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Abstract. Protein kinase inhibitors represent an
important and still emerging class of targeted ther-
apeutic agents. Drug discovery and development
strategies have explored numerous approaches to
target the inhibition of protein kinase signaling. This
review will highlight some of the strategies that have
led to the successful clinical development of thera-
peutic protein kinase inhibitors, particularly as anti-
cancer drugs. Some notable advances have been made
in the development of novel protein and oligonucleo-
tide-based biologics that target growth factor or

receptor tyrosine kinases. Also, advances have been
made in the rational design of small-molecule inhib-
itors that target unique kinase conformational forms
and binding sites, and have specific kinase selectivity
profiles. A review will also be given of some of the
potential clinical toxicities and adverse side-effects
associated with these kinase-targeted drugs. Thera-
peutic protein kinase inhibitors have been highly
beneficial to cancer patients and offer the promise of
future therapies for other diseases as well.
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Introduction

The reversible phosphorylation of proteins represents
a major post-translational signaling mechanism and
regulatory pathway that controls a diverse set of
cellular processes. The phosphorylation of proteins is
catalyzed by protein kinases, representing a large
family of ATP-dependent phosphotransferases from
as many as 518 putative kinase genes that make up the
human kinome [1]. Protein kinases catalyze the
reversible hydroxyl-phosphorylation of Tyr, Ser, or
Thr residues of protein substrates. Often the protein
kinase itself is the substrate for an upstream kinase or
undergoes autophosphorylation as part of a cascade of
protein kinase signaling within the cell.
The mapping and elucidation of protein kinase signal
transduction pathways has been an extensive cell
biology area of research. Some representative protein

kinase signaling pathways within cells include growth
factor signaling and stress-activated signaling respons-
es (Figure 1). Such pathways are highly interconnect-
ed and complex (much more so than the linear protein
kinase cascades represented in Figure 1) and regulate
numerous cellular functions such as gene transcrip-
tion, cell growth, proliferation, and differentiation.
Indeed, the history of protein kinase research is
immensely rich with many notable biological discov-
eries. This includes pioneering biological research
leading to several Nobel Prize awards in Medicine
such as the seminal studies by E. H. Fischer and E. G.
Krebs on protein phosphorylation and regulation of
biological processes [2 – 4]. In 1989, J. Michael Bishop
and Harold Varmus were recognized for another
important discovery that some protein kinases can act
as oncogenes [5]. Aberrant protein kinase activity can
disrupt the normal control of cellular phosphorylation
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signaling pathways and lead to tumor formation.
Protein kinases are also involved in molecular signal-
ing pathways of the cell cycle, regulating eukaryotic
cell growth (interphase), replication (mitosis), and
programmed cell death (apoptosis). In 2001, Paul
Nurse and Timothy Hunt received the Nobel award
for describing the role of cyclins and cyclin-dependent
kinases that regulate the sequential phases of the cell
cycle [6, 7]. Leland Hartwell was a co-recipient,
recognized for developing the checkpoint concept for
cell cycle arrest that allows for DNA repair through a
checkpoint kinase signaling cascade [8, 9].
Given the critical role that protein kinases have in
modulating cellular functions such as tumorigenesis,
this class of enzymes has been targeted for the
discovery and design of biologics and small-molecule
inhibitors as potential therapeutic agents. Over the
past decade, over a hundred different protein kinase
inhibitors have entered clinical trials.
While the development of therapeutic inhibitors of
protein kinases has found most success in anti-cancer
therapy, this class of targeted inhibitors has the
potential for modulating diverse diseases where
protein kinase activity plays an etiological or patho-
genic role. Therapeutic protein kinase inhibitors are in
clinical development for diseases such as rheumatoid
arthritis, cardiovascular disease, diabetes, and diabetic
complications. This review provides an overview of
the drug discovery strategies, innovations, and chal-
lenges that have led to the successful design and
development of therapeutic biologics and small-
molecule protein kinase inhibitors. An emphasis is
placed on the application of structure-based drug
design, kinase selectivity profiling, and a discussion of
the drug safety and toxicity issues related to this class
of pharmaceutical agents. The focus is on those
therapeutic protein kinase inhibitors that are current-

ly in late-stage clinical studies or have successfully
progressed through clinical trials.

