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Abstract The pathogenesis of any given human disease

is a complex multifactorial process characterized by many

biologically significant and interdependent alterations. One

of these changes, specific to a wide range of human

pathologies, is DNA hypomethylation. DNA hypomethy-

lation signifies one of the major DNA methylation states

that refers to a relative decrease from the ‘‘normal’’

methylation level. It is clear that disease by itself can

induce hypomethylation of DNA; however, a decrease in

DNA methylation can also have an impact on the predis-

position to pathological states and disease development.

This review presents evidence suggesting the involvement

of DNA hypomethylation in the pathogenesis of several

major human pathologies, including cancer, atherosclerosis,

Alzheimer’s disease, and psychiatric disorders.
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Alzheimer’s disease � Psychiatric disorders

Introduction

‘‘Epigenetics’’ is defined as heritable changes in gene

expression associated with modifications of DNA or

chromatin proteins that are not due to any alteration in the

DNA sequence [1–3]. Such modifications include the best

known and much studied methylation of DNA, a covalent

addition of a methyl group (CH3) to the cytosine residue at

CpG sequences in mammals [4], and the modifications of

the proteins that bind to DNA [5, 6]. These epigenetic

modifications are essential for normal development and

proper maintenance of cellular functions in adult organ-

isms. Additionally, alterations in DNA methylation, both

decreases and increases, are a frequent characteristic of

a wide range of human pathologies. Although these alter-

ations are well established and have been studied

extensively [2, 3], until recently, most biomedical research

has concentrated on the role and mechanisms of hyper-

methylation under normal physiological conditions, e.g.,

aging [7], or during pathological conditions [2, 8]. Much

less attention has been devoted to the role and place of the

disease-linked DNA hypomethylation [9]. This review

presents evidence suggesting the involvement of DNA

hypomethylation in the pathogenesis of several major

human pathologies, including cancer, atherosclerosis,

Alzheimer’s disease, and psychiatric disorders.

DNA methylation

DNA methylation is the addition of a methyl group from

the universal methyl donor, S-adenosyl-L-methionine

(SAM), to the fifth carbon atom in the cytosine pyridine

ring, resulting in the formation of 5-methylcytosine (5meC)

[10] (Fig. 1a). This reaction is catalyzed by DNA methyl-

transferases (DNMTs) [11, 12]. In eukaryotes, this stable

post-synthetic epigenetic mark is found exclusively at

cytosine residues at CpG sequences [13]. DNA methylation

is essential for normal development and the maintenance of

cellular homeostasis and functions in adult organisms,

particularly for X-chromosome inactivation in females
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[14], genomic imprinting [15], silencing of repetitive DNA

elements [11, 16], regulation of chromatin structure [17],

and proper expression of genetic information [18].

DNA methylation is initiated and established by means

of the de novo DNA methyltransferase DNMT3 family

(DNMT3A and DNMT3B) [11, 19] (Fig. 1b), whose

expression is coordinated by DNMT3L [20], Lsh (lym-

phoid-specific helicase) [21], microRNAs [22], and

piRNAs [23]. During DNA replication, DNA methylation

is maintained by a complex cooperative interplay of

maintenance methyltransferase DNMT1 with the de novo

DNA methyltransferases DNMT3A and DNMT3B

[24, 25], methyl-CpG-binding protein 2 (MeCP2) [26],

histone-modifying enzymes [27], and the UHRF1 (ubiquitin-

like, containing PHD and RING finger domains 1) protein

[28–30] (Fig. 1b).

Total genomic DNA methylation refers to the overall

content of 5meC in the genome. Approximately 70–90%

of the CpG dinucleotides in the mammalian genome are

methylated [31]; however, the CpG sites are not distributed

uniformly across the genome [31, 32]. The methylation

landscape of mammalian genomes consist of short (\4 kb)

unmethylated domains embedded in a matrix of long

methylated domains (Fig. 1c) [33, 34]. Promoters and

first exons of the majority of genes in the genome are

strongly enriched in unmethylated domains and depleted in

methylated domains, which are found predominantly in

interspersed and tandem repetitive sequences and

exons other than first exons [33, 34]. The enrichment of

CpG islands, genomic regions that contain the high

G ? C content and the high frequency of CpG dinucleo-

tides [35], in unmethylated domains is the major difference

between the unmethylated and methylated DNA regions

[33, 34].

