 controls

the recruitment of PI4KIIb to the plasma membrane and

places it in a position allowing activation by other enzymes

(palmitoyl acyltransferase?) or lipids present in the

membrane.

Taken together, the studies on PI4KIIb and PI4KIIIa
support the suggestion that the synthesis of PI(4)P and

PI(4,5)P2 in the plasma membrane can be coupled spa-

tially and temporally providing a way for transient

accumulation of PI(4,5)P2 at discrete plasma membrane

locations. One can hypothesize that upon cell stimulation

by agonists of G protein-coupled receptors PI(4)P is

generated by PI4KIIIa residing in the endoplasmic retic-

ulum adjacent to the plasma membrane. At the plasma

membrane the lipid is rapidly converted into PI(4,5)P2 to

be then hydrolyzed by PLC and trigger IP3/Ca?2 signal-

ing. Thus far, PIP5KIa (murine Ib) and PIP5KIcb have

been shown to generate PI(4,5)P2 subsequently utilized

for the IP3/Ca?2 signaling by G protein-coupled receptors

[36, 92]. On the other hand, PI4KIIb catalyzes the syn-

thesis of PI(4)P converted into a poll of PI(4,5)P2 acting

on cytoskeletal proteins. In the latter case, the coupling of

PI(4)P and PI(4,5)P2 production can be achieved by Rac1,

which recruits to the plasma membrane and thus facili-

tates activation of both PI4KIIb [88] and PIP5KI, as

discussed below.

Regulators of PIP5KI activity and PI(4,5)P2 synthesis

at the plasma membrane

Rac1 recruits PIP5KI to the plasma membrane

and facilitates its activation

Rac1 has been reported to associate with PIP5KIa and, to a

lower extent, with PIP5KIb and Ic [33, 42, 93–95]. An

association of RhoA, but not Cdc42, with all three isoforms

of PIP5KI was also reported [94–96]. The association of

Rac1 and RhoA with PIP5KI was independent of the GDP/

GTP loading of the GTPases. In the cited reports, the binding

of the two Rho family GTPases to PIP5KI was examined by

the pull-down assays relying on incubation of immobilized

Rho GTPases with homogenates prepared from rat brain or

liver, or with cell lysates, and subsequent measurements of

PIP5KI activity and/or kinase isoform identification. The

data were supported by co-immunoprecipitation of Rac1 and

RhoA with PIP5KI. Moreover, a direct binding of GDP/

GTP-loaded Rac1 and RhoA to PIP5KIa and Ib was also

shown using recombinant proteins [33]. However, neither

Rac1 nor RhoA activated PIP5KIb in another in vitro assay

[97], while activation of PIP5KIa, Ib and Ic by Rac1, RhoA,

and Cdc42 was demonstrated in vivo. Only GTP-bound
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proteins activated PIP5KIs in cells since no increase in

PIP5KI activity and no PI(4,5)P2 production was observed in

cells expressing dominant negative mutants of Rac1, RhoA,

and Cdc42 [46, 95, 98, 99]. Taken together, the data impli-

cate that Rho family GTPases can interact with and control

the activity of PIP5KI and also suggest that the activation

can be indirect. Since the association of Rac1 and RhoA with

PIP5KI does not depend on GDP/GTP binding to the

GTPases, the complex of Rac1 or RhoA with PIP5KI can be

maintained in both resting and activated cells. Therefore, the

GTPases should be able to shift PIP5KI to the plasma

membrane upon cell activation. The data on the participation

of Rac1 and RhoA in PIP5KI regulation vary and point to

either RhoA [46, 97, 100, 101] or Rac1 [33, 39, 42] or both

[95, 99] as dominant factors affecting PIP5KI activity,

probably depending on the cell type and stimulus used in

those studies.

Among the GTPases of the Rho family, Rac1 is of special

interest because of its ability to recruit to the plasma mem-

brane and activate PI4KIIb as well [88]. Hence, this GTPase

could in principle coordinate the synthesis of PI(4)P and

PI(4,5)P2 at distinct regions of the membrane. Rac1 affects

actin organization and focal complex assembly contributing

to ruffling and lamellipodia formation [102], which is in line

with the crucial role of PI(4,5)P2 in those events. PIP5KI was

shown to associate with the C-terminus of Rac1 in a

nucleotide-independent fashion based on the ability of a

recombinant peptide encompassing amino acids 166–188 of

Rac1 to compete with full-length Rac1 for pull-down of

PIP5KI activity from rat brain homogenate [42]. In further

studies, the 185ArgLysArg187 sequence in the C-terminus of

Rac1 was found crucial for the PIP5KI pull-down from

fibroblast lysates [94]. The C-terminal fragment of Rac1 also

associated with DAGK, catalyzing PA production. Similarly

to PIP5KI, DAGK associated with both GDP- and GTP-

bound Rac1. However, the association of the two lipid

kinases with Rac1-GTP was enhanced in the presence of PA,

phosphatidylserine, and PI(4)P. Combined with the detected

association of PIP5KI and DAGK with RhoGDI the data

suggested the existence of a multimolecular complex able to

control PIP5KI recruitment to the plasma membrane [42]. In

resting cells, RhoGDI is able to sequester the lipid moiety of

Rac1 and prevent the association of the whole multimolec-

ular complex containing Rac1, DAGK, and PIP5KI with the

plasma membrane. Upon cell activation, RhoGDI releases

Rac1, which can then anchor the protein complex to the

plasma membrane leading to the synthesis of PA and, in

turn, PI(4,5)P2 (Fig. 3a, d).

The above idea was developed further by Abramovici

et al. [103], who identified ubiquitously expressed DAGKf
as a component of a multimolecular complex containing

Rac1 and RhoGDI. Moreover, the activity DAGKf was

found to be a crucial factor controlling Rac1 activation: the

PA produced by DAGKf activates p21-activated kinase 1

(PAK1), which in turn phosphorylates RhoGDI leading to

its dissociation from Rac1. In fibroblasts derived from

DAGKf-/- mice and stimulated with PDGF, a decreased

Rac1 activation and inhibition of ruffling, spreading, and

migration were found [103]. On the other hand, association

of DAGKf with PIP5KIa was also documented, and

expression of DAGKf significantly enhanced PIP5KIa
activity in thrombin-stimulated cells [104]. Those data put

