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Abstract In this review, we discuss the signal-transduc-

tion pathways of three major cellular responses induced by

tumor necrosis factor (TNF): cell survival through NF-jB

activation, apoptosis, and necrosis. Recruitment and acti-

vation of caspases plays a crucial role in the initiation and

execution of TNF-induced apoptosis. However, experi-

mental inhibition of caspases reveals an alternative cell

death pathway, namely necrosis, also called necroptosis,

suggesting that caspases actively suppress the latter out-

come. TNF-induced necrotic cell death crucially depends

on the kinase activity of receptor interacting protein serine-

threonine kinase 1 (RIP1) and RIP3. It was recently dem-

onstrated that ubiquitination of RIP1 determines whether it

will function as a pro-survival or pro-cell death molecule.

Deeper insight into the mechanisms that control the

molecular switches between cell survival and cell death

will help us to understand why TNF can exert so many

different biological functions in the etiology and patho-

genesis of human diseases.

Keywords Tumor necrosis factor � Apoptosis �
Necrosis � Receptor interacting protein kinase 1

Introduction

Cell death is a fundamental cellular response that plays a

crucial role in shaping our body during development and in

regulating tissue homeostasis by eliminating unwanted

cells. Three major morphologies of cell death have been

described: apoptosis (type I), cell death associated with

autophagy (type II), and necrosis (type III) [1]. Apoptosis

involves a sequence of specific morphological changes in

the dying cell: condensation of the cytoplasm and nuclear

chromatin, followed by breakage of cells into membrane-

bound apoptotic bodies containing a variety of cytoplasmic

organelles and nuclear fragments, which are then engulfed

by neighboring cells and macrophages [2, 3]. In mamma-

lian cells, the apoptotic response is mediated either by an

intrinsic or an extrinsic pathway, depending on the origin

of the death stimulus, and it is almost always caspase-

dependent. The importance of caspases and other proteases

to cell death is discussed by Schrader et al. in this issue.

Necrosis is characterized by swelling of the endoplasmic

reticulum, mitochondria, and cytoplasm, with subsequent

rupture of the plasma membrane and lysis of the cells [3].

Necrosis has long been considered an accidental and

uncontrolled form of cell death. However, accumulating

evidence shows that necrotic cell death is sometimes as

well controlled and programmed as caspase-dependent

apoptosis. The aim of this article is to provide a general

overview of the current knowledge on signaling events that

F. Van Herreweghe � W. Declercq � P. Vandenabeele (&)

Unit For Molecular Signalling and Cell Death,

Department for Molecular Biomedical Research, VIB,

Technologiepark 927, 9052 Ghent (Zwijnaarde), Belgium

e-mail: peter.Vandenabeele@dmbr.vib-Ugent.be

F. Van Herreweghe � W. Declercq � P. Vandenabeele

Unit for Molecular Signalling and Cell Death,

Department of Biomedical Molecular Biology,

Ghent University, Technologiepark 927, 9052 Ghent, Belgium

N. Festjens

Unit for Molecular Glycobiology, Department for Molecular

Biomedical Research, VIB, Ghent University,

Technologiepark 927, 9052 Ghent, Belgium

N. Festjens

Laboratory for Protein Biochemistry and Biomolecular

Engineering, Department of Biochemistry and Microbiology,

Ghent University, Ledeganckstraat 35, 9052 Ghent, Belgium

Cell. Mol. Life Sci. (2010) 67:1567–1579

DOI 10.1007/s00018-010-0283-0 Cellular and Molecular Life Sciences



result in apoptosis or necrosis. We will focus mainly on

TNF-induced apoptosis and necrosis, and on the interplay

between apoptotic, necrotic, and inflammatory signaling

pathways. Another form of cell death, autophagy, is fore-

most a survival mechanism that is activated in cells

deprived of nutrients or obligate growth factors. If cellular

stress persists, cell death either continues by autophagy

alone or becomes associated with features of apoptotic or

necrotic cell death, depending on the stimulus and cell

type. This kind of cell death is discussed extensively by

Fimia and Piacentini in a separate review in this issue [4].

For the role of autophagy and other forms of cell death in

the control of infections, we refer to Bortoluci and Med-

zhitov in this issue [5].

TNF-receptor-mediated apoptosis

Members of the TNF-receptor (TNF-R) superfamily are

characterized by extracellular cysteine-rich domains that

bind their respective ligands, and by intracellular interac-

tion motifs, such as the death domain (DD) and the TRAF

(TNF-receptor-associated factor)-binding domain [6]. In

general, these receptors can initiate signaling cascades

leading to transcription factor activation and/or cell death.

In 1990, two different TNF receptors were cloned (for

review see [7]): TNF-R1, which is expressed on most cell

types, and TNF-R2, which is primarily expressed on hae-

matopoietic cells. In contrast to TNF-R1, TNF-R2 lacks a

cytoplasmic death domain. The biological role of TNFR2 is

not fully understood, although recent evidence suggests

that it can modulate the actions of TNF-R1 on immune and

endothelial cells. The TNF-R superfamily comprises the

so-called death receptors (DRs), namely TNF-R1, Fas,

TRAIL-R1 and -R2, TRAMP, DR6, EDAR, and p75NTR,

all of which contain a cytoplasmic death domain. We focus

in this review on TNF-receptor-induced apoptosis as a

model of DR-induced cell death signaling and discuss the

different signaling phases and their control. For extensive

reviews on other DR-induced cell-death pathways we refer

the reader to recent reviews [8, 9].