Biotherapeutic protein kinase inhibitors targeting
growth factor signaling and angiogenesis

Receptor tyrosine kinases (RTK) are cell-surface
receptors with an extracellular domain that selectively
binds and is activated by various growth factors, such
as epidermal growth factor (EGF), insulin-like growth
factor (IGF), or vascular endothelial growth factor
(VEGF). Upon binding of these growth factor ligands,
the RTK dimerizes and activates the intracellular
protein kinase domain, resulting in the further acti-
vation of signal transduction pathways (see Figure 1).
Numerous therapeutic biologics have been success-
fully developed that inhibit RTK signaling and
modulate cellular functions such as aberrant cell
growth (tumorigenesis) and angiogenesis. Various
types of biotherapeutic drugs have been pursued and
include therapeutic monoclonal antibodies, vaccines,
and other novel oligonucleotide-based agents.
Therapeutic monoclonal antibodies have been devel-
oped that specifically bind to distinct growth factors or
RTKs such as Avastin� (bevacizumab, Genentech/
Roche) that binds VEGF [10, 11] and Erbitux�

(cetuximab, ImClone) that blocks the EGF receptor
tyrosine kinase (EGFR) [12, 13]. In this way, these
biotherapeutic antibodies can prevent the growth
factor/RTK interaction and thus inhibit the RTK-
dependent signaling pathway [14 –16]. Other thera-
peutic antibodies that block protein kinase signaling
are also in clinical development or have already been
approved for cancer immunotherapy. For breast
cancer, the monoclonal antibody Herceptin� (trastu-
zumab) was developed by Genentech against the RTK
extracellular domain of ErbB2 or HER2 [17 – 20].
Pertuzumab (Omnitarg, Genentech) is a novel ther-
apeutic antibody in clinical studies for colon cancer
that acts by blocking the dimerization of the HER2
and HER3 RTKs [21, 22]. The two anti-VEGF
antibodies, Avastin and Lucentis� (ranibizumab,
Genentech/Novartis) are effective in blocking the
angiogenic effect of VEGF in neovascularization of
tumors [23, 24] or associated with wet age-related
macular degeneration (AMD), a leading cause of
blindness [25, 26]. Biotherapeutic antibodies for
EGFR include the chimeric monoclonal antibody
Erbitux, and the humanized monoclonal antibodies
Vectibix� (panitumumab, Amgen) [27, 28] and the
clinical candidate, nimotuzumab (YM Biosciences)
[29, 30]. Other targeted immunotherapeutics in late
stage clinical development include tanezumab
(RN624, Pfizer), a humanized monoclonal antibody

Figure 1. Examples of protein kinase signaling cascades. Four
representative cellular signaling pathways are shown that incor-
porate a stimulus (e.g., receptor activation by binding of a growth
factor), initiation of a series of kinase reactions (e.g., pyruvate
dehydrogenase kinase, isoenzyme 1 (PDK1) phosphorylation of
protein kinase B (Akt)), and activation of transcription factors
(e.g., nuclear factor kB (NFkB)). Kinases are shown in bold font.
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against nerve growth factor in patients with osteo-
arthritic pain [31, 32], and several potential anti-
cancer antibodies against IGF-1R [33, 34]: CP-751,871
(Pfizer) [35], IMC-A12 (ImClone Systems) [36], MK-
0646 (h7C10, Merck) [37], AMG-479 (Amgen) [38],
and AVE1642 (ImmunoGen/Sanofi-aventis) [34].
Immunotherapeutic vaccines are also under investi-
gation using growth factors, RTKs, or other protein
kinase-derived peptides as antigens. Some promising
investigational vaccines are in clinical studies (alone
or in combination), particularly to boost the immune
response against tumor cells. A number of HER2
peptide-based vaccines are in clinical testing for
treatment of breast cancer such as a dHER2 vaccine
(GSK) [39] and a HER2 intracellular domain peptide-
derived vaccine (Univ. Washington) [40]. CimaVax
EGF (Bioven) is a therapeutic vaccine recently
approved for use in Cuba and in clinical trials else-
where in patients with lung and other cancers [41].
CDX-110 (AVANT Immunotherapy/Pfizer) is an
EGFRvIII-targeted vaccine that just completed
Phase II clinical trial in glioblastoma multiforme
patients [42 – 44]. Avascular endothelial growth factor
receptor tyrosine kinase (VEGFR)-peptide vaccine
(Tokyo University) is also being tested in various
cancer trials and has already shown that it can induce
an effective tumor specific cytotoxic T lymphocyte
response [45]. The oncogenic BCR-ABL kinase has
also been investigated as a potential antigen for
development of a vaccine for the treatment of chronic
myelogenous leukemia. Early immunological studies
with various peptide-based and cell-based antigens
using BCR-ABL or BCR-ABL-products have shown
some initial immune responses, but they seem to be
more effective when coupled with other chemother-
apeutic agents [46, 47].
Similar to the anti-angiogenesis approach of targeting
VEGF by anti-VEGF antibodies, other novel biologic
therapies have been developed to block VEGF/
VEGFR receptor kinase signal transduction that is
involved in angiogenesis and blood vessel formation.
Macugen� (pegaptanib, OSI/Pfizer) is a pegylated
aptamer, a short-stranded oligonucleotide, which
potently binds VEGF with high specificity. Macugen
is effective in treating the neovascularization and
microvascular leakage associated with AMD [48, 49].
Small interfering RNAs (siRNA) are double-stranded
RNA molecules that act to silence gene expression
and thereby reduce expression of a protein target and
its functional activity. Several therapeutic siRNAs are
also in clinical development for wet AMD that target
either VEGF or VEGFR, such as bevasiranib (OPKO
Health) [50] and Sirna-027 (Sirna Therapeutics/
Merck) [51]. Another strategy is the use of soluble
receptor fragments that mimic the extracellular do-