Fig. 3 Rac1 forms multimolecular complex engaging PIP5KI. a In

resting cells, PIP5KIa/b and DAGKf are bound to the C-terminus of

GDP-loaded Rac1. The interaction of Rac1 with the plasma

membrane is blocked by RhoGDI, which masks the prenyl group

attached to the C-terminal CAAX motif of Rac1. b Upon cell

activation, PLC produces DAG. c DAG is subsequently phosphory-

lated by DAGKf to PA. The PA activates PAK1, which

phosphorylates RhoGDI at two sites. Phosphorylated RhoGDI

dissociates from Rac1 exposing its prenyl group. d Rac1 binds to

the membrane via the prenyl group and adjacent polybasic region and

this facilitates replacement of GDP with GTP by membrane-bound

exchange factors. PIP5KIa/b recruited to the plasma membrane

together with Rac1 is activated by PA and phosphorylates PI(4)P to

PI(4,5)P2
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DAGKf and its product, PA, in the center of events con-

trolling Rac1-mediated PIP5KI recruitment and activation

at the plasma membrane. The PA generated by DAGKf
activates PAK1 enabling RhoGDI dissociation form Rac1,

subsequent anchoring of Rac1 at the plasma membrane and

activation of the Rac1-associated PIP5KI, leading eventu-

ally to local PI(4,5)P2 synthesis (Fig. 3c, d). The initial step

of the cascade requires an appearance of DAG in the

plasma membrane. The lipid arises most likely from

hydrolysis of PI(4,5)P2 catalyzed by PLC at the onset of

cell stimulation (Fig. 3b). Of note, Rac proteins were found

to associate with and stimulate the activity of PLCb2 and

PLCc2 isoforms [105–107].

The physiological importance of the Rac1-PIP5KI

interaction for PI(4,5)P2 synthesis is well documented.

Studies performed on permeabilized yet living platelets

allowing introduction of recombinant proteins revealed that

interaction of Rac1 with PIP5KIb, but not PIP5KIa,

determined the uncapping of actin filaments as a result of

PI(4,5)P2 synthesis. A point mutation introduced in the

C-terminus of Rac1, which abolished binding of PIP5KIb,

also inhibited actin assembly in thrombin-stimulated cells,

while exogenous PIP5KIb introduced to permeabilized

platelets restored the process [33]. Those studies put the Ib
isoform of PIP5K downstream of Rac1 in the signaling

pathway leading to PI(4,5)P2 synthesis and actin poly-

merization relying on the exposure of the barbed ends of

microfilaments. Another line of data pointed to the Ia
isoform of PIP5KI as the one acting downstream of Rac1

during stimulation of thrombin receptor [99]. In that case,

Rac1-GTP was found to mediate recruitment of PIP5KIa to

the plasma membrane, but this processes required Rho-

GTP involvement as well. Both Rac-GTP and Rho-GTP

increased the activity of PIP5KIa five to sevenfold when

co-expressed with it [99]. Finally, PIP5KIa rather than

PIP5KIb was reported to act downstream of Rac1 during

actin remodeling, which underlies ruffling in PDGF-stim-

ulated MG-63 fibroblasts [39]. Taken together, the data

indicate that local activation of Rac1 can result in the

recruitment of PIP5KI and its activation at the plasma

membrane, however, the kinase isoform involved and the

mode of Rac1 action (direct or indirect) varies from cell to

cell.

Another link between Rac1 and PIP5KIa seems to be

provided by the LIM protein Ajuba. Ajuba on the one hand

influences the activity of Rac1 at nascent adhesive sites in a

migrating cell by promoting the assembly of the p130Cas-

Crk complex that interacts with the DOCK180-ELMO

complex, a guanine nucleotide exchange factor of Rac1

[108]. On the other hand, Ajuba was also found to associate

with PIP4KIIb, PIP5KIa, and PIP5KIb, but not PIP5KIc in

vivo. The binding of PIP5KIa was enhanced 20-fold during

cell migration. Further in vitro studies indicated that the

interaction of PIP5KIa with Ajuba stimulated the activity

of the lipid kinase sixfold [40]. Hence, the Ajuba-Rac1-

PIP5KIa interactions can regulate PI(4,5)P2 synthesis in the

course of assembly of adhesive complexes required for cell

migration. Taking into account that PIP5KIc, the kinase

isoform neglected by Ajuba, is localized to focal contacts

and activated at these sites by another protein—talin (see

below), the assembly of focal contacts provides an example

of complexity of mechanisms fine-tuning the functions of

PIP5KI isoforms at the plasma membrane.

Besides the GTPases of the Rho family, an involvement

of ARF6 from the ARF-family GTPases, often acting in

cooperation with PLD, is also considered in activation of

PIP5KI at the plasma membrane. Combined in vitro and in

vivo studies have indicated that myristoylated membrane-

bound ARF6 activates PIP5KIa, Ib and Ica, and PLD2

[97, 109–111]. Therefore, the ARF6-induced association of

PIP5KI with the plasma membrane can increase its activity

by bringing the kinase close to PI(4)P and PA and addi-

tionally facilitating the reciprocal stimulation of PIP5KI

and PLD by the respective products of their activities,

PI(4,5)P2 and PA [111–113]. The ternary ARF6-PLD-

PIP5KI complex has been implicated in controlling Ca2?-

regulated exocytosis, ruffling, and receptor endocytosis

[97, 109, 114, 115]. In terms of actin cytoskeleton rear-

rangements, ARF6 cooperates with Rac1 and the cross-talk

between the proteins can be coordinated at the level of

guanine nucleotide exchange factors of the two GTPases

[116, 117].

PIP5KIca and Icc bind talin at focal contacts

Talin is a large, rod-shaped 270-kDa protein containing a

globular head with the FERM domain, which binds

PI(4,5)P2, PIP5KIca/c, F-actin, focal adhesion kinase

(FAK), b1- and b3-integrin. The flexible rod fragment of

talin enables its dimerization and contains additional actin-

and b-integrin-binding sites. The assembly of dimers

engages the C-terminal domain of talin, which suggests

that full-length talin can adopt variable conformations

ranging from a parallel dimer to an extended one

[118, 119]. The PIP5KIca-binding site in talin was mapped

to so-called subdomain F3 of the FERM domain, which

structurally resembles the phosphotyrosine-binding (PTB)

domain [29, 30]. The F3 subdomain of talin is also a site of

b-integrin association, however, despite such overlapping,

distinct amino acid motifs mediate the interactions of

PIP5KIca and b1-integrin with talin [29, 52, 120, 121]. In

the kinase, the 642WVYSPLH648 motif located within the

last 26 amino acids of the C-terminus (28 amino acids of

human PIP5KIca) was found to participate in talin binding

[29, 52, 121] as shown in Fig. 2b. This amino acid

sequence is also present in the rodent PIP5KIcc allowing
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its binding to talin as well, while PIP5KIcb, devoid of the

C-terminal 26/28-amino acid extension does not interact

with talin.