Engagement of TNF-R1 leads to activation of NF-jB

(nuclear factor kappa B) and/or cell death. NF-jB activa-

tion induced by TNF-R1 is thought to depend on the

receptor interacting protein serine-threonine kinase 1

(RIP1) [10] (see Fig. 1). However, the absolute require-

ment for RIP1 in TNF-induced NF-jB activation was

recently challenged by the observation that TNF-induced

NF-jB is only partially inhibited in RIP1-deficient cells

[11]. In most cell lines, RIP1 is essential for TNF-R1-

induced apoptosis [10, 12, 13]. Involvement of RIP1 in

both signaling pathways is related to its structural features

that allow binding of proteins for activation of both

pathways. On the one hand, RIP1 is linked to the apoptotic

cell death program by virtue of its N-terminal death

domain. The RIP1-DD links DD-containing DRs, such as

TNF-R1, Fas, TRAIL-R1, and TRAIL-R2 with adaptor

proteins that initiate the apoptotic machinery, such as

TRADD (TNF-receptor associated via DD) and FADD

(Fas associated via DD) [14]. On the other hand, the RIP1

intermediate domain (ID) allows direct association with

proteins that are crucial for activation of NF-jB, such as

TRAF2, IKKc/NEMO and TAK1 (TGF-b activated kinase

1) [14]. This RIP1-ID contains a RIP1 homotypic interac-

tion motif (RHIM) that allows interaction with RIP3, a

protein suggested to modulate RIP1 activity towards TNF-

R1-induced NF-jB activation [15]. However, this could

not be confirmed in RIP3-/- cells [16]. The RIP1 kinase

activity used to be considered essential only for signaling

to necrosis [17], but it was recently shown to be also

essential for formation of an alternative caspase-8 activa-

tion complex that is not sensitive to inhibition by cFLIP

(cellular FLICE-like inhibitory proteins) [13].

TNF-R1-bound TRADD recruits FADD through DD

interaction (see Fig. 1). In turn, FADD recruits via its dead

effector domain (DED) procaspase-8 or -10, which are

activated by proximity. This activation is sufficient to ini-

tiate a signaling cascade that induces apoptosis [18, 19]. It

was found that induction of apoptosis and activation of NF-

jB are initiated from different receptor-bound and intra-

cellular signaling complexes dynamically formed after

TNF stimulation [18]. The first complex (complex I) is

formed on the cell membrane where TNF-R1 binds adaptor

proteins, such as TRAF2, RIP1, and TRADD to activate

NF-jB. Subsequently, several adaptor proteins are re-

shuffled to form a second cytosolic complex (complex II)

that may or may not contain TNF-R1. This second complex

then attracts FADD and caspase-8 to initiate apoptosis. In

some cases, FADD/caspase-8 association depends on high

molecular weight complexes containing unubiquitinated

RIP1 as scaffold [13]. This caspase-8 activating platform

leading to induction of cell death is called the death-

inducing signaling complex (DISC). When complex I for-

mation is successful, NF-jB-regulated anti-apoptotic gene

products efficiently block initiation of apoptosis from

complex II [18, 19]. According to this model, apoptosis is

induced after NF-jB activation but there is evidence that a

very early attempt to signal for apoptosis precedes activa-

tion of NF-jB. The intracellular part of TNF-R1 binds a

factor associated with neutral sphingomyelinase (FAN)

activation [20]. FAN mediates neutral sphingomyelinase

(nSMase)-dependent production of ceramide from the cell

membrane; ceramide induces lysosomal membrane per-

meabilization and apoptosis [21]. nSMase activity is indeed

observed before TNF-R1 internalization and NF-jB acti-

vation, but it is repressed upon TNF-R1 internalization.
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This early FAN-mediated signal, however, is enough to

initiate apoptosis in some cells [19]. Recently, it was

demonstrated that caspase-8 is rapidly recruited and acti-

vated on a FADD/RIP1 complex to induce apoptosis

quickly. However, this interaction and the early activation

of apoptosis is blunted when RIP1 becomes ubiquitinated

and IKKc (inhibitor of jB kinase c) binds to RIP1 to induce

the activation of NF-jB [22]. This explains why cells

expressing a form of RIP1 that cannot be ubiquitinated are

extremely sensitive to TNF-induced apoptosis [12]. In

several cell lines, TNF-R1 engagement produces sufficient

amounts of active caspase-8 to cleave and activate execu-

tioner caspase-3 and -7 in order to carry out the apoptotic

cell death program. However, when caspase-8 activation is

insufficient, the cell death signal has to be amplified. Such

amplification is provided by the mitochondria.

Mitochondrial control of TNF-R1-mediated apoptosis

Almost all stress stimuli, including DR engagement [23],

that use mitochondria to execute their apoptotic program

rely on proteins of the BCL-2 family (see Fig. 1). Details

about the mitochondrial control of cell death can be appre-

ciated in a separate review in this issue by Pradelli et al. [24].