main of the RTK and effectively compete with the
binding of growth factors to its receptor. Regeneron
has produced fusion proteins, called “Traps” that
combine the high-affinity receptor domains with an
antibody Fc portion to create stable molecules that
potently bind specific proteins, such as VEGF [52, 53].
Aflibercept (Regeneron/Sanofi-aventis) is a VEGF
Trap in cancer trials and VEGF Trap-Eye (Regener-
on/Bayer Healthcare) is in clinical testing for the
treatment of AMD.
Antisense technology is another promising therapeu-
tic strategy that seeks to decrease protein expression
by use of short, complementary oligonucleotide,
single-stranded DNA molecules that specifically
bind to and interfere with the normal translation of
messenger RNA. While Vitravene� (Isis Pharmaceut-
icals) is the only antisense-based drug approved to
date, several antisense compounds for blocking pro-
tein kinase signaling are in various stages of clinical
development. Affinitak� (aprinocarsen, Isis/Lilly),
for example, is an antisense oligonucleotide against
protein kinase C-alpha that was in clinical trials in
non-small cell lung cancer patients [54, 55]. AP 12009
(Antisense Pharma), is an antisense drug against the
transforming growth factor-beta in late stage trials in
high-grade glioma patients [56, 57]. Also, iCo-007
(ISIS 13650, ISIS/iCo therapeutics) is an antisense
inhibitor of c-Raf mRNA in early-stage clinical testing
in patients with diabetic macular edema [58].
While biologic therapies have shown efficacy in
treating some cancers and other diseases, there are
some limitations to their effectiveness. Some technical
limitations for biotherapeutics concern their chemical
stability or their inability to penetrate tissues and
reach their intracellular targets. Some innovative drug
formulation technologies have improved the stability
and cellular targeting of oligonucleotide-based ther-
apeutics such as encapsulation within liposomes,
attachment to polymers, or through pegylation [59,
60]. Since multiple oncogenic pathways are often
involved in tumor progression, the high selectivity of
biotherapeutics for specific molecular targets has
somewhat limited their effectiveness as single-agent
anti-cancer therapies.