The accurate maintenance of DNA methylation patterns

depends on the function and cooperation of several critical

factors, including the activity and expression of DNMTs

[11, 36], DNA demethylase [37], histone-modifying

Fig. 1 Schematic model showing cytosine DNA methylation. a
Cytosine residues in DNA at CpG sites are converted 5-methyl-

cytosines by the addition of a methyl group from SAM to the fifth

carbon atom in the cytosine pyridine ring. This reaction is catalyzed

by the enzymatic activity of DNA methyltransferases (DNMTs).

b Establishment and maintenance of the DNA methylation pattern

during DNA replication. (i) DNA methylation is initiated and

established during embryonic development by means of the de novo

DNMT3A and DNMT3B DNA methyltransferases. (ii) Maintenance

of DNA methylation. During DNA replication, DNA methylation is

maintained by a complex coordinated action of the maintenance

methyltransferase DNMT1 and UHRF1 [28–30]. The SRA domain of

UHRF1 recognizes the hemimethylated CpG site and recruits

DNMNT1, which transfers methyl group to the unmethylated

cytosine residue on the newly synthesized DNA strand. c DNA

methylation landscape in mammalian genomes. Methylation in

normal mammalian cells occurs primarily at CpG sites located in

repetitive sequences, exons other than first exons, and intergenic DNA

(blue). The CpG islands that span the promoter and first exons of the

majority of genes are usually unmethylated (yellow) in normal cells

and embedded in a matrix of long methylated domains (blue) [33, 34]
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enzymes [27, 38], the status of one-carbon metabolism [39,

40], DNA integrity [41, 42], and cell proliferation [43].

Disturbances in any or all of these factors may lead to

an altered DNA methylation status, including DNA

hypomethylation.

Mechanisms of DNA hypomethylation

DNA hypomethylation signifies one of the major DNA

methylation states, the other being hypermethylation, and

in most cases refers to a relative situation in which there is

a decrease from the ‘‘normal’’ methylation level [31]. The

mechanism of DNA hypomethylation is still unclear, and,

very likely, there is not a single mechanism responsible for

demethylation of DNA. However, it is well established that

several factors may trigger and contribute to the loss of

genomic methylation.

DNA methyltransferases and DNA hypomethylation

A large body of evidence clearly demonstrates that the

proper function of DNMTs is crucial in the maintenance

of faithful DNA methylation [36]. Reducing the

expression of Dnmts through gene-targeting of individual

Dnmts, or a combination of Dnmts, is associated with

markedly decreased global methylation levels [44–46].

For instance, the reduction of Dnmt1 expression to 10%

causes significant hypomethylation of centromeric and

endogenous retroviral intracesternal A particle (IAP)

repetitive sequences in mice [44]. Likewise, the loss

of DNMT function secondary to the inhibition of its

activity with demethylating agents, such as 5-aza-20-
deoxycytidine (5-aza-dC) [45], homocysteine, or its

metabolite S-adenosyl-L-homocysteine (SAH) [46],

results in rapid demethylation of DNA. Additionally,

DNA demethylation caused by exposure to a number of

environmental chemicals, e.g., arsenic [47], and nutri-

tional and life-style factors, such as dietary bioflavonoids

[48], alcohol [49], and cigarettes [50], is associated with

an inhibitory effect on the expression and activity of

DNA methyltransferases.

The normal status of DNA methylation also depends on

cooperation between individual DNMTs [24, 25] and crit-

ical regulators of DNMTs function, including DNMT3L

[20], Lsh [21, 51], microRNAs [22], and piRNAs [23].