All BCL-2 proteins contain between one and four BCL-2

homology domains (BH). The pro-apoptotic BCL-2 family

members BAK (BCL-2 antagonist/killer) and BAX (BCL-2-

associated X protein) are crucial in regulating a wide range

of apoptotic stimuli [25] and become activated by BCL-2

family members that have only the BH3 domain, e.g., BID

(BH3 interacting domain death agonist) [26]. Cytosolic

BAX has to be activated before it can translocate and oli-

gomerize into the outer mitochondrial membrane. This

activation is a complex process involving early conforma-

tional changes in the cytosol and is induced by

phosphorylation, deubiquitination, and increases or

decreases in intracellular pH [27, 28]. Interactions between

the BH1 of BAX and the BH3 of BID are needed for

exposure of the mitochondrial addressing sequence of BAX

[28]. The BID-BH3 domain is shielded, and it is exposed

only after processing of BID into a truncated form (tBID) by

proteases such as caspase-8 [28]. Translocation of activated

BAX to the mitochondria is mediated by mitochondrial

receptors. These can be proteins, e.g., components of the
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Fig. 1 NF-jB activation and apoptosis induced by TNF-R1 activa-

tion. Engagement of TNF-R1 activates a pathway that induces NF-jB

activation through ubiquitinated RIP1. The NF-jB gene products

counteract apoptosis at different levels and induce inflammatory

responses. TRADD/FADD/RIP1 associations lead to activation of

caspase-8 and apoptosis through a pathway that either is or is not

cFLIP-sensitive. The cFLIP-insensitive pathway requires the kinase

activity of RIP1 to form FADD/RIP1/caspase-8 complexes, and RIP1

must not be ubiquitinated. Caspase-8 mediated tBID/BAX transloca-

tion to the outer membrane of mitochondria induces MOMP with

release of cyt C and SMAC. Cytochrome c, together with (d)ATP

allows rearrangements of APAF-1, leading to recruitment and

activation of caspase-9 and apoptosis. Release of SMAC creates a

permissive condition for caspase activation. Some SMAC mimetics

inhibit XIAP activity. See text for details
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translocase of outer membrane (TOM) [29, 30] or lipids such

as cardiolipin [31]. Cardiolipin is an anionic phospholipid

located predominantly in the inner membrane of mito-

chondria and at sites of contact between the mitochondrial

inner and outer membranes, the so-called microdomains

[32]. Recently it has been found that cardiolipin in these

microdomains can form a procaspase-8 activation platform

to generate tBID at the mitochondria. Anti-apoptotic BCL-

XL prevents membrane-bound tBID from binding BAX but

the ‘‘derepressor/sensitiser’’ BAD can displace tBID from

BCL-XL. This restores the binding of tBID to BAX and

induces oligomerization of BAX [33, 34]. How BAX olig-

omerizes remains unclear, but its insertion in the

mitochondrial outer membrane is required to induce pore

formation leading to mitochondrial outer membrane per-

meability (MOMP) [34]. MOMP induces the release of

cytochrome c and other soluble proteins of the mitochon-

drial intermembrane space (IMS). The release of

mitochondrial factors is sensed by apoptotic peptidase

activating factor 1 (APAF-1), which consists of three func-

tional units: an N-terminal caspase-recruitment domain

(CARD) responsible for recruiting caspase-9, an NB-ARC

region that binds ATP or dATP and is responsible for olig-

omerization, and a C-terminal region with two WD40

domains that binds cytochrome c [35]. In the absence of an

apoptotic signal, APAF-1 exists in a compactly folded and

autoinhibited form. When cytochrome c is released from the

mitochondria, it binds to the WD-40 domains, moving the

WD-40 repeats away from the CARD and NB-ARC region,

causing hydrolysis of (d)ATP to (d)ADP and inducing a

conformational change of APAF-1. At this stage, APAF-1 is

partially unfolded but still autoinhibited [35]. The APAF-1

bound (d)ADP is exchanged for (d)ATP when sufficient

amounts of exogenous (d)ATP is available [36]. When the

exchange is successful, the NB-ARC region starts to oligo-

merize into a wheel-shaped complex, the apoptosome,

which consists of seven APAF-1 molecules, exposing their

CARD domains. Caspase-9 is produced as an inactive

monomer. Like the initiator caspase-8 and -10, its activation

requires dimerization but not cleavage [37]. The apopto-

some brings together several procaspase-9 molecules

through CARD–CARD interactions, inducing proximity

activation [38]. Then, caspase-9 proteolytically activates

executioner caspase-3 and -7. This is the final step in the

apoptotic signaling cascade; these activated proteases cleave

many proteins from different cellular compartments, leading

to apoptosis and ordered cellular disintegration.

TNF-R1-mediated NF-jB activation and induction

of anti-apoptotic genes

TNF-R1 activation leads to rapid recruitment of TRAF2 to

the intermediate domain of RIP1. The E3 ubiquitin ligase

activity of TRAF2 has been suggested [39] to be respon-

sible for the Lys-63 ubiquitination on a critical Lys in the

intermediate domain of RIP1 (Lys 377 in hRIP1 and

Lys376 in mRIP1) [40]. Ubiquitination of RIP1 does not

require autophosphorylation [39], and the RIP1/TRAF2

interaction is stabilized by TRADD, at least in some cell

lines [41]. TNF-induced NF-jB activation is only com-

pletely blocked in TRAF2-/-/TRAF5-/- double knock-out

mice, pointing to functional redundancy of TRAF2 and

TRAF5 [42]. Cellular inhibitor of apoptosis proteins cIAP1

and cIAP2 have E3-ubiquitin ligase activity, functionally

interact with TRAF2 [43] and RIP1 [13], and induce

polyubiquitination of RIP1 upon TNF-stimulation [44, 45].