Small-molecule therapeutic inhibitors of protein
kinases

A number of natural products from plant or microbial
sources with anticancer activity have been shown to
inhibit protein kinases involved in cellular prolifer-
ation, replication, and apoptosis. Examples of natural
products that are potent inhibitors of protein kinases
include the alkaloid staurosporine [61], the flavonoid
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rohitukine [62], and the purine olomoucine [63, 64].
Many therapeutic inhibitors of protein kinases are
structurally based on natural products such as these
and are presently in clinical testing (Figure 2). UCN-
01 (7-hydroxystaurosporine, Kyowa Hakko) and
PKC412 (midostaurin, N-benzoyl-staurosporine, No-
vartis) are staurosporine-derived, kinase inhibitors in
various oncological clinical studies [65, 66]. Flavopir-
idol (alvocidib, Sanofi-aventis) [67, 68] and R-rosco-
vitine (seliciclib, Cyclacel) [69, 70] are inhibitors of
cyclin-dependent kinases in cancer trials and are
structurally related to rohitukine and olomoucine
respectively.
Small-molecule inhibitors of protein kinases typically
prevent either autophosphorylation of the kinase or
subsequent phosphorylation of other protein sub-
strates. One aspect that contributes to the high
druggability of protein kinases is that they all have
well formed binding sites for adenosine triphosphate
(ATP), the phospho-donor for the phosphorylation of
protein substrates. From the early days of protein
kinase drug discovery, small-molecule inhibitor ap-
proaches that target the ATP site have come under
criticism regarding the ability to achieve cellular
potency and target selectivity. One argument was
that an ATP site-directed inhibitor would not be able
to effectively compete against the high intracellular
ATP concentration in order to potently block protein
kinase activity and signal transduction. This was based
on the fact that most protein kinases have affinities for
ATP in the 10 – 300 micromolar range while the
intracellular concentration of ATP is much greater,
around 1 – 2 millimolar. A second common skepticism

was that the overall sequence homology for the amino
acid residues within the kinase ATP binding sites
would not allow for the development of a selective,
ATP-competitive inhibitor.
The development of Gleevec� (Glivec� in EU,
imatinib, Novartis), the first approved small-molecule
protein kinase inhibitor [71], and numerous other
drug and clinical candidates has alleviated much of
this early skepticism. To date, eight small-molecule
therapeutic protein kinase inhibitors have been FDA-
approved within the US (Figure 3). All eight are
indicated for the treatment of oncological diseases.
These compounds can be generally classified depend-
ing on the protein kinase that they target: (1) the
BCR-ABL fusion protein kinase; (2) the human
epidermal growth factor receptor tyrosine kinases,
HER1/EGFR1 or HER2/ErbB-2; or (3) the vascular
endothelial growth factor receptor tyrosine kinase
(VEGFR). Gleevec [72, 73], Sprycel� (dasatinib,
BMS) [74, 75], and Tasigna� (nilotinib, Novartis)
[76, 77] are inhibitors of BCR-ABL fusion protein
kinase, an oncogene for chronic myeloid leukemia.
Iressa� (gefitinib, AstraZeneca) [78], Tarceva� (erlo-
tinib, OSI/Genentech) [79], and Tykerb� (lapatinib,
GSK) [80] are inhibitors of EGFR family members
and block the tumorigenic effects of these RTKs.
Sutent� (sunitinib, Pfizer) [81 – 84] and Nexavar�

(sorafenib, Bayer/Onyx) [85] inhibit VEGFR and
other protein kinases involved in tumor angiogenesis.
Some of these compounds also inhibit other kinases in
addition to those described above. For example,
imatinib (BCR-ABL inhibitor) [72, 73] and sunitinib
(VEGFR inhibitor) [82, 83] also inhibit KIT (c-kit

Figure 2. Natural product-based
protein kinase inhibitors.
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receptor, also known as cytokine stem cell factor
receptor tyrosine kinase) and the platelet-derived
growth factor receptor tyrosine kinase (PDGFR). The
discovery of these drugs and many other kinase
inhibitors in clinical development has been possible
due in part to significant advances in the understand-
ing of how they bind to their target kinases.

Structure-based drug design of protein kinase
inhibitors

Structure-based drug design has played an important
role in the rational design and development of small-
molecule protein kinase inhibitor drugs. The catalytic
or kinase domain of many protein kinases can be
cloned and expressed in sufficient quantity and purity
to allow for crystallization and elucidation of the
three-dimensional structure. Since the publication of
the first crystal structure of protein kinase A in 1991
[86, 87], a vast number of structures have been
determined, covering most of the major families of
protein kinases. A quick search for entries within the
Research Collaboratory for Structural Bioinformatics
Protein Data Bank (RCSB PDB) [88] reveals over
1000 protein kinase crystal structures. A high-reso-
lution crystal structure, or especially a co-crystal
structure with an inhibitor bound within the active
site, is very useful for the rational design of subsequent
chemical analogs of the inhibitor, to take advantage of
potential binding site interactions. When used in an