Additionally, the results of a recent study have demon-

strated the involvement of lysine-specific demethylase 1

(LSD1) for the maintenance of DNA methylation by

regulation of the methylation status of DNMT1 and

modulation of its stability [38]. Aberrations in any of these

factors may compromise the DNMT function leading to

DNA hypomethylation.

One-carbon metabolism and DNA hypomethylation

The methyl groups needed for all cellular biological

methylation reactions, including DNA methylation, are

acquired from SAM, the primary universal donor of methyl

groups, which is derived from methionine through a one-

carbon metabolic pathway [10]. This process indispensably

connects faithful DNA methylation to the proper func-

tioning of the one-carbon metabolic pathway, which has a

great impact on DNA methylation [39, 40]. There are two

groups of risk factors that may compromise the normal

functioning of the one-carbon metabolic pathway and,

subsequently, affect the DNA methylation profile. The first

group consists of nonmodifiable genetic risk factors, such

as genetic variations in genes encoding enzymes involved

in the cellular one-carbon metabolism. Indeed, there are

extensive amounts of data showing that single nucleotide

polymorphisms in these genes are associated with aberrant

DNA methylation [52, 53]. The second group consists of

potentially modifiable factors, specifically essential nutri-

ents involved in the metabolism of methyl groups,

including methionine, choline, folic acid, and vitamin B12

[39, 40, 54]. Previously, we and others have demonstrated

that long-term exposure to an inadequate supply of

methionine, choline, folic acid, or vitamin B12 results in a

profound loss of cytosine methylation in the livers of male

rats and mice [55–57]. Additionally, it is believed that the

loss of DNA methylation induced by exposure to arsenic

[47, 58], diethanolamine [59], trichloroethylene [60], and

alcohol [61], is associated with perturbations in cellular

SAM homeostasis.

DNA integrity and DNA hypomethylation

The integrity of the genome is another critical factor that

affects the normal status of DNA methylation. Every living

organism is exposed to a variety of genomic insults on a

daily basis from many endogenous and exogenous sources

[62]. The results of several studies have demonstrated that

the presence of unrepaired lesions in DNA induced by

these factors substantially alters the methylation capacity of

DNA methyltransferases, leading to DNA hypomethylation

[41, 42, 57]. Specifically, the presence of 8-oxoguanine and

5-hydroxymethylcytosine in DNA, common DNA modifica-

tions resulting from oxidative damage to DNA, inhibits the

binding of the MeCP2 protein and diminishes the ability of

the DNMTs to methylate DNA [41, 63]. Likewise, the

presence of pyrimidine photodimers, preferentially induced

by sunlight at methylated CpG sites [64], reduces DNA

methylation [65]. The significance of these processes in

DNA hypomethylation increases progressively with age

due to an age-dependent decrease in the proficiency of

DNA repair [66].
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DNA demethylases and DNA hypomethylation

It is believed that, in addition to a passive loss of DNA

methylation through the blocking of methylation of cyto-

sine residues, DNA methyl groups can be removed by

active demethylation by means of DNA demethylases.

DNA demethylase activity has been attributed to several

proteins, including RNA-dependent 5meC glycosylase [67]

with the involvement of DNA repair pathway [68], ribo-

zyme-like demethylase [69], and methyl-binding domain 2

(MBD2) [70]. Furthermore, two recent reports claim that

DNMT3A and DNMT3B may also act as DNA demethylases

[71, 72]. Interestingly, all these proteins are characterized

by quite different DNA demethylating mechanisms. How-

ever, despite efforts to identify unambiguously a DNA

demethylase, the evidence for the existence of an active

DNA demethylation in mammals remains inconclusive

[37].