Consequently, loss of both cIAP1 and cIAP2 greatly

attenuates TNF-induced NF-jB activation [44]. Others

show that SMAC mimetic-induced degradation of cIAPs

does not impair TNF-induced NF-jB activation [13]. The

TAK1-associated binding proteins TAB2 and TAB 3

contain a conserved C-terminal zinc-finger domain that

binds preferentially to the Lys-63 polyubiquitin chain of

RIP1. The recruited TAB 2/TAB 3 facilitates the dimer-

ization or oligomerization of TAK1, thereby promoting the

trans-autophosphorylation and activation of TAK1 [46].

The IKK complex, consisting of IKKa, IKKb and IKKc, is

recruited to RIP1 through binding of IKKc to the ubiquitin

chain of RIP1 [40]. Activated TAK1 directly phosphory-

lates IKKb within the activation loop, leading to activation

of the IKK complex [47] and NK-jB [48].

Several proteins were shown to intercept TNF-induced

NF-jB activation at the level of ubiquitinated RIP1 (see

Fig. 1). First, A20, an NF-jB inhibitory protein recruited to

the TNF-R1 complex, negatively regulates Lys-63 linked

ubiquitination of RIP1. It removes the Lys 63-linked RIP1

ubiquitin chains and promotes Lys 48-linked ubiquitination

of RIP1, which leads to its degradation by the 26S protea-

some complex [49] and thereby terminates signaling to

NF-jB. IKKc stabilizes the bound polyubiquitinated RIP1

by inhibiting its degradation, most probably by impairing its

interaction with A20 [50]. A20 activity is positively regu-

lated through its association with ITCH and the hTLV TAX

binding protein (TAX1BP) [51]. Second, CEZANNE (cel-

lular zinc finger anti-NF-kappa B protein) is recruited to the

activated TNF-R1 and promotes RIP1 deubiquitination,

thereby attenuating NF-jB activation [52]. Third, at inter-

nalized TNF-receptosomes, RIP1 is ubiquitinated by

endocytic vesicle associated caspase 8/10-associated ring

protein 2 (CARP2), inducing RIP1 degradation, which ter-

minates NF-jB activation [53]. Fourth, the cylindromatosis

(CYLD) protein [54] efficiently binds RIP1 and blocks

TNF-induced ubiquitination of RIP1, thereby counteracting

NF-jB activation [55] and promoting apoptosis [13].

When successful, TNF-induced NF-jB activation

induces transcription and expression of genes encoding
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proinflammatory cytokines such as interleukin-6 (IL-6),

anti-apoptotic factors such as XIAP, cIAP1, and cIAP2,

the decoy caspase-8 c-FLIP, and the BCL-2 homologue

BCL-XL [56]. In this way, a cell remains inert to apoptotic

stimuli [57].

Mechanisms controlling caspase activation

Proximity-induced activation of procaspase-8 at complex II

[58] implies that activation can be prevented by interfering

with procaspase-8 dimerization itself. This is achieved at

different levels by cFLIPs. These proteins are expressed in

three isoforms, two short splice variants (cFLIPs and

cFLIPR) and one long variant (cFLIPL). All three isoforms

contain two DEDs, which are structurally similar to the

N-terminal part of procaspase-8. cFLIPL also contains

catalytically inactive caspase-like domains. cFLIPS com-

petes with procaspase-8 for binding to FADD through DED

interactions and interferes with procaspase-8 oligomeriza-

tion and activation, thus blocking apoptosis [8]. In high

amounts, cFLIPL interferes with procaspase-8 recruitment

at the DISC [8] in a way analogous to the action of cFLIPS,

and thereby blocks apoptosis. However, the low amounts of

cFLIPL that remain in the cytosol heterodimerize with

procaspase-8 to support activation of the caspase [59].

Heterodimers of activated caspase-8 and cFLIPL recruit

RIP1 and TRAF2 and activate prosurvival NF-jB signaling

[60]. Importantly, cFLIP levels are tightly controlled by

rapid protein turnover and the balance between survival

and stress signals [8]. Many tumor cells overexpress

cFLIPs, inducing resistance to cell death ligands FasL and

TRAIL on the one hand, while stimulating proliferation

and invasiveness on the other hand [61].

Cells express another set of proteins that also effectively

block aberrant caspase activation, namely the inhibitor of

apoptosis proteins (IAPs). The mammalian genome con-

tains at least eight different IAPs [62]. All of these proteins

share a zinc-binding module, which is referred to as the

baculoviral IAP repeat (BIR) domain. The IAP proteins

cIAP1, cIAP2, and the X-linked IAP (XIAP) contain three

BIR domains and a RING-motif with E3 ubiquitin ligase

activity. XIAP is specifically involved in inhibition of

apoptosis [63]. XIAP binds caspase-3 and -7 through BIR2

and a short 18-amino-acid N-terminal region of BIR2 [64].

Anchoring of XIAP to these caspases blocks substrate entry

into their substrate-binding pockets [65]. XIAP also

potently inhibits caspase-9 through an unrelated mecha-

nism involving XIAP-BIR3. The distal helix of BIR3

forces caspase-9 into an inactive monomer conformation

by interposing between the caspase dimerization interfaces

[66]. Inhibition of caspases by XIAP must be relieved

when an authentic cell death trigger is imposed. SMAC/

DIABLO (second mitochondrial activator of caspases/

direct IAP-binding protein with low pI) and OMI/HTRA2

(high-temperature requirement protein A2) are mitochon-

drial IMS proteins released into the cytosol after MOMP.