iterative approach, successive structural determina-
tions and accompanying binding affinity data allow for
a well defined structure-based drug design strategy for
improving inhibitor potency. Selectivity can be im-
proved within an inhibitor series by designing chem-
ical analogs that favor binding interactions with the
target protein kinase.
Another key consideration regarding protein kinase
inhibitor design is the dynamic overall tertiary struc-
ture or conformational state of the protein. Protein
kinases can adopt multiple conformational states,
often dependent upon phosphorylation of specific
residues. This was first demonstrated by crystallo-
graphic studies with the insulin receptor tyrosine
kinase (INSR) as shown in Figure 4. The activation
loop of the insulin-receptor kinase must be Tyr-
phosphorylated in order for INSR to adopt an active
conformation. In its nonactivated state, the activation
loop (unphosphorylated) perturbs the binding of
substrates, often referred to as the DFG-out confor-
mation. Upon phosphorylation (either autophosphor-
ylation or by another kinase), the activation loop
moves into a productive conformation that allows
ATP and protein or peptide substrates to bind [89, 90].
While not all protein kinases are regulated in the same
phosphorylation-dependent DFG-in and DFG-out
manner, the design of protein kinase inhibitors has
often taken advantage of the conformational flexibil-
ity or plasticity to improve inhibitor potency and
selectivity [91– 93]. Some excellent reviews have
explored the progress of structure-based drug design

Figure 3. US FDA-approved, small-molecule therapeutic protein kinase inhibitors.
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for protein kinase inhibitors [94– 97]. A few examples
will be offered here to highlight the contributions of
these approaches to the rational design and develop-
ment of therapeutic protein kinase inhibitors.
Small-molecule inhibitors of protein kinases can be
classified depending upon their mechanism of inhib-
ition or mode of binding [97]. The classical protein
kinase inhibitors bind within the ATP site in a
competitive fashion, utilizing the purine nucleotide
donor-acceptor binding motif to the protein hinge
residues. Nonclassical inhibitors bind within the ATP
site but also extend beyond the ATP pocket, making
additional ligand interactions with the protein. Non-
classical inhibitors display a mixed competitive mech-
anism with respect to ATP. The classical and non-
classical inhibitor binding modes can be exemplified
by the two therapeutic EGFR inhibitors, erlotinib
(Tarceva) and lapatinib (Tykerb) (Figure 5). Erlotinib
binds in a purely ATP-competitive fashion to EGFR
and its co-crystal structure reveals that the compound
overlays well with the binding of ATP (coordinated to
hinge region and under the G-loop flap) [98]. In
contrast, lapatinib binds within the ATP site and
extends beyond to a “deep pocket” region that has
opened by the movement of the alpha-C helix [99].
Some protein kinase inhibitors act by binding to and
stabilizing the nonproductive forms of the kinase. For
example, the therapeutic protein kinase inhibitors
imatinib (Gleevec) and nilotinib (Tasigna) bind much
more potently to the ABL tyrosine kinase in the
nonactivated DFG-out conformation as illustrated in
Figure 6 for the structure of imatinib bound to ABL
[100].
All of the eight US FDA-approved, small-molecule
inhibitors bind at or near the ATP pocket in either the
classical or nonclassical manner. Yet, other protein

kinase inhibitors can bind to other sites within the
kinase domain or other regions of the protein (e.g.,
regulatory domains). The protein or peptide substrate
binding site is another region of the kinase domain
that can be utilized for structure-based drug design of
inhibitors [101]. The clinical candidate KX01 (KX2 –
391, Kinex Pharma LLC) is an example of a non-
peptide inhibitor of c-Src tyrosine kinase (Src) that
binds within the peptide substrate site and not the
ATP site [102, 103]. An allosteric site has also been
identified within the kinase domain of several protein
kinases (e.g., ABL, p38 MAP kinase, MEK, and JNK)
adjacent to the ATP site and amenable for small-
molecule inhibitor design [93, 97]. Compounds that
target this allosteric site are noncompetitive towards
ATP and can form an inactive, ternary complex with
the enzyme. The clinical candidates CI-1040
(PD184352, Pfizer) [104, 105], PD0325901 (Pfizer)
[106], and ARRY-142886 (AZD6244, Array Biophar-
ma/AstraZeneca) [107] represent allosteric inhibitors
of MEK1, a Ser/Thr kinase within the RTK/RAF/
MEK/ERK signaling pathway. Figure 7 shows the
crystal structure of the ternary complex of MEK1 with
ATP and PD-318088, a small-molecule inhibitor
bound within the allosteric site [108]. The attractive-
ness of designing ATP-noncompetitive inhibitors
targeted at this allosteric site is that they are expected
to be independent of high cellular ATP concentration
and potentially demonstrate greater selectivity to-
wards inhibition of other protein kinases.