DNA hypomethylation and human diseases

DNA hypomethylation and cancer

Classically, the development of cancer in humans has been

viewed as a progressive multistep process of transforma-

tion of normal cells into malignant cells driven by genetic

alterations [73, 74]. However, a wealth of data in the past

decade indicating the importance of epigenetic processes

has largely changed the view on cancer as being a solely

genetic disease [75]. Currently, cancer is recognized as a

disease driven by both genetic and epigenetic alterations,

and both of these components cooperate and complement

each other at every stage of cancer development [75].

The loss of global DNA methylation, the first epigenetic

abnormality identified in cancer cells more than a quarter

century ago [76–78], continues to be a central feature and

one of the most common molecular alterations in human

cancers. This is evident by the fact that almost all of major

human cancers, including colon [79, 80], gastric [80], lung

[81], liver [82], breast [83], bladder [84], ovarian [85, 86],

and endometrial [87], are characterized by a profound

cancer-linked hypomethylation of the genome. More

importantly, the association between the degree of DNA

hypomethylation and the grade and stage of cancer gives a

firm basis for its use as a biomarker for the diagnosis and

prognosis of disease [84–86]. Indeed, the results of several

studies have demonstrated that DNA hypomethylation is a

more informative prognostic marker than tumor stage or

grade [85]. However, a decrease in DNA methylation, by

itself, is not sufficient to address precisely the role of DNA

hypomethylation in tumorigenesis [88] because it could

simply be a secondary consequence of malignant cell

transformation reflecting the undifferentiated state of

tumors. To provide evidence that hypomethylation has a

significant role in cancer development, it is necessary to

demonstrate the following: (1) the loss of DNA methyla-

tion occurs at a considerable frequency at early stages of

carcinogenesis, (2) changes that occur at preneoplastic

stages are also present during later stages of cancer, (3)

additional changes in methylation are acquired during

tumor progression, and (4) a mechanistic link exists

between the hypomethylation of DNA and cancer devel-

opment. The results of numerous studies demonstrating (1)

the frequent loss of DNA methylation during premalignant

pathological states or during early preneoplastic stages of

tumorigenesis [81–84], (2) a greater degree of DNA hy-

pomethylation in tumors compared to preneoplastic tissues

[83–87], and (3) cumulative methylation changes during

cancer progression from normal to stage IV disease in

various cancers [86] provide convincing evidence that loss

of DNA methylation in cancer is not a secondary event.

Furthermore, a recent large case-control study has fur-

nished solid evidence for an association between DNA

hypomethylation and an increased risk of bladder-cancer

development [89]. In addition, a decrease in DNA meth-

ylation by gene-targeting of Dnmt1 [44, 90, 91] and Lsh

[92] results in tumor induction, providing strong evidence

for a causative role of DNA hypomethylation in the origin

of cancer.

The mechanistic link between the loss of DNA meth-

ylation and cancer development, including induction of

chromosomal instability, reactivation and transposition of

retrotransposable elements, loss of imprinting, and activa-

tion of normally silenced genes, is directly related to the

DNA methylation landscape of the mammalian genome

and the function of DNA methylation in normal cells. As

mentioned previously, the mammalian genome consists of

relatively short unmethylated domains embedded in a

matrix of long stably methylated domains, in which

methylation occurs at repetitive elements and within the

body of genes [33, 34]. Because of this, loss of DNA

methylation largely affects only these areas of the genome.

Evidence for this is provided by the strong correlation

between the loss of global DNA methylation and the

demethylation of repetitive sequences, such as long inter-

spersed nucleotide elements (LINE), short interspersed

nucleotide elements (SINE), IAP, and Alu elements in

tumors. Furthermore, loss of LINE-1 methylation has been

proposed as a surrogate marker for cancer-linked genome

demethylation [93].