They contain an IAP binding motif (IBM) that binds XIAP-

BIR3 and thereby displaces XIAP from the XIAP-caspase-

9 complex [67]. The mature SMAC protein can also relieve

XIAP-mediated inhibition of caspase-3 and -7 [68] because

dimeric SMAC bound to XIAP-BIR3 also interacts with

the region N-terminal of BIR2, causing steric hindrance

and thus precluding XIAP from simultaneously binding to

caspase-3 and -7 [69]. Hence, small-molecule XIAP

inhibitors that can set interacting caspases free are now

being tested for enhancement of TRAIL-induced antitumor

therapy [70]. Because of its inhibitory effect on both ini-

tiator and executioner caspases, XIAP has become a

promising therapeutic target, especially in cells in which

the mitochondrial pathway cannot be invoked because of

overexpressed BCL-2.

Two other IAP members, cIAP1 and cIAP2, interact

also with caspase-7 and -9, but their BIR2 and BIR3

domains differ from the corresponding XIAP-BIRs in

critical amino acids so that they cannot inhibit the caspases

[71]. Although cIAP1 and cIAP2 are considered weak

caspase inhibitors [63], they induce degradation of casp-

ases [72]. Interestingly, binding of SMAC (or small

molecules that mimic the IBM motif of SMAC) to cIAP1

and cIAP2 induces autoubiquitination and leads to degra-

dation of both cIAPs [45, 73, 74], which potentiates

TRAIL- and TNF-induced apoptosis [73]. In several cancer

cell lines, cIAPs seem to ubiquitinate RIP1 constitutively,

which increases the steady-state levels of NF-jB activation

and raises the anti-apoptotic status of the cell. Thus,

treatment of these cells with SMAC mimetics not only

leads to degradation of cIAPs but also initiates deubiqui-

tination of RIP1. This allows RIP1 to attract and activate

caspase-8 to induce apoptosis [13, 45].

TNF-R1-mediated necrosis

It has become clear that many cell types that cannot initiate

or propagate the apoptotic signaling cascade do not survive

but die by necrosis [75, 76]. This type of cell death is

typically not associated with activation of caspases and is

characterized by cytoplasmic swelling, irreversible plasma

membrane damage, and organelle breakdown [77]. Some

pathophysiological processes, such as ischemia–reperfu-

sion (I/R), inflammation, reactive oxygen species (ROS)-

induced injury and glutamate excitotoxicity, induce

necrotic cell death in vivo [78]. In addition, in some tumor

cell lines, e.g., the fibrosarcoma cell line L929, TNF

induces necrosis by default [77]. In contrast to apoptotic

signaling, our knowledge of necrosis does not enable us

to clearly distinguish between the different phases of

TNF-induced apoptosis and necrosis 1571



signaling during necrotic cell death due to lack of markers

specific for the different phases of necrotic signaling. The

work of Holler et al. [79] showed that the kinase activity of

RIP1 is essential for initiating necrosis. In 2005, Degterev

et al. [80] discovered necrostatin-1 (Nec-1) and recently

they reported that it specifically blocks the kinase activity

of RIP1 [17]. In vitro, Nec-1 inhibits TNF-induced necrosis

in L929 cells and FasL-induced necrosis in Jurkat cells

deficient in FADD or pretreated with zVAD-fmk [80].

These results confirm a fundamental role for RIP1 kinase

activity in DR-induced necrotic signaling. Although

necrotic cell death induced by DNA damage also depends

on RIP1, there are no reports that this is due to its kinase

activity [81]. In vivo, Nec-1 was shown to delay mouse

ischemic brain injury [80], inhibit myocardial cell death,

and reduce infarct size [82]. The identification of necrost-

atin not only provides us with a valuable therapeutic tool

but also allows us to study the contribution of necrotic cell

death to many experimentally induced pathologies,

including ischemia reperfusion damage upon organ trans-

plantation, cardiac infarction, stroke, and traumatic brain

injury.

An important question is how RIP1 is activated and how

it contributes to the propagation of necrotic signaling. Two

different models in which RIP1 is essential for activating

necrosis, namely DNA damage-mediated poly(ADP-

ribose) polymerase-1 (PARP-1) overactivation and I/R [80,

81], display perturbation of cellular metabolism, which

might account for triggering RIP1 activity. Activated

PARP-1 catalyses the synthesis of polymeric poly(ADP-

ribose) (PAR) on many target proteins using nicotinamide

adenine dinucleotide (NAD) as a substrate, resulting in

total deficit of NAD when PARP-1 is overactivated. This

slows down or stops glycolysis, because NAD is an

essential cofactor for the glycolytic enzyme glycer-

aldehyde-3-phosphate dehydrogenase (GAPDH). In

response to this, cells activate other pathways to produce

NAD, but this is associated with excessive ATP con-

sumption [83]. The same accounts for the model of I/R,

because this is also accompanied by overactivation of

PARP-1 [84]. Moreover, metabolic perturbation in this

model is even more clear because cells deprived of glucose

during ischemia shift to glycogenolysis [85]. One hypoth-

esis we find appealing is that these metabolic changes lead

to activation of RIP1 and subsequent necrotic cell death.