Protein kinase inhibitor selectivity profiling

Another advance has been the development of large
protein kinase assay panels for the profiling of

Figure 4. Crystal structure of the
insulin receptor tyrosine kinase
domain. Ribbon diagrams for (A)
nonactivated (PDB code 1irk)
and (B) activated (PDB code
1ir3) kinase. The activation loop
(A-loop) is in the DFG-out con-
formation for the nonactivated
form and in the open (DFG-in)
conformation for the activated
form. An ATP analog is shown
(sphere representation) bound
within the ATP site of the acti-
vated kinase.
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inhibitors in terms of their selectivity. Kinase selec-
tivity screening of inhibitors provides information on
the potential inhibitory activity of a compound across
a broad range of protein kinases and their respective
signaling pathways. Scientists from the Cohen labs at
the University of Dundee [109, 110] and elsewhere
[111 – 113] have tested numerous kinase inhibitors
against large kinase activity panels. In some instances,
inhibitors were found to be considerably less selective
than originally reported.
A number of life science companies and research labs
offer the profiling of compounds against large kinase

screening panels. They are often able to test com-
pounds against hundreds of different protein kinases
[114, 115]. These large protein kinase panels typically
utilize recombinant enzymes and perform biochem-
ical activity assays with either protein or peptide
substrates. Life science vendors that offer this activity-
based type of kinase inhibitor selectivity screening
service include: Caliper LifeSciences (Rapid Kina-
seAdvisor�), Carna Biosciences (BioFocus�), Invi-
trogen (SelectScreen�), MDS Pharma Services (Fast-
Kinase�), Millipore (KinaseProfiler�), ProQinase
GmbH (iProKiTe�), Reaction Biology Corp. (Kinase
HotSpotSM), Shanghai ChemPartner, and Signal-
Chem. In addition, several novel screening technolo-
gies have been developed that measure the binding of
inhibitors to both the activated and nonactivated
forms of protein kinases. Through the use of kinase-
directed affinity ligands, Ambit Biosciences and
ActivX Biosciences are life science laboratories that
profile the binding affinity of compounds. The Ambit
KINOMEscan� profiling technology utilizes re-
combinant wild-type and mutant kinases from phage
display to evaluate the ability of a drug to compet-
itively displace kinases from immobilized affinity
ligand probes. Only those kinases that bind the drug
will be displaced and these displaced kinases represent
a unique selectivity profile for that compound [111,
113]. The ActivX KiNativ� platform uses irreversible
affinity probes such as biotinylated acyl phosphate
ATP to capture protein kinases from biological
samples [116]. This innovative technology can eval-
uate an ATP-competitive compound against active
and nonactivated kinases, pseudokinases [1], and
other ATP-binding proteins. It should be noted that

Figure 5. Crystal structures of
EGRF kinase domain with Tar-
ceva (eroltinib) and Tykerb (la-
patinib). Overlay ribbon drawing
of EGFR co-crystals with erloti-
nib (pink, PDB code 1 m17) and
lapatinib (yellow, PDB code
1xkk) with inhibitors shown as
ball-and-stick structures. Note
that the fluoro-benzyloxy group
of lapatinib binds deep within the
ATP pocket formed by move-
ment away from the alpha-C
helix.

Figure 6. Crystal structure of c-ABL with Gleevec (imatinib).
Ribbon representation of c-ABL protein co-crystallized with
imatinib (PDB code 1iep). Imatinib (ball-and-stick) binds in an
extended conformation spanning the ATP site (to hinge region
under G-loop) and into the DFG-out binding pocket where the
methyl-piperizine portion of the inhibitor resides.
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further follow-up in cellular or animal models is
required to better understand the physiological rele-
vance of the results from these biochemical kinase
selectivity screens.
Since specific oncogenic kinases may drive the pro-
liferation of tumors, a concept often referred to as
oncogene addiction [117, 118], some kinase inhibitors
may only exhibit tumor growth inhibition against
cancers that express certain oncogenic or mutant
kinases (e.g., EGFR). The inhibitory activity of some
therapeutic RTK inhibitors against multiple protein
kinases may be important for their therapeutic
efficacy, such as the inhibition of KIT by imatinib
[73], dasatinib [75], and sunitinib [82, 83]. Under-
standing which specific kinase or group of kinases is
inhibited can help identify which cancers will be best
treated by that drug. Accordingly, kinase selectivity
screening has become increasingly important in the
development of therapeutic protein kinase inhibitors.