Phosphorylation of PIP5KIca on Tyr644 within the
642WVYSPLH648 motif strengthens the interaction of the

kinase with talin 15-fold and activates the kinase as well

[29, 52]. Accordingly, the NMR structure of talin PTB in

complex with the 641SWVpYSPLH648 peptide revealed an

unusual electrostatic cluster involving the phospho-Tyr644

and basic amino acids of the PTB [122]. As shown in

Fig. 4, the phosphorylation of PIP5KIca is catalyzed by Src

kinase, which associates with PIP5KIca, and both these

events are additionally upregulated by FAK kinase [30,

52]. It is assumed that the tyrosine phosphorylation releases

autoinhibitory restraints within the PIP5KIca molecule

[121]. Of note, Src phosphorylates b-integrin as well,

however, in contrast to phosphorylated PIP5KIca, affinity

of phosphorylated b1-integrin for talin is diminished.

Eventually, this Src kinase activity weakens the interaction

of b-integrin with talin [52]. The reciprocal effect exerted

by tyrosine phosphorylation of PIP5KIc and b1-integrin on

their interactions with talin ensue from different amino acid

composition of motifs involved in the binding [121].

The enzymatic activity of PIP5KIca is a prerequisite for

the formation of talin-containing focal adhesions [30]. This

is because PI(4,5)P2 produced locally by the kinase can

bind to the FERM domain and relieve the autoinhibitory

head–tail association within the talin molecule, thus

exposing the integrin-binding site [123, 124]. As a result,

PI(4,5)P2 provides a positive signal for the interaction of

talin with b1- and b3-integrin, also promoting integrin

clustering [125] and enabling their interaction with the

extracellular matrix (Fig. 4). Simultaneously, talin interacts

with actin filaments, thereby initiating the assembly of

focal complexes. In addition to talin, PI(4,5)P2 also binds

to other proteins of focal complexes, like vinculin, a-acti-

nin, and syndecan-4, promoting their association with the

complexes. PI(4,5)P2 can also support its own generation in

a positive-feedback manner (as shown in Fig. 4) by inhi-

bition of Shp-1 tyrosine phosphatase, which associates with

and dephosphorylates PIP5KIca [126]. Besides the phos-

phorylation-based activation of PIP5KIca/c, stimulation of

PIP5KIcb by PLD2 also adds to the synthesis of PI(4,5)P2,

which facilitates cell adhesion [53]. All of these mecha-

nisms enhance the activity of PIP5KIc and production of

PI(4,5)P2 during formation and maturation of focal con-

tacts. Recently, PIP5KIca was found to associate with

PLCc1 and the association was inhibited by phosphoryla-

tion of Tyr634 in PIP5KIca. This phosphorylation was

catalyzed by the receptor for epidermal growth factor

(EGF), which in this way can diminish PI(4,5)P2 hydrolysis

and favor PI(4,5)P2 accumulation at the focal contacts

required for cell migration [127].

On the other hand, a line of data indicates that PIP5KIca

and b-integrin compete for binding to talin [52, 120],

which suggests that PI(4,5)P2, generated by tyrosine-

phosphorylated talin-bound PIP5KIca can limit its own

production. The lipid promotes the interaction of talin with

b1-integrin, therefore facilitating the displacement of

PIP5KIca from talin. This fine-tuned interaction of talin

with b1-integrin, strengthened by PI(4,5)P2 and weakened

by the competitive binding of phosphorylated PIP5KIca

and by b-integrin phosphorylation, has been proposed to

confer a dynamic character on focal adhesions, enabling

their assembly and disassembly [52]. Taking into account

that talin forms dimers and that recently a second b-inte-

grin-binding site in the talin rod has been characterized

[117, 128, 129], possible combinations of talin interactions

during focal contact assembly/disassembly are complex.

Interaction of PIP5KIca with AP-2 adaptor

at clathrin-coated pits

PIP5KIc is the major PIP5KI producing PI(4,5)P2 in syn-

apses where the lipid controls both exocytosis of synaptical

vesicles and subsequent clathrin-mediated enodocytosis of

membranes [23, 25, 130]. A combination of co-immuno-

precipitation, pull-out and yeast two-hybrid studies has

indicated that PIP5KIca binds to the AP-2 adaptor of the

Fig. 4 Talin and PIP5KIca/c interact during focal contact assembly.

Upon cell activation, PIP5KIca/c undergoes phosphorylation on

Tyr644 by Src kinase, which also associates with it. Both events are

positively regulated by FAK kinase. When phosphorylated, PIP5KIca/

c binds to the FERM domain located in the globular N-terminal part

of talin. The kinase produces PI(4,5)P2, which binds to the FERM

domain of talin and relieves autoinhibitory interaction of the talin

head with rod. At these conditions, talin is able to bind b-integrins,

inducing additionally their aggregation and activation. Intracellularly,

talin binds actin filaments, which enables the formation of stress

fibers. The Tyr644 can be dephosphorylated by Shp-1, which

associates with PIP5KIc. The activity of Shp-1 is inhibited by

PI(4,5)P2 favoring the lipid accumulation. On the other hand, the

binding of b-integrin to talin can be inhibited by phosphorylation of

b-integrin by Src kinase
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clathrin-based coat [49–51]. The AP-2 adaptor is a het-

erotetramer composed of large a and b2 subunits, a

medium-sized l2 subunit recognizing cargo proteins, and a

small r2 subunit. The subunits form a core with two

appendage domains of a and b2 subunits linked to them via

flexible linkers (Fig. 5). Besides the cargo recognition, the

complex acts a scaffold binding an array of clathrin-

accompanying proteins.

The interaction between PIP5KIca and AP-2 involves

multiple sites (see Fig. 5): the l2 subunit binds to the

catalytic core of the kinase [50] and to the 644YSPL647

motif of the 26-amino-acid C-terminal extension of the

kinase [49, 131]. In addition, the C-terminus of PIP5KIca

interacts with the b2 chain of AP-2 [51]. PIP5KIca is the

only PIP5KIc isoform interacting with AP-2 [132]. Further

site-directed mutagenesis studies and structural analysis

indicated that the amino acid motifs of the kinase C-ter-

minus involved in the binding of the l2 and b2 chains

partially overlap (Fig. 2b). Therefore, the two interactions

of the kinase C-terminus are mutually exclusive [131, 132].

Important contacts formed between the PIP5KIca

C-terminal tail and the b2 chain involve aromatic residues

(Tyr635, Phe636, Trp642, and Tyr644) and Ser645 of the

kinase [51, 131, 132]. Phosphorylation of Ser645 by cdk5

kinase inhibits the interaction between PIP5KIca and AP-2

b, while dephosphorylation of Ser645, catalyzed presum-

ably by calcineurin, allows the binding. It is striking that

the amino acid sequences involved in AP-2 b and talin

binding overlap (Fig. 2b). Notably, while Ser645 phos-

phorylation inhibits the association of PIP5KIca with both

talin and AP-2, phosphorylation of Tyr644 facilitates

association of PIP5KIca with talin but inhibits the associ-

ation of the kinase with the AP-2 complex. These data

suggest that depending on the phosphorylation state of

Tyr644, PIP5KIca can shuttle between sites of cell adhe-

sion and endocytosis [131].