How RIP1 would sense metabolic changes is unknown, but

the simplest explanation could be that RIP1 is activated by

stressors like decreasing concentrations of NAD and ATP

upon PARP-1 overactivation, or by lower intracellular pH

due to lactate production in anaerobic conditions during

ischemia. Alternatively, it is also conceivable that cellular

stress leads to activation of a mechanism that can upreg-

ulate metabolism, for instance via autocrine production of

TNF, because TNF can restore metabolism by activating

glycolysis [86]. This autocrine TNF, however, will activate

RIP1 and induce necrosis. This mechanism has been

demonstrated in zVAD-fmk induced cellular stress, which

results in TNF-mediated necrosis [87]. In view of the off-

target effects of zVAD-fmk on the interaction between

adenine nucleotide translocator (ANT) and cyclophylin-D

(CyP-D) [88], the resulting energy crisis apparently leads

to production of TNF [87].

It was recently shown that RIP3 is indispensable for TNF-

induced necrotic cell death and RIP1 propagates necrotic

signaling through association with RIP3 to form the so-

called ‘necrosome’ [89–91]. Formation of this protein

complex requires the kinase activity of RIP1 and it is sta-

bilized through homotypic RHIM associations between the

two proteins. In this complex, both kinases are subjected to

reciprocal phosphorylation [92]. Under necrotic conditions,

RIP3 also binds to several metabolic enzymes, including the

cytosolic glycogen phosphorylase (PYGL) and the cytosolic

glutamate-ammonia ligase (GLUL) [90], which regulate

glycogenolysis and formation of glutamine, respectively.

Furthermore, RIP3 positively regulates the activity of PYGL

and GLUL [90], suggesting on the one hand that these

enzymes could be direct substrates of RIP3 and on the other

hand that the metabolic compound of necrosis signaling

comes into play at the level of RIP3 and possibly from the

moment of necrosome formation.

Despite recent progress in identifying new effectors,

necrotic cell death is not yet confined to a clear pathway.

However, in the next section, we will review some medi-

ators that contribute to the necrotic signaling pathway (see

Fig. 2).

Mitochondrial events during necrosis: ROS production

and mPT regulation

Mitochondria-derived ROS are an absolute requirement in

necrotic killing of L929 cells by TNF, and are also respon-

sible for the ultrastructural changes in the mitochondria and

endoplasmic reticulum (ER) during cell death [93]. In

mitochondria, molecular oxygen is completely reduced by

four electrons of the electron transport chain (ETC) to form

water. However, at the respiratory chain complexes I and III,

electrons leak from the ETC and reduce molecular oxygen

partially by only one electron, yielding superoxide and

hydrogen peroxide [94]. Calcium stimulates activity of

nitric oxide synthase to generate NO inhibiting complex IV,

which in turn leads to enhanced ROS production at complex

III. It was reported that complex I is the main site for ROS

production in TNF-induced necrosis in L929 cells [95, 96].

Importantly, it is not respiration itself that is important for

ROS production and necrosis, but the substrate that feeds the

ETC at this complex. It was found that glucose in these cells
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is converted mainly to lactate, while glutamine is converted

mainly to a-ketoglutarate to fuel the Krebs cycle and to

maintain electron flow in complex I. Consequently, cells

adapted to growing without glutamine and cells pretreated

with inhibitors of key enzymes of glutaminolysis for pro-

duction of a-ketoglutarate showed far less ROS production

at complex I, oxidative stress and TNF-triggered necrotic

cell death than control cells [97]. The involvement of glu-

taminolysis in the necrotic cell death process was recently

confirmed by Zhang et al. They link this metabolic pathway

to RIP3, by showing that GLUD1, the enzyme that initiates

glutaminolysis, binds to RIP3 under necrotic conditions, and

that RIP3 positively regulates its enzymatic activity [90].

Taken together, we speculate that RIP1 and RIP3 increase

carbohydrate and glutamine metabolism of the cell, leading

to increased ROS production and eventual necrosis.

In vivo, necrotic cell death is typically observed after I/R

of heart and brain. The production of lactic acid through

anaerobic glycolysis [98], with a consequent drop in intra-

cellular pH, increases Ca2? influx by activating acid-sensing

ion channels in the cell membrane [99]. After reperfusion

and replenishment of cells with oxygen, Ca2? enters the re-

energized mitochondria, stimulates Krebs cycle, and indu-

ces ROS production. This scenario is optimal for the opening

of mitochondrial permeability transition pores (mPTP) [100,

101]. The immediate result of opening of mPTP is influx of

water and efflux of glutathione and matrix pyridine nucle-

otides [NAD(P)H] from the mitochondria, causing

inhibition of oxidative phosphorylation, and depolarization

of the inner membrane [102], which induces hydrolysis of

ATP by the mitochondrial ATPase followed by cell necrosis.

The molecular structure of the mPTP is controversial [103].

A model portrays it as a pore that forms at sites of contact

between the inner and outer mitochondrial membranes and

spanning both membranes. It is believed to consist of VDAC

located at the outer membrane, ANT located at the inner

membrane, and CyP-D, a peptidyl-prolyl cis–trans isomer-

ase located in the matrix [104]. However, knock-out studies

prove that Cyp-D is essential for mPT but ANT and VDAC

are not [103]. ANT should be considered an important

regulator.

Membrane events during necrosis: phospholipases,

lipoxygenases, and sphingomyelinases

Lipid hydroperoxidation might lead to disruption of orga-

nelle and plasma membranes [105], which are key features

of necrosis. Lipid (hydro) peroxidation (LOOH) is

achieved either nonenzymatically from unsaturated fatty

acids, enzymatically through lipoxygenase (LOX) activity,

or induced by hydroxyl radicals generated by dysfunctional

mitochondria [106]. The main substrate of LOXs in

mammalian cells is arachidonic acid (AA), either in

esterified or free form depending on the type of LOX [106].