There are two well-established consequences associated

with the loss of DNA methylation at repetitive sequences

that may contribute to tumorigenesis. First, demethylation

of repetitive sequences located at centromeric, pericentro-

meric, and subtelomeric chromosomal regions may cause
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the induction of chromosomal abnormalities. For example,

recent findings have demonstrated that DNA hypomethy-

lation at the centromeric region causes permissive

transcriptional activity at the centromere [94] and the

subsequent accumulation of small minor satellite tran-

scripts that impair centromeric architecture and function

[95]. Likewise, hypomethylation of the subtelomeric

regions is associated with enhanced transcription of the

telomeric region [96, 97]. Second, hypomethylation of

LINE-1, SINE, Alu, and IAP retroviral elements causes

their activation and transposition [98] that may lead to

genomic instability. An integral role of the loss of DNA

methylation and the presence of these alterations in the

neoplastic process is now commonly accepted.

One of the main functions of DNA methylation in nor-

mal cells is genomic imprinting [15], a parent-of-origin-

dependent allele-specific expression of a small number of

genes (approximately 90). Loss of imprinting (LOI), a loss

of monoallelic regulation of imprinted gene expression, is

frequently detected in human tumors and currently is

considered as one of the most frequent alterations in cancer

[99]. The first imprinted gene that exhibited LOI in human

cancer was the insulin-like growth factor-II (IGF2) gene

[100]. Initially, LOI of IGF2 was linked to increased

methylation; however, a number of studies have estab-

lished that hypomethylation is the reason for LOI of the

IGF2 gene in colorectal [101, 102], breast [102], liver

[103], and bladder [104] cancers; the H19 gene in colon

[102] and lung [105] cancers; and the KCNQ1 gene in

breast, liver, and colon cancers [106, 107].

It is well established that more than 70% of the genes in

the human genome normally contain unmethylated CpG

islands in their promoters [108]. However, a recent analysis

of 5,549 autosomal genes with dense CpG island promoters

indicates that about 4% of these genes are methylated and

silenced under normal conditions [109]. Until recently, the

majority of the studies in the field of cancer research have

focused on the role of promoter hypermethylation and gene

silencing in cancer, which overshadowed the significance

of the hypomethylation of normally methylated genes in

cancer development. However, mounting evidence indi-

cates that gene-specific hypomethylation also plays an

important role in cancer. Table 1 lists selected hypo-

methylated and overexpressed genes in various human

cancers.

This list is noticeably shorter than the number of hyper-

methylated genes in human cancers [153] and even in any

specific type of cancer, e.g., breast cancer [154]. This is

because the number of genes that can potentially be

demethylated (normally methylated) is substantially smal-

ler than the number of genes that can potentially be

methylated (normally unmethylated), which is directly

predetermined by the methylation landscape of the

genome. Despite the different number of cancer-linked

hypomethylated and hypermethylated genes, the dynamic

of gene-specific methylation changes during tumorigenesis

is identical: the progressive accumulation of hypomethy-

lated or/and hypermethylated alterations during tumor

development.