The complex nature of the interactions between PIP5KIca

and the AP-2 adaptor creates an elaborate molecular

mechanism controlling rapid PI(4,5)P2 synthesis during

assembly of clathrin-based coat. In resting neurons, PIP5-

KIca is located on the presynaptic membrane but, being

phosphorylated on Ser645, it does not interact with AP-2.

Fig. 5 PIP5KIca interacts with AP-2 at the onset of receptor

endocytosis. a, b Initially, GTP-loaded ARF6 activates PIP5KIca

leading to synthesis of PI(4,5)P2. The lipid provides an anchor for the

a subunit of the AP-2 complex. Concomitant dephosphorylation of

Ser645 of PIPKIca by calcineurin (CalN) is required for binding of

the kinase C-terminus to the b2 appendage of the AP-2 complex.

c Conformational changes of the l subunit of the AP-2 complex allow

recognition of a cargo receptor. Besides the binding of the cargo, l2

also interacts with PIPKIca catalytic core, activating the kinase and

leading to PI(4,5)P2 production. The lipid serves as an anchor for the

l2 chain of the AP-2 complex. d The C-terminus of the kinase can

also shift from b2 to the l2 and binds to the l2 chain via the
644YSPL647 motif. This interaction promotes the recognition of cargo

receptors devoid of the canonical YXXØ motif; it also activates

PIP5KIca facilitating local PI(4,5)P2 accumulation
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Excitation of cells and depolarization of the presynaptic

membrane leads to dephosphorylation of the kinase allow-

ing AP-2 binding, as shown in hippocampal neurons [51].

There are data suggesting that initially PIP5KIca is activated

by ARF6 [109, 133], producing a pool of PI(4,5)P2 that

anchors AP-2 at the plasma membrane by binding to the a
subunit of the complex (Fig. 5a, b). This pool of AP-2 can, in

turn, interact with dephosphorylated PIP5KIca, most likely

by engaging the b2 appendage and the kinase C-terminus via

relatively weak interactions (Fig. 5b). Subsequent confor-

mational changes of the l2 chain induced by its

phosphorylation allow binding of cargo proteins containing

the conventional YXXØ sorting motif. They can also facil-

itate the interaction of the l2 chain with the PIP5KIca

catalytic core leading to activation of the kinase and thus to

local production and accumulation of PI(4,5)P2 (Fig. 5c). A

shift of the C-terminus of the kinase from the b2 to the l2

chain (Fig. 5d) also stimulates the PIP5KIca activity [130].

This displacement of the kinase tail from the b2 appendage

can be facilitated by clathrin in the course of coat assembly

[132]. Eventually, local production of PI(4,5)P2 enables

recruitment of the components of the clathrin coat, including

AP-2 itself, epsin, AP180, Dab2 and dynamin 2. As the
644YSPL647 sequence of the PIP5KIca C-terminus corre-

sponds to the conventional YXXØ sorting motif of cargo

receptors, the occupation of l2 by the kinase tail may also

favor sorting of cargo lacking the YXXØ motif. This

mechanism can be characteristic to internalization of pro-

teins of presynaptic vesicles helping to sort them away from

constitutively internalized cargo receptors [134].

It is noteworthy that PIP5KIb rather than PIP5KIc has

been implicated in the production of PI(4,5)P2 required for

AP-2 recruitment and transferrin receptor uptake in HeLa

and CV-1 cells [48], while PIP5KIa (murine PIP5KIb)

was indicated to participate in endocytosis of EGF

receptor in NR6 fibroblasts [135]. These data led to a

suggestion that clathrin-mediated endocytosis in nonneu-

ronal cells, especially endocytosis of nutrient receptors

like transferrin receptor, can be regulated differently from

endocytosis taking place in synapses [48]. However, thus

far no specific structural basis for the binding of PIP5KIa
and Ib isoforms to AP-2 or other components of the

clathrin-containing coat has been proposed. In addition,

the above-mentioned studies were based on overexpres-

sion of the kinases or their knockdown by RNA

interference and the results discussed above may reflect

the effects of perturbations of cellular PI(4,5)P2 level on

clathrin coat assembly. The PIP5KIca participation in

AP-2 recruitment at synapses is well documented and this

may be the major function of this kinase isoform in the

brain, judging from the high expression of PIP5KIca there.

However, an engagement of PIP5KIca in receptor endo-

cytosis in other cell types is conceivable [49, 50].

The termination of PI(4,5)P2 signals at clathrin-coated

vesicles in synapses comes from cessation of its synthesis

due to phosphorylation of Ser645 of PIP5KIca [51].

Equally important is the dephosphorylation of PI(4,5)P2 by

synaptojanin 1. The reduction of PI(4,5)P2 level shortly

after scission of clathrin-coated vesicles is required for the

coat turnover, judging from an excessive coat association

in neurons in synaptojanin 1-null mice [12]. Such rapid and

transient production of PI(4,5)P2 accompanies phagocyto-

sis as well. Similarly to the clathrin-based coat assembly,

production of PI(4,5)P2 by PIP5KIa is required during

phagocytosis for actin polymerization and particle inter-

nalization. The subsequent actin depolymerization and

phagosome maturation requires, in turn, reduction of the

PI(4,5)P2 level in the phagosome membrane by PI(4,5)P2

hydrolysis and phosphorylation to PI(3,4,5)P3 [73, 136].

Are PI(4,5)P2 clusters formed in the plasma

membrane?

Type I PIP5Ks can efficiently increase the local concentra-

tion of PI(4,5)P2 when the lateral mobility of the lipid is

restricted. If the diffusion coefficient (D) of PI(4,5)P2 was

comparable to that of freely diffusible membrane lipids,

PI(4,5)P2 would rapidly move away from the sites of

its synthesis. This subject was thoroughly studied by

McLaughlin and colleges [137] who microinjected micelles

of long-chain BODIPY-labeled PI(4,5)P2 into fibroblasts

and epithelial cells and measured the diffusion coefficient of

the lipid in the inner leaflet of the plasma membrane using

confocal imaging and fluorescence correlation spectros-

copy. The averaged D value of PI(4,5)P2 in the examined

cells was 0.8 ± 0.2 lm2/s in comparison to 1.5 ± 0.9 lm2/s

found for rhodamine-phosphatidylethanolamine (25�C).