Phospholipase A2 (PLA2) encompasses a family of ester-

ases that produce AA from arachidonate-containing

phospholipids [107]. Several distinct mammalian PLA2

enzymes have been identified and classified into three

major subfamilies: Ca2?-independent PLA2 (iPLA2),

secretory PLA2 (sPLA2), and cytosolic PLA2 (cPLA2). The

translocation of cPLA2 to the membranes of the nucleus,

ER and Golgi apparatus, where it interacts with its sub-

strates, is essential for cPLA2-mediated release of AA from

membranes. Ca2? is needed for the translocation of cPLA2

but not for its activity [108] while phosphorylation is

essential for both its translocation and activity [109].

Treatment of L929 cells with TNF led to activation of

PLA2, and overexpression of cPLA2 sensitized TNF-

resistant L929 variants to TNF-induced necrosis [110].

cPLA2 was also shown to play a major role in TNF-induced

necrosis of MCF7 cells [106] and in chemically induced

and oxidant-induced renal epithelial cell necrosis [107].

Besides a role for cPLA2 in necrosis, a contribution of

iPLA2 has been demonstrated in several caspase-indepen-

dent cell death signaling pathways leading to nuclear

shrinkage [108]. We recently showed that activation of

cPLA2/iPLA2 and the LOX pathway contribute to TNFa-

induced necrotic death of L929 cells [96]. Furthermore, a

role for sPLA2 in TNF/zVAD induced necrosis in this

model was suggested [109].

Sphingolipids are a family of membrane lipids that

contribute to the regulation of the fluidity and the sub-

domain structure of the lipid bilayers. Sphingomyelins are
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Fig. 2 Necrotic cell death is the result of interplay between several

signaling cascades. Kinase activity of RIP1 is needed to induce

necrosis in several in vitro and in vivo models. The main players in

the propagation of necrosis are RIP3, calcium and mitochondria. RIP3

interacts with RIP1 and binds to several enzymes of the carbohydrate

and glutamine metabolism. Calcium controls activation of PLA2,

calpains and NOS, which induce a series of events leading to necrotic

cell death. Mitochondria contribute to necrosis by excessive ROS

formation, mPT, and ATP depletion due to mitochondrial dysfunc-

tion. Several of these mediators are implicated in a self-amplifying

loop. See text for details
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sphingolipids with a polar head group of phosphocholine or

phosphoethanolamine and an apolar ceramide group. Cer-

amide can be synthesized de novo from palmitoyl CoA and

serine or obtained by catabolism of sphingomyelins by

sphingomyelinases (SMases). Ceramide is considered a

lipid second messenger that binds to several target proteins

and alters their functions. The several isoforms of SMases

are distinguishable by different pH optima and subcellular

localization. A neutral SMase (nSMase) is found at the

plasma membrane and an acid SMase (aSMase) is local-

ized in the endosomal-lysosomal compartments. A

pronounced accumulation of ceramide is observed during

TNF-induced caspase-independent cell death of L929 cells

and NIH3T3 fibroblasts, as well as in human leukemic

Jurkat T cells stimulated with TNF/zVAD-fmk, and in

FADD-deficient Jurkat cells [110]. This increase in cera-

mide is mediated by aSMase activity, and specific

pharmacological inhibition or knockdown of aSMAse by

RNAi protects from caspase-independent cell death [110].

In addition, L929 clones overexpressing acid ceramidase

(AC) [111], the enzyme that degrades ceramide generated

by aSMase, as well as aSMAse-deficient fibroblasts [110],

were more resistant to TNF/zVAD-fmk than parental cells,

and treatment of NB16 neuroblastoma cells with ceramide

analogues induced primarily necrotic cell death [112].

Ceramide production and cell death is even enhanced when

caspases are inhibited [110, 113]. RIP1 seems indispens-

able for activating aSMAse, because depletion of RIP1 by

RNAi or by radicol and geldanamycin-induced degradation

of RIP1 conferred protection against TNF/zVAD-fmk-

induced generation of ceramide and caspase-independent

death in all types of cells studied [110]. Also, cPLA2

activity seemed to be necessary for ceramide production

[113].

Ceramide has many target proteins and elicits many

different effects, including production of ROS in the

mitochondria, stimulation of NOS and lipid peroxidation,

inhibition of catalases, and regulation of NADPH oxidase

activity [114]. Ceramide also activates calpains during

caspase-independent cell death [115] and contributes to

cell death through sustained JNK (Jun N-terminal kinase)

activation during the reperfusion of ischemic liver [116].

Ceramide can be converted to ceramide-1-phosphate (C1P)

in a single-step enzymatic reaction catalyzed by ceramide

kinase. In turn, C1P activates cPLA2 directly or through

PKC signaling [117] and controls calcium homeostasis

[118]. So C1P formation could be an important amplifi-

cation loop during necrotic cell death.

Proteases in necrosis: calpains and cathepsins

Calpains are intracellular, non-lysosomal cysteine prote-

ases that are ubiquitously and constitutively expressed in

mammalian cells. They are kept inactivated by their

physiological inhibitor, calpastatin, and become directly

activated by increased cytosolic Ca2? [119]. A moderate

increase in cytosolic calcium is sufficient for calpain acti-

vation, because binding of calpains to phospholipids and

interactions with other proteins decrease the Ca2?

requirement for calpain activation. These proteases are

involved in different cell-death modalities and at different

levels. Calpain cleaves the anti-apoptotic BCL-XL [120]

and BAX, and the truncated form of BAX is a more potent

inducer of apoptosis than full-length BAX [121]. These

proteases also cleave caspase-7, -8, and -9, but it is con-

troversial whether this proteolysis inhibits or stimulates

caspase activity [122, 123].