DNA hypomethylation, carcinogen exposure,

and cancer risk assessment

Environmental exposure to natural and man-made chemi-

cal and physical agents is one of the major causes of human

cancer [155]. The need for the rapid identification and

appropriate regulation of human carcinogens before their

dissemination into society is of prime importance for the

primary prevention of neoplasia in humans. Until now,

research emphasis in cancer risk assessment and cancer

epidemiology has focused on the measurement of DNA

damage, DNA adduct formation, and mutations induced by

specific agents or exposures [156]. The recognition of the

role of epigenetic mechanisms in carcinogenesis and

results of studies documenting that environmental expo-

sures can alter expression of genetic information not only

by genetic but also by epigenetic mechanisms [157] have

challenged our current approach to carcinogenicity testing

and indicated the need for a new generation of exposure

biomarkers [158]. The results obtained in numerous animal

studies have demonstrated that early indicators of car-

cinogenic exposure are epigenetic alterations and the

emergence of epigenetically reprogrammed cells with

epigenetic alterations similar to those found in malignant

cells [155, 159]. Furthermore, it has been proposed that

epigenetic alterations, including genomic and repeat-

associated hypomethylation, may precede genetic altera-

tions [159, 160]. Additionally, considering the stability

and inheritance of epigenetic alterations through trans-

mission of carcinogen-induced aberrant epigenetic

patterns from one cell generation to the next, epigenetic

alterations may be better biomarkers of carcinogenic

exposure. The results of recent human studies have pro-

vided strong support for this suggestion [161–164]. For

instance, low-level occupational exposure of gas-station

attendants and traffic police to benzene has resulted in

significant epigenetic alterations, as characterized by a

significant reduction of LINE-1 and MAGE1 gene meth-

ylation in blood DNA samples, compared to unexposed

subjects [161]. Importantly, the aberrant DNA methyla-

tion patterns in exposed individuals highly reproduce the

aberrant epigenetic patterns found in acute myelogenous

leukemia patients. Similar DNA methylation changes in

the blood have been found in humans exposed chronically

to organic pollutants [162], arsenic [163], and traffic-

derived particles [164].
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DNA hypomethylation and cardiovascular diseases

Atherosclerosis and its complications are a major cause of

mortality, morbidity, and disability in developed Western

countries [165]. Atherosclerosis is characterized by the

infiltration of lipid particles into the arterial wall, accom-

panied by the recruitment of inflammatory and immune

cells, migration and proliferation of smooth muscle cells,

synthesis of extracellular matrix, and development of

fibrocellular lesions [166]. In contrast to cancer research,

where the role of DNA hypomethylation has been studied

for decades, the involvement of DNA hypomethylation in

the context of atherosclerosis was first formulated by

Newman in 1999 [167]. The hypothesis was based on

evidence suggesting that elevated plasma homocysteine is

a risk factor for atherosclerosis [168] and that homocys-

teine and SAH efficiently inhibit DNA methyltransferases,

causing hypomethylation of DNA. The significance of the

Table 1 Selected list of the hypomethylated genes in human cancers

Gene Official gene name Tumor References

S100A4 S100 calcium binding protein A4 Colon, endometrial, pancreatic [110–112]

CYP2W1 Cytochrome P450, family 2, subfamily W, polypeptide 1 Colon [113]

CDH3 Cadherin 3 (P-cadherin) Colon, breast [114, 115]

BAGE B melanoma antigens Colon [116]

DCN Decorin Colon [117]

MAGE-A1 Melanoma antigen, family A, 1 Colon, gastric [118, 119]

MAGE-A3 Melanoma antigen, family A, 3 Colon, gastric [118, 119]

XAGE-1 X antigen family Gastric [120]

CCND2 Cyclin D2 Gastric [121]

SERPINB5 Serpin peptidase inhibitor, clade B, member 5 (Maspin) Gastric, pancreatic, thyroid [112, 122–124]

MUC2 Mucin 2 Gastric [125]

NGALR Neutrophil gelatinase-associated lipocalin receptor Esophagus [126]

CD133 Cell surface protein CD133 Brain [127]

NAT1 N-Acetyltransferase Breast [128]

FEN1 Flap endonuclease 1 Breast [129]

SNCG Synuclein gamma Breast, ovarian [130, 131]

UPA Plasminogen activator, urokinase Breast, prostate [132]

CAV1 Caveolin 1 Breast [133]

ZEB2 Zinc finger E-box binding homeobox 2 Breast [134]

TFF3 Trefoil factor 3 Pancreatic, liver [112, 135]

CLDN4 Claudin 4 Pancreatic, ovarian [112, 136]

LCN2 Lipocalin 2 Pancreatic [112]

PAX2 Paired box 2 Endometrial [137]

DNMT3L DNA (cytosine-5-)-methyltransferase 3-like Endometrial [138]

CAGE Cancer/testis antigen Endometrial [139]

ER-a Estrogen receptor-alpha Endometrial [140]

HNF-1b Hepatocyte nuclear factor-1 beta Ovarian [141]

BORIS Brother of the regulator of imprinted sites Ovarian [142]

CA9 Carbonic anhydrase IX Renal [143]