The diffusion coefficient of the fluorescent PI(4,5)P2 was

significantly higher when the lipid was incorporated into the

outer leaflet of the plasma membrane of various cells or into

giant unilamellar vesicles. The D values of PI(4,5)P2 in those

membranes reached 2 ± 1.3 lm2/s and 3.7 ± 0.8 lm2/s,

respectively, with the latter value characteristic also of other

lipids in model membranes [137–139]. The estimated values

of the diffusion coefficient of PI(4,5)P2 in the outer leaflet

was in agreement with earlier FRAP (fluorescence recovery

after photobleaching) measurements for BODIPY-labeled

PI(4,5)P2 incorporated into the outer leaflet of the plasma

membrane of N1E-155 neuroblastoma cells [140]. The over

twofold lower D value of PI(4,5)P2 in the cytoplasmic than

in the extracellular leaflet of the plasma membrane suggests

that the lateral diffusion of the lipid in the inner leaflet is

indeed restricted.

Notably, the diffusion coefficient of PI(3,4,5)P3 esti-

mated at 0.5 lm2/s by analysis of translocations of the PH
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domain of Akt kinase, a molecular sensor of PI(3,4,5)P3

expressed in NIH 3T3 fibroblasts [141], is in approximate

agreement with the D of PI(4,5)P2 found by McLaughlin’s

group [137]. When combined with the short lifetime of

PI(3,4,5)P3 (\1 min) this rate of PI(3,4,5)P3 mobility

allows a polar gradient of the lipid to be formed in moving

cells. The gradient is generated by localized synthesis of

PI(3,4,5)P3 at the cell front coupled with its degradation

toward the rear and enables efficient cell motility. There-

fore, accumulation of PI(4,5)P2 at particular plasma

membrane locations, like forming phagosomes and ruffles

(1–10 lm in length) is also conceivable [137, 142],

although contradictory opinions should be noted [140].

Some studies indicate even lower lateral mobility of

PI(4,5)P2 [143, 144]. It was shown that long-chain NBD-

labeled PI(4,5)P2 mixed with a cationic shuttle and deliv-

ered to the plasma membrane of mouse atrial myocytes

through a micropipette attached to the cells failed to leave

the patch of the membrane surrounded by the pipette walls.

Accompanying FRAP measurements confirmed that

PI(4,5)P2 moved extremely slowly in the plane of the

myocyte plasma membrane with the D calculated at

0.00039 lm2/s [143]. This is 104 time less than the D

values found in the other studies discussed above. A similar

severe restriction of lateral mobility of NBD-labeled

PI(4,5)P2 was found in the plasma membrane of HEK293

cells [144]. The confinement of PI(4,5)P2 was abrogated by

depolymerization of actin pointing to the cytoskeleton as a

factor responsible for the low mobility of the lipid. On the

other hand, NBD-PI and NBD-PI(4)P rapidly crossed the

boundaries of micropipettes attached to the cell surface

[143, 144]. Notably, the same approach has revealed that in

CHO cells PI(4,5)P2 is as mobile as PI(4)P [144] leaving

open the question as to how common is the extremely slow

diffusion of PI(4,5)P2 in cells.

Several mechanisms can limit the lateral mobility of

PI(4,5)P2 in the plasma membrane [145]. One can envisage

the existence of boundaries or ‘‘fences’’ imposed by the

submembrane cytoskeleton and strong bending of the

plasma membrane, which could hinder PI(4,5)P2 diffusion,

for example, at the neck of the phagosome. Recently,

confinement of PI(4,5)P2 within so-called lipid rafts or its

sequestration by proteins due to electrostatic interactions

are being considered, as discussed below.

Lipid rafts and raft-related caveolae are plasma mem-

brane microdomains enriched in sphingolipids and

cholesterol revealed in the 1990s [146–150]. Since this

discovery, several attempts have been undertaken to exam-

ine whether PI(4,5)P2 can be accumulated within these

membrane domains. Rafts/caveolae-derived membranes are

resistant to detergent solubilization, and during ultracentri-

fugation of detergent cell lysates over density gradients they

float to fractions of low density. After fractionation of

lysates derived from cells depleted of cholesterol, rafts/

caveolae-residing lipids and proteins shift to medium- and

high-density fractions reflecting disintegration of the

microdomains [151–154]. Based on such biochemical

analysis, accumulation of PI(4,5)P2 has been postulated in

rafts isolated from epithelial Madin-Darby kidney cells

(MDCK), epidermal A431 cells, and neuroblastoma cells

[155–159]. Those early biochemical data indicated also that

rafts harbored enzymes governing PI(4)P and PI(4,5)P2

synthesis, hydrolysis, and dephosphorylation [155, 158,

160]. Accumulation of PI(4,5)P2 and production of

PI(3,4,5)P3 was also implicated to take place in platelet rafts

[161]. However, fractionation of detergent cell lysates may

lead to an enrichment of bona-fide raft-originating mem-

branes in non-raft proteins and lipids [162–164]. Moreover,

the dependence of the PI(4,5)P2 distribution and activity on

cholesterol level in the plasma membrane does not neces-

sarily prove an association of PI(4,5)P2 with rafts [165, 166].

Due to these limitations, in another approach the PH domain

of PLCd1 was used as a probe to localize PI(4,5)P2 in frozen

ultrasections of fibroblasts and HEK293 cells by immuno-

electron microscopy and for in vivo analysis of PI(4,5)P2

clustering by the FRET technique [71, 166]. No indications

of PI(4,5)P2 clusters have been found in those studies. This is

in agreement with calculations based on the diffusion

coefficient value of PI(4,5)P2, suggesting that PI(4,5)P2

patches of nanometer scale should rapidly dissipate (within

milliseconds according to [142]; see also [140, 167]). One

should bear in mind, however, that the PI(4,5)P2-binding

probes can have a limited access to PI(4,5)P2 already pre-

occupied by other proteins at steady state, leaving the

problem of PI(4,5)P2 distribution in the plasma membrane

unsolved.

Despite the technical difficulties of the raft studies, a

line of data indicates that during activation of a distinct

class of plasma membrane receptors named immunore-

ceptors rafts can contribute to PI(4,5)P2 synthesis and

clustering. All these receptors have a tyrosine-based acti-

vation motif whose phosphorylation is catalyzed by kinases

of the Src family known to reside in rafts. Upon activation,

the immunoreceptors merge with the rafts, which enables

their phosphorylation and triggers signaling cascades.

Concomitantly, the rafts merge into spatially organized

signaling platforms accommodating proteins and lipids of

the cascades [168–171]. Upon activation of B cell antigen

receptor, PIP5KI has been found to become recruited to

plasma membrane rafts by Bruton’s tyrosine kinase (BTK)

catalyzing local synthesis of PI(4,5)P2, which could then be

used by PI3K and PLCc to produce PI(3,4,5)P3, DAG, and

IP3 [172]. During T cell antigen receptor stimulation, rafts

assemble into a structure known as the immunological

synapse at the T cell/antigen-presenting cell contact site.