It has been suggested that calpains are important

mediators in taxol-induced caspase-independent apoptosis

in A549 non-small-cell lung carcinoma cells [124]. Cal-

pains contribute to ROS-dependent, necrotic cell death by

cleavage of the mitochondrial Na?/Ca2? exchanger,

inducing Ca2? overload in the mitochondria and thus

leading to sustained ROS production by these organelles

[119]. Likewise, glutamate receptor-induced excitotoxicity

in neuronal cells is accompanied by calpain-mediated

cleavage of the Na?/Ca2? exchanger of the plasma mem-

brane, leading to increased cytosolic Ca2? and neuronal

death [125]. Calpains were shown to fulfil important roles

in necrotic cell death in neurons of C. elegans [126] and in

necrosis of LLC-PK1 cells induced by high concentrations

of glucose [127]. Activated calpain translocates to the

lysosomal compartment in post-ischemic CA1 neurons of

primates [128] and cleaves a form of hsp70-1 (a chaperone

protein that controls lysosomal membrane integrity) that is

first oxidatively modified by carbonyl groups to induce

lysosomal membrane permeabilization (LMP) [129].

Involvement of lysosomes is a good amplification loop for

cell death signaling that requires proteolytic activity

without involvement of caspases.

Lysosomes are involved in several in vitro and in vivo

cell death models, and are engaged by many extrinsic and

intrinsic pathways during the induction of cell death [130].

The involvement of lysosomes in a cell death pathway

relies on lysosomal membrane permeability (LMP). Many

factors induce LMP, including protease activity (caspases,

cathepsins, and calpains), lipids, ROS, and BAX-induced

pore formation [130]. LMP contributes to cell death in

several ways. First, it might contribute to acidification of

the cell, an absolute requirement for induction of necrosis

in C. elegans [131]. Second, it induces ROS directly

through massive release of iron so that Fenton-type reac-

tions are accelerated. This reaction involves splitting of

hydrogen peroxide into the extremely reactive hydroxyl

radical. A sudden increase of free, cytosolic iron is pivotal

for TNF-induced necrosis in L929 cells [132].
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Alternatively, LMP induces ROS indirectly through acti-

vation of PLA2 [133]. Third, it induces the release of

proteases such as cathepsins into the cytosol, and these

cathepsins target mitochondria, phospholipases, and the

BCL-2 family members BID, BAX, and BAK [134].

Remarkably, the extent of lysosomal leakage is a deter-

minant for cell death modality: a moderate lysosomal

rupture induces apoptosis, whereas extensive lysosomal

leakage results in necrosis [135]. TNF induces a moderate

increase of intracellular Ca2?, which provokes an increase

in both lysosome number and size [136]. These oversized

lysosomes undergo LMP easily and induce plasma mem-

brane collapse and cell death [137]. Cells depleted of the

plasma membrane calcium ATPase 4 (PMCA4), a Ca2?-

channel that extrudes Ca2? from cells, have very high

intracellular concentrations of Ca2?. This promotes exo-

cytosis of lysosomes and prevents intracellular build-up of

oversized lysosomes, thus attenuating cell death [136].

Conclusions and perspectives

In this review, we focused on two cell death modalities,

apoptosis and necrosis, both of which can be induced by

triggering the TNF death receptor. During the last decade,

the apoptotic signaling pathways have been extensively

characterized at the molecular level. Until recently, it

seemed that necrosis is largely unregulated because no sig-

naling molecules had been identified. Over the years, many

mediators have been proposed as being required for necrotic

cell death, mostly because inhibiting their activities inhibits

membrane permeabilization, a hitherto often used read-out

to score necrotic cell death. We should, however, remark

that the activity of some of these mediators might in fact

merely contribute to membrane permeability without con-

tributing to the signaling pathway leading to necrosis. It is

therefore also important to search for markers that are spe-

cific for the different signaling phases during necrosis. It has

become clear that RIP1 and RIP3 have a central role in this

cell death process. The recently discovered compound, ne-

crostatin, which specifically inhibits the kinase activity of

RIP1, allows in-depth analysis of the necrotic signaling

pathways both in vitro and in vivo. In addition, it has become

clear that ubiquitination of RIP1 is an important factor for

signaling towards induction of apoptosis and NF-jB acti-

vation. Furthermore, it has become evident that in some

cases the kinase activity of RIP1 is required for apoptotic

signaling as well. These new findings raise several intriguing

questions. What determines whether RIP1 activity will lead

to necrosis or apoptosis? What are the necrosis associated

substrates of RIP1 and RIP3? Will we be able to treat human

diseases involving ischemia reperfusion damage that occurs

upon organ transplantation, cardiac infarction, stroke, and

traumatic brain injury with necrosis inhibitors such as ne-

crostatins? Do necrotic stimuli such as Toll-like receptor 3

and Toll-like receptor 4 ligands also involve RIP1 and RIP3

kinase activity? The answer to these questions will boost our

knowledge of necrotic signaling and how necrotic and

apoptotic pathways are interconnected.
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