Protein kinase inhibitor safety considerations

While advances in protein kinase drug discovery
continue and many protein kinase inhibitors (both
biologic and small-molecule) remain in clinical trials,
so far the overall medical promise of this class of drugs
has been limited to only a small number of approved
drugs. This may be attributable in part to the nature of
the therapeutic disease areas that are targeted by
kinase inhibitors. For instance, cancer is an intrinsi-
cally mutagenic disease with a high rate of tumor
resistance to single drug therapy. While oncogenic
kinases derived from somatic mutation or chromoso-
mal alteration may drive the growth of some tumors
[119], specific activating mutations may only reside in
tumors from small subgroups of patients. This ac-
counts for the low response rates observed in early
clinical studies for the EGFR inhibitor gefitinib with
unselected non-small cell lung cancer patients, where
the clinical benefit correlated with specific EGFR
mutations [120, 121]. Likewise, tumor multi-drug
resistance mechanisms and acquired resistance to
kinase inhibitors, such as EGFR inhibitors, can limit
initial drug response by development of secondary
EGFR mutations or amplification of additional RTKs
[117, 118, 122].
As a class of molecularly targeted therapies for the
treatment of cancer, protein kinase inhibitors have
made a substantial beneficial impact on the therapeu-
tic care of cancer patients. They have provided a new
treatment paradigm and greatly improved the quality
of life for patients with advanced cancer and poor
prognosis. Protein kinase inhibitors are usually well
tolerated and have shown an overall better safety
profile than cytotoxic chemotherapies, with toxicities
and side effects that are generally more manageable
and reversible [123, 124]. Some of the safety issues
associated with therapeutic biologic and small-mole-
cule protein kinase inhibitors, particularly potential
cardiovascular and dermatological toxicities, will be
reviewed here.
The first therapeutic protein kinase inhibitor to be
launched was Herceptin (trastuzumab) in 1998 by
Genentech. Trastuzumab is a monoclonal antibody
that targets ErbB-2 (HER2), an RTK that is overex-
pressed in a significant number of breast cancers [19,
20]. Patients treated with trastuzumab have a small
but increased risk of cardiac dysfunction [18, 20].
Further research into potential mechanisms for the
cardiotoxicity of ErbB-2 (HER2) inhibition found
that conditional mutation of ErbB-2 in transgenic
mice caused progressive heart malfunctions [125]. In
addition, treatment of rat cardiomyoctes with anti-
ErbB2 antibodies caused increased mitochondrial
dysfunction and cellular apoptosis [126]. Although

Figure 7. Crystal structure of MEK1 with allosteric inhibitor.
MEK1 ternary complex structure. (A) Ribbon representation of
MEK1 co-crystal structure (PDB code 1 s9j) with ball-and-stick
ligands: Mg-ATP (pink) under G-loop and inhibitor PD0318088
(yellow) in allosteric site. (B) Same ternary structure slightly
rotated, but the protein is hidden to show non-overlapping binding
of ATP (pink) and PD0318088 (yellow).
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the relevance of these in vitro studies to the clinical
observations is unclear, these results suggest that the
cardiac toxicity associated with trastuzumab might be
mechanism-based and directly attributed to ErbB-2
inhibition. In contrast to the cardiomyopathy associ-
ated with trastuzumab treatment, cardiotoxicity has
not nearly been as prevalent with lapatinib (Tykerb), a
small-molecule inhibitor that also targets ErbB-2
[127]. Lapatinib is a dual specificity inhibitor that is
potent against both ErbB-2 and EGFR. Indeed, the
most common side effects reported for lapatinib
treatment are more closely related to those observed
for other EGFR inhibitors [127].
Several recent reports have also indicated cardiotox-
icity as a risk factor for other therapeutic kinase
inhibitors, including imatinib [128], sunitinib [129,
130], and sorafenib [131], although these side effects
have been effectively managed for most patients
[132]. For imatinib treatment, left ventricular dys-
function and congestive heart failure were observed in
some patients under treatment [128]. Yet, in a later
retrospective analysis of imatinib-treated patients, the
incidence of congestive heart failure was deemed to be
rare without pre-existing cardiac conditions [133]. A
report concerning the effect of imatinib on mouse
cardiomyocytes in culture proposed that the inhibition
of ABL and activation of the endoplasmic reticulum
stress response were potential mechanisms for the
observed cardiomyocyte toxicity [128]. Congestive
heart failure has not been cited as a common adverse
event for the ABL inhibitors, dasatinib [134] or
nilotinib [135], although other cardiac toxicities such
as QT interval prolongation have been reported [132,
136]. The most common adverse events reported for
these therapeutic BRC-ABL inhibitors were myelo-
suppression and neutropenia [132, 134, 136].
Several recent studies have underscored the need to
monitor cardiac function in patients treated with
sunitinib (multi-RTK inhibitor) due to an unantici-
pated risk for congestive heart failure [129, 130]. Some
cardiovascular effects have been previously observed
in sunitinib trials [136] and are included in the
approved product labeling along with recommenda-
tions for monitoring. Force et al. [136] proposed that
cardiomyocytes may be more sensitive to RTK
inhibitors since these cells have a high demand for
ATP and may be more susceptible to mitochondrial
effects from targeted kinase inhibitors. In addition,
hypertension has been recognized as a potential side
effect of VEGFR inhibitors like sunitinib and sorafe-
nib and might therefore contribute to the observed
cardiovascular abnormalities [137]. Hypertension has
also been observed with other anti-VEGF therapies,
including the therapeutic monoclonal antibody bev-
acizumab (Avastin) [138].