The integrity of the immunological synapse is maintained
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through anchoring to the underlying actin cytoskeleton,

possibly via PI(4,5)P2-binding proteins. Among these,

vinculin and talin were identified by mass spectroscopic

analysis in raft fractions isolated from T cells [173].

Accordingly, clusters of PI(4,5)P2 were visualized in vivo

in T cells transfected with the PH domain of PLCd1, fol-

lowing induction of raft coalescence by cross-linking of

GM1 ganglioside. PI(3,4,5)P3 and DAG were also found in

the GM1-enriched domains, indicating that rafts can serve

as sites of PI(4,5)P2 phosphorylation and hydrolysis [174].

Activation of another immunoreceptor, Fcc receptor II

involved in phagocytosis, induces an enrichment of raft

fractions in PIP5KIa and PI(4,5)P2. Further ultrastructural

studies performed on sheets of plasma membrane obtained

by mechanical cleavage of cells revealed that PI(4,5)P2

accumulated at the margins of raft conglomerates [43].

Such structures form during Fcc receptor II activation and

accommodate the receptor and proteins of its signaling

cascade [175, 176]. At these particular locations, PI(4,5)P2

may function in tethering the actin cytoskeleton to the

plasma membrane (as proposed for T cell receptor) and

govern internalization of particles. Taken together, the data

suggest that PI(4,5)P2 can accumulate at margins of raft

conglomerates whose formation accompanies activation of

immunoreceptors.

It has also been hypothesized that the spatial confine-

ment of PI(4,5)P2 in the plasma membrane can result from

the lateral sequestration of the lipid by proteins. Indeed, a

significant fraction of the lipid is bound to proteins since

PI(4,5)P2 controls the adhesion between the plasma mem-

brane and the submembrane cytoskeleton [177]. This

finding is in agreement with the results of studies on lipid

composition of microvesicles released from human eryth-

rocytes [178]. The microvesicles were depleted by half in

PI(4,5)P2 and PI(4)P despite having a composition of the

major phospholipids very similar to that of native eryth-

rocyte membrane. Based on those data it was proposed that

about 50% of PI(4,5)P2 in the erythrocyte membrane was

bound to the integral membrane proteins glycophorin and

proteins of the spectrin-based membrane skeleton [178].

Such interactions could slow the diffusion of PI(4,5)P2 into

budding microvesicles. Subsequent measurements of the

diffusion of PI(4,5)P2 in the plasma membrane of Rat1

cells indicated that the erythrocyte results were represen-

tative of other cells as well [137]. The diffusion coefficient

of long-chain BODIPY-labeled PI(4,5)P2 in the inner

leaflet of the plasma membrane (0.9 ± 0.2 lm2/s) was 2.8-

fold lower that the D value of PI(4,5)P2 in blebs formed by

the cells (2.5 ± 0.8 lm2/s) and presumably lacking most

of the cytoskeleton and integral membrane proteins inter-

acting with the cytoskeleton. The authors interpreted those

results to mean that two-thirds of PI(4,5)P2 in Rat1 plasma

membrane were bound reversibly to the cytoskeleton or

other proteins which, in turn, hindered the lateral diffusion

of the lipid [137]. Further theoretical calculations support

this hypothesis. A hypothetical spherical cell 10 lm in

diameter contains about 30,000 PI(4,5)P2/lm2 of the

plasma membrane, accounting for 30 lM PI(4,5)P2 con-

centration (assuming PI(4,5)P2 is dispersed uniformly in

the interior of the cells) [137, 142]. Out of this, 20 lM

PI(4,5)P2 is sequestered while 10 lM diffuses freely, as

indicated by the diffusion measurements [137]. Accord-

ingly, a predominant fraction of the PH domain of PLCd1

expressed in cells is bound to the plasma membrane

(KD * 1.2 lM) while the PH domain of pleckstrin

(KD * 30 lM) remains in the cytoplasm, suggesting that

the concentration of free PI(4,5)P2 is in the range between

2 and 30 lM [137, 142].

Ample data indicate that PI(4,5)P2 can be sequestered by

a group of integral and peripheral membrane proteins that

contain stretches of positively charged amino acids. Thus

far, the ability to sequester and cluster PI(4,5)P2 has been

ascribed to a ubiquitously expressed protein named myri-

stoylated alanine-rich C kinase substrate (MARCKS). The

highly conserved effector domain of MARCKS contains

three serine residues whose phosphorylation is catalyzed by

protein kinase C; the domain also contains sites of cal-

modulin and actin binding. MARCKS binds to actin

filaments and cross-links them, and this cross-linking

activity is disrupted by both phosphorylation of MARCKS

and by Ca2?-loaded calmodulin. Most importantly, the

effector domain of MARCKS also contains 15 basic amino

acid residues that can bind three PI(4,5)P2 molecules

inducing the lipid clustering in the plane of the membrane,

as indicated by biochemical and biophysical studies.

Physiological levels of MARCKS (10 lM in neuronal

tissue) correspond to the estimated cellular PI(4,5)P2

concentration and, thus, MARCKS can sequester a signif-

icant pool of the lipid [142]. The sequestration of PI(4,5)P2

by MARCKS can be reversed by interaction of the effector

domain with Ca2?-loaded calmodulin or by phosphoryla-

tion of the serine residues of the domain by protein kinase

C. Under these conditions, MARCKS detaches from the

plasma membrane despite myristoylation of its N-terminus.

MARCKS-bound PI(4,5)P2 is less susceptible to hydrolysis

by PLCd1, however, dissociation of the protein from the

plasma membrane exposes PI(4,5)P2 for hydrolysis and,

possibly, for interactions with other effector proteins [179,

180]. Some transmembrane receptors, like EGF receptor

and membrane-binding proteins structurally resembling

MARCKS, have also been proposed to reversibly sequester

PI(4,5)P2 in the plasma membrane in a calcium-dependent

manner [180]. Among the latter, neuronal growth-associ-

ated protein 43 (GAP43) is of special interest. Unlike

MARCKS, GAP43 undergoes dual palmitoylation at the

N-terminus, which predisposes the protein for anchoring
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in the inner leaflet of rafts. Studies performed on large

unilamellar vesicles composed of lipids mimicking the

chemical make-up of rafts indicate that palmitoylated

GAP43 can facilitate association of PI(4,5)P2 with rafts.

Considering that PI(4,5)P2 usually has an unsaturated fatty

acyl residue at the n-2 position of the glycerol backbone, its

partition to lipid rafts is unlikely. However, after binding to

palmitoylated GAP43, the free energy of transfer of

PI(4,5)P2 from non-raft to raft environment is lowered

[181]. GAP43 can act as a reversible PI(4,5)P2 sink in

growth cones on neurons responding to changes in the level

of Ca2?-loaded calmodulin. In accordance with the in vitro

studies, an involvement of MARCKS and GAP43 in the

formation of PI(4,5)P2 clusters engaged in cytoskeleton

rearrangement at the leading edge of motile cells was

indicated by Caroni’s group [182, 183]. Hence, distinct

proteins can attract and concentrate PI(4,5)P2 in clusters in

the plane of the plasma membrane to release the lipid

reservoir in response to the rise of free Ca2? concentration.