GLIPR1/RTVP-1 Glioma pathogenesis-related 1/related to testis-specific,

vespid, and pathogenesis proteins 1

Wilms tumors [144]

HPSE2 Heparanase 2 Prostate [145]

PRAME Preferentialy expressed antigen of melanoma Myeloid leukemia [146]

DDX43 DEAD (Asp-Glu-Ala-Asp) box polypeptide 43 (HAGE) Myeloid leukemia [147]

PRDM16 PR domain containing 16 (MEL1) T-cell leukemia [148]

BCL2 B-cell CLL/lymphoma 2 B-cell lymphocytic leukemia [149]

TCL1 T-cell leukemia/lymphoma 1A T-cell lymphocytic leukemia [150]

FGFR1 Fibroblast growth factor receptor 1 Rhabdomyosarcoma [151]

TNFRSF8 Tumor necrosis factor receptor superfamily, member 8 (CD30) Hodgkin lymphoma [152]
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loss of DNA methylation in atherosclerosis is widely

documented [169–171]. Substantial global DNA hypome-

thylation has been found in peripheral white blood cells

[172], smooth muscle cells [170, 173], and atherosclerotic

lesions [174] in patients with atherosclerosis. These cor-

relative studies, without disputing the underlying role of

homocysteine as a risk factor for atherosclerosis, suggest

that hypomethylation during atherosclerosis may be a

secondary event induced by elevated homocysteine.

However, it should be noted that the result of a recent

study, in which the occurrence of global DNA hypome-

thylation prior to the formation of atherosclerotic lesions in

genetically atherosclerosis-prone Apoe-/- mice, clearly

demonstrated the significance of DNA hypomethylation in

the pathogenesis of atherosclerosis and in susceptibility to

the disease [175]. Furthermore, transcriptional up-regulation

of the 5-lipoxygenase and 15-lipoxygenase genes, key

enzymes implicated in the pathogenesis of atherosclerosis

[176], is mediated by promoter hypomethylation [177,

178].

DNA hypomethylation and neurodegenerative diseases

and psychiatric disorders

Alzheimer’s disease is an age-related progressive neuro-

degenerative disorder characterized by the presence of

amyloid plaques and intracellular tangles in the brain

[179]. The biogenesis and accumulation of amyloid

plaques, which consist primarily of 40- to 42-residue

b-amyloid peptides (Ab40 and Ab42) derived from amyloid

precursor protein (APP) as a result of sequential proteolic

processing by b-secretase (BACE1) and c-secretase com-

plex [180], is a key event in Alzheimer’s disease. An

association between DNA hypomethylation and Alzhei-

mer’s disease has been noted in several studies. For

example, hypomethylation-associated overexpression of

the APP gene has been demonstrated in the brain of an

Alzheimer’s patient [181] and, in another study, substantial

age-dependent APP promoter demethylation has been

demonstrated in the cortex from Alzheimer’s patients

[182]. Specifically, the frequency of methylation of cyto-

sine residues at -207, -204, -200, and -182 in the APP

promoter region in subjects younger than 70 years was

substantially greater (55%) compared to subjects older than

70 years (5%) [182]. Additionally, expression of the

presenilin 1 (PS1) gene, which encodes a key component

of the c-secretase complex, is regulated by methylation

[183]. In light of these considerations, the following

hypothetical model is proposed for the pathogenesis of

Alzheimer’s disease driven by the DNA hypomethylation

events (Fig. 2). First, the age-related hypomethylation of

the APP promoter provokes an over-expression of the APP

gene, leading to greater levels of APP in brain. Second,

hypomethylation and up-regulation of the PS1 gene acti-

vates the c-secretase complex and stimulates the

proteolytic cleavage of APP, leading to the accumulation

of Ab40 and Ab42. Importantly, this model brings together

the two most widely accepted hypotheses of Alzheimer’s

disease, the amyloid and presenilin hypotheses, into a

single mechanism.