Conclusions

Stimulation of cells with a variety of agents triggers

signaling cascades that involve PI(4,5)P2. PI(4,5)P2

contributes to these processes by being converted into

second messengers or by controlling the activity of

PI(4,5)P2-binding proteins. The accumulation of PI(4,5)P2

at sites of cell stimulation can ensue from two general

mechanisms: induction of local PI(4,5)P2 synthesis by

PIP5KI and revealing of PI(4,5)P2 clusters pre-existing in

the plasma membrane. PIP5KI can be anchored at the

plasma membrane via electrostatic interactions with PI(4)P

and PI(4,5)P2 being subject to substrate and product inhi-

bition until the appearance of activating factors like PA.

PIP5KI can be also recruited and activated at the plasma

membrane by proteins including Rac1, talin, the AP-2

complex, and BTK. These interactions allow selective

engagement of PIP5KI isoforms. Thus far, the molecular

basis underlying such selectivity is only known for the

interaction of PIP5KIca with talin and the AP-2 complex.

In the case of activation of receptors that utilize assemblies

of rafts as ‘‘signaling platforms’’, the synthesis of PI(4,5)P2

can be confined to these membrane structures. Finally,

proteins like MARCKS can sequester PI(4,5)P2 into clus-

ters in the plane of the plasma membrane of resting cells

and release the lipid allowing its interaction with effector

proteins in response to changes of free Ca2? level

accompanying cell activation.
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Südhof TC, Albanesi JP (2001) A novel family of phosphati-

dylinositol 4-kinases conserved from yeast to humans. J Biol

Chem 276:7705–7708

88. Wei YJ, Sun HQ, Yamamoto M, Wlodarski P, Kunii K, Mar-

tinez M, Barylko B, Albanesi JP, Yin HL (2002) Type II

phosphatidylinositol 4-kinase b is a cytosolic and peripheral

membrane protein that is recruited to the plasma membrane and

activated by Rac-GTP. J Biol Chem 277:46586–46593

89. Balla A, Tuymetova G, Barshishat M, Geiszt M, Balla T (2002)

Characterization of type II phosphatidylinositol 4-kinase iso-

forms reveals association of the enzymes with endosomal

vesicular compartments. J Biol Chem 277:20041–20050

90. Weixel KM, Blumental-Perry A, Watkins SC, Aridor M, Weisz

OA (2005) Distinct Golgi populations of phosphatidylinositol

4-phosphate regulated by phosphatidylinositol 4-kinases. J Biol

Chem 280:10501–10508

91. Jung G, Wang J, Wlodarski P, Barylko B, Binns DD, Shu H, Yin

HL, Albanesi JP (2008) Molecular determinants of activation

and membrane targeting of phosphoinositol 4-kinase IIb. Bio-

chem J 409:501–509

92. Wang YJ, Li WH, Wang J, Xu K, Dong P, Luo X, Yin HL.

Critical role of PIP5KIc87 in InsP3-mediated Ca2? signaling.

J Cell Biol 167:1005–1010

93. Tolias KF, Cantley LC, Carpenter CL (1995) Rho family

GTPases bind to phosphoinositide kinases. J Biol Chem

270:17656–17699

94. van Hennik PB, ten Klooster JP, Halstead JR, Voermans C,

Anthony EC, Divecha N, Hordijk PL (2003) The C-terminal

domain of Rac1 contains two motifs that control targeting and

signaling specificity. J Biol Chem 278:39166–39175

95. Oude Weernink PA, Meletiadis K, Hommeltenberg S, Hinz M,

Ishihara H, Schmidt M, Jakobs KH (2004) Activation of type I

phosphatidylinositol 4-phosphate 5-kinase isoforms by the Rho

GTPases, RhoA, Rac1, and Cdc42. J Biol Chem 279:7840–7849

96. Ren XD, Bokoch GM, Traynor-Kaplan A, Jenkins GH, Ander-

son RA, Schwartz MA (1996) Physical association of the small

GTPase Rho with a 68-kDa phosphatidylinositol 4-phosphate

5-kinase in Swiss 3T3 cells. Mol Biol Cell 7:435–442

97. Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H,

Watanabe H, Kawamoto K, Nakayama K, Morris AJ, Frohman

MA, Kanaho Y (1999) Phosphatidylinositol 4-phosphate

5-kinase a is a downstream effector of the small G protein ARF6

in membrane ruffle formation. Cell 99:521–532

98. Chong LD, Traynor-Kaplan A, Bokoch GM, Schwartz MA

(1994) The small GTP-binding protein Rho regulates a phos-

phatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell

79:507–513

99. Chatah NE, Abrams CS (2001) G-protein-coupled receptor

activation induces the membrane translocation and activation of

phosphatidylinositol-4-phosphate 5-kinase Ia by a Rac- and

Rho-dependent pathway. J Biol Chem 276:34059–34065

100. Yamazaki M, Miyazaki H, Watanabe H, Sasaki T, Maehama T,

Frohman MA, Kanaho Y (2002) Phosphatidylinositol

4-phosphate 5-kinase is essential for ROCK-mediated neurite

remodeling. J Biol Chem 277:17226–17230

101. Yang SA, Carpenter CL, Abrams CS (2004) Rho and Rho-

kinase mediate thrombin-induced phosphatidylinositol 4-phos-

phate 5-kinase trafficking in platelets. J Biol Chem 279:42331–

42336

102. Heasman SJ, Ridley AJ (2009) Mammalian Rho GTPases: new

insights into their functions from in vivo studies. Nat Rev Mol

Cell Biol 9:690–701

103. Abramovici H, Mojtabaie P, Parks RJ, Zhong XP, Koretzky GA,

Topham MK, Gee SH (2009) Diacylglycerol kinase f regulates

actin cytoskeleton reorganization through dissociation of Rac1

from RhoGDI. Mol Biol Cell 20:2049–2059

104. Luo B, Prescott SM, Topham MK (2004) Diacylglycerol kinase

f regulates phosphatidylinositol 4-phosphate 5-kinase Ia by a

novel mechanism. Cell Signal 16:91–897

105. Illenberger D, Walliser C, Nurnberg B, Diaz Lorente M,

Gierschik P (2003) Specificity and structural requirements of

phospholipase C-b stimulation by Rho GTPases versus G pro-

tein bc dimers. J Biol Chem 278:3006–3014

106. Piechulek T, Rehlen T, Walliser C, Vatter P, Moepps B,

Gierschik P (2005) Isozyme-specific stimulation of phospholi-

pase C-c2 by Rac GTPases. J Biol Chem 280:38923–38931

107. Bunney TD, Opaleye O, Roe SM, Vatter P, Baxendale RW,

Walliser C, Everett KL, Josephs MB, Christow C, Rodrigues-

Lima F, Gierschik P, Pearl LH, Katan M (2009) Structural

insights into formation of an active signaling complex between

Rac and phospholipase Cc2. Mol Cell 34:223–233

108. Pratt SJ, Epple H, Ward M, Feng Y, Braga VM, Longmore GD

(2005) The LIM protein Ajuba influences p130Cas localization

and Rac1 activity during cell migration. J Cell Biol 168:813–824

109. Krauss M, Kinuta M, Wenk MR, De Camilli P, Takei K, Haucke

V (2003) ARF6 stimulates clathrin/AP-2 recruitment to synaptic

membranes by activating phosphatidylinositol phosphate kinase

type Ic. J Cell Biol 162:113–124

110. Hiroyama M, Exton JH (2005) Localization and regulation of

phospholipase D2 by ARF6. J Cell Biochem 95:149–164

111. Perez-Mansilla B, Ha VL, Justin N, Wilkins AJ, Carpenter CL,

Thomas GM (2006) The differential regulation of phosphati-

dylinositol 4-phosphate 5-kinases and phospholipase D1 by

ADP-ribosylation factors 1 and 6. Biochim Biophys Acta

1761:1429–1442

112. Divecha N, Roefs M, Halstead JR, D’Andrea S, Fernandez-

Borga M, Oomen L, Saqib KM, Wakelam MJ, D’Santos C

(2000) Interaction of the type Ia PIPkinase with phospholipase

D: a role for the local generation of phosphatidylinositol

4,5-bisphosphate in the regulation of PLD2 activity. EMBO J

19:5440–5449

113. Skippen A, Jones DH, Morgan CP, Li M, Cockcroft S (2002)

Mechanism of ADP ribosylation factor-stimulated phosphati-

dylinositol 4,5-bisphosphate synthesis in HL60 cells. J Biol

Chem 277:5823–5831

114. Aikawa Y, Martin TF (2003) ARF6 regulates a plasma mem-

brane pool of phosphatidylinositol(4,5)bisphosphate required for

regulated exocytosis. J Cell Biol 162:647–659

115. Begle A, Tryoen-Toth P, de Barry J, Bader MF, Vitale N (2009)

ARF6 regulates the synthesis of fusogenic lipids for calcium-

regulated exocytosis in neuroendocrine cells. J Biol Chem

284:4836–4845

116. Santy LC, Ravichandran KS, Casanova JE (2005) The

DOCK180/Elmo complex couples ARNO-mediated Arf6 acti-

vation to the downstream activation of Rac1. Curr Biol

15:1749–1754

117. Myers KR, Casanova JE (2008) Regulation of actin cytoskeleton

dynamics by Arf-family GTPases. Trends Cell Biol 18:184–192

3944 K. Kwiatkowska



118. Gingras AR, Bate N, Goult BT, Hazelwood L, Canestrelli I,

Grossmann JG, Liu H, Putz NS, Roberts GC, Volkmann N,

Hanein D, Barsukov IL, Critchley DR (2008) The structure of

the C-terminal actin-binding domain of talin. EMBO J 27:458–

469

119. Gingras AR, Ziegler WH, Bobkov AA, Joyce MG, Fasci D,

Himmel M, Rothemund S, Ritter A, Grossmann JG, Patel B,

Bate N, Goult BT, Emsley J, Barsukov IL, Roberts GC, Lidd-

ington RC, Ginsberg MH, Critchley DR (2009) Structural

determinants of integrin binding to the talin rod. J Biol Chem

284:8866–8876

120. Barsukov IL, Prescot A, Bate N, Patel B, Floyd DN, Bhanji

N, Bagshaw CR, Letinic K, Di Paolo G, De Camilli P,

Roberts GC, Critchley DR (2003) Phosphatidylinositol phos-

phate kinase type 1c and b1-integrin cytoplasmic domain bind

to the same region in the talin FERM domain. J Biol Chem

278:31202–31209

121. de Pereda JM, Wegener KL, Santelli E, Bate N, Ginsberg MH,

Critchley DR, Campbell ID, Liddington RC (2005) Structural

basis for phosphatidylinositol phosphate kinase type Ic binding

to talin at focal adhesions. J Biol Chem 280:8381–8386

122. Kong X, Wang X, Misra S, Qin J (2006) Structural basis for the

phosphorylation-regulated focal adhesion targeting of type Ic
phosphatidylinositol phosphate kinase (PIPKIc) by talin. J Mol

Biol 359:47–54

123. Hamada K, Shimizu T, Matsui T, Tsukita S, Hakoshima T

(2000) Structural basis of the membrane-targeting and

unmasking mechanisms of the radixin FERM domain. EMBO J

19:4449–4462

124. Martel V, Racaud-Sultan C, Dupe S, Marie C, Paulhe F, Gal-

miche A, Block MR, Albiges-Rizo C (2001) Conformation,

localization, and integrin binding of talin depend on its inter-

action with phosphoinositides. J Biol Chem 276:21217–21227

125. Saltel F, Mortier E, Hytonen VP, Jacquier MC, Zimmermann P,

Vogel V, Liu W, Wehrle-Haller B (2009) New PI(4,5)P2- and

membrane proximal integrin-binding motifs in the talin head

control b3-integrin clustering. J Cell Biol 187:715–731

126. Bairstow SF, Ling K, Anderson RA (2002) Phosphatidylinositol

phosphate kinase type Icdirectly associates with and regulates

Shp-1 tyrosine phosphatase. J Biol Chem 280:23884–23891

127. Sun Y, Ling K, Wagoner MP, Anderson RA (2007) Type Ic
phosphatidylinositol phosphate kinase is required for EGF-

stimulated directional cell migration. J Cell Biol 178:297–308

128. Tanentzapf G, Brown NH (2006) An interaction between inte-

grin and the talin FERM domain mediates integrin activation but

not linkage to the cytoskeleton. Nat Cell Biol 8:601–606

129. Cheung TY, Fairchild MJ, Zarivach R, Tanentzapf G, Van

Petegem F (2009) Crystal structure of the talin integrin binding

domain 2. J Mol Biol 387:787–793

130. Wenk MR, Pellegrini L, Klenchin VA, Di Paolo G, Chang S,

Daniell L, Arioka M, Martin TF, De Camilli P (2001) PIP kinase

Ic is the major PI(4,5)P2 synthesizing enzyme at the synapse.

Neuron 32:79–88

131. Kahlfeldt N, Vahedi-Faridi A, Koo SJ, Schäfer JG, Krainer G,
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