Despite the strong evidence that supports a genetic

origin of major human psychiatric disorders, no specific

gene associated with the development of these disorders

has been identified [184]. In contrast, a growing body of

evidence suggests the involvement of aberrant epigenetic

mechanisms in the pathogenesis of major psychiatric dis-

orders, including schizophrenia and bipolar disorder. For

instance, the involvement of promoter hypermethylation of

the reelin (RELN) gene in the pathogenesis of schizo-

phrenia is well-established [185]. Another critical gene that

has been implicated in the etiology of psychiatric disorders

is a catechol-O-methyltransferase (COMT) [184]. The

results of recent studies have demonstrated a crucial role of

promoter hypomethylation of membrane-bound COMT, a

predominant form of COMT that is involved in the deg-

radation of synaptic dopamine in the human brain, in the

pathogenesis of schizophrenia and bipolar disorder [186].

Additionally, analysis of leukocyte DNA methylation in

124 male patients with schizophrenia has demonstrated a

Fig. 2 Hypothetical model of the pathogenesis of Alzheimer’s

disease driven by DNA hypomethylation events. Involvement of

DNA hypomethylation in the biogenesis and processing of APP in the

human brain. First, hypomethylation of the APP promoter provokes

an overexpression of the APP gene, leading to greater levels of

APP protein in the brain (i). Second, the hypomethylation and

up-regulation of the PS1 gene induces the activity of the c-secretase

complex and stimulates the proteolytic cleavage of APP (ii),
leading to the accumulation of Ab40 and Ab42. Note that genes

encoding nicastrin (NCSTN), anterior pharynx defective 1 (APH-1),

and presenilin enhancer 2 (PEN-2), three other components of the

c-secretase complex, also contain CpG islands according to

http://cpgislands.usc.edu [35] and may be regulated by DNA

methylation
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significant hypomethylation of DNA compared to healthy

subjects [187].

DNA hypomethylation and other human pathologies:

autoimmune and chronic kidney diseases,

and age-related macular degeneration

Similar global and gene-specific hypomethylation changes

have been found in patients with uremia [188], systemic

lupus erythematosus [189, 190], rheumatoid arthritis [191,

192], and age-related macular degeneration [193]. For

example, age-related macular degeneration, the leading

cause of irreversible blindness in people 50 years and older

[194], is associated with hypomethylation-induced over-

expression of the clusterin (CLU) gene [193] that encodes

one of the major proteins of drusen, the deposition of which

between pigment epithelium and Bruch’s membrane causes

blindness.

Concluding remarks

The pathogenesis of any given human disease is a complex

multifactorial process characterized by many biologically

significant and interdependent alterations. One of these

changes, which is specific to many human diseases, is the

alteration of DNA methylation, including hypomethylation.

It is clear that disease by itself can induce hypomethylation

of DNA; however, the loss of DNA methylation can also

have an impact on the predisposition to pathological states

and disease development. Interestingly, one of the common

features of the previously described human chronic patho-

logical states is their association with aging. It is well-

established that levels of DNA methylation are markedly

decreased upon aging [7]. DNA methylation is a crucial

biological process that programs a proper expression of

genetic information in mammals. The accurate status of

DNA methylation is balanced in mature cells, but with age

this balance is strongly shifted in favor of DNA demethyl-

ation. Therefore, DNA hypomethylation that occurs during

normal aging appears to be a critical risk factor contributing

to the development of chronic age-related human patho-

logical states. In addition to age-related hypomethylation,

DNA hypomethylation can be caused by various endoge-

nous and exogenous factors, including environmental

chemicals and physical agents, lifestyle factors, and infec-

tions. This induced DNA hypomethylation may predispose

individuals to disease development. However, considering

the fact that a remarkable feature of epigenetic abnormali-

ties, including DNA hypomethylation, is their potential

reversibility, timely correction and proper maintenance of

DNA methylation levels are promising avenues to prevent

the development of chronic human diseases.
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