For the therapeutic EGFR-targeted inhibitors gefiti-
nib, erlotinib, lapatinib, cetuximab (Erbitux), and
panitumumab (Vectibix), the most frequently associ-
ated adverse events are fatigue, diarrhea, and the
development of dermatological toxicities, acneiform-
like rash and hand-foot syndrome [139, 140]. As yet,
the pathogenesis of the skin rash is unclear, but it
appears that it is a mechanism-based toxicity and may
result from inhibition of EGFR within the keratino-
cytes, possibly causing a subsequent inflammatory
response [139, 140]. While treatments are being
pursued to minimize the deleterious effects of the
skin rash and to improve patient compliance, the
development of the rash itself is a potential biomarker
for EGFR inhibition. In fact, studies have shown a
good correlation between the occurrence of the rash
during erlotinib or cetuximab treatment and their
clinical benefit [141, 142]. Other RTK inhibitors such
as sunitinib and sorafenib also have the potential of
cutaneous toxic side effects of dry skin and rash [143].
Although skin toxicity is not a very common side
effect for anti-VEGF therapy, recently a correlation
was also made between the development of rash
during bevacizumab treatment and a positive re-
sponse in patients with metastatic colorectal cancer
[144, 145].
The clinical development of therapeutic protein
kinase inhibitors for diseases other than cancer has
also been advancing. The development of inhibitors of
p38 mitogen-activated protein kinase (MAPK), a Ser/
Thr kinase, exemplifies an area of intense activity by
pharmaceutical companies, yet without any approved
agents to date [146]. The stress-activated p38 MAPK
signaling pathway has been well validated as an
important target for the discovery of anti-inflamma-
tory agents, mostly through down-regulation of the
tumor necrosis factor a (TNF-a) (see Figure 1). A
number of clinical p38 MAPK inhibitors have
emerged for inflammatory disease indications such
as rheumatoid arthritis, but most have failed due to
lack of target modulation, adverse events and toxic-
ities, or poor pharmacokinetics [147, 148]. Examples
of p38 MAPK inhibitors tested in clinical studies
include BIRB-796 (doramapimod, Boehringer Ingel-
heim), VX-745 (Vertex), and SCIO-469 (talmapimod,
Scios/J&J) (Figure 8). Both BIRB-796 and VX-745
were discontinued due to hepatotoxic elevation of
liver transaminases, skin rash, and other adverse
events [149, 150]. Second generation p38 MAPK
inhibitors such as VX-702, have been developed to
address some of these toxicity and pharmacokinetic
issues. Recently, mild-to-moderate adverse events
including skin rash and dose-dependent QT interval
prolongation were observed in a phase II study of VX-
702 as a monotherapy or in combination with metho-
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trexate for rheumatoid arthritis [151]. Some innova-
tive strategies have also been employed to address
safety and pharmacokinetic issues for p38 MAPK
inhibitors. Tissue-specific drug delivery and formula-
tion technologies have been investigated, such as
lysosome-conjugation of a p38 MAPK inhibitor to
render it more renal specific [152]. Promising results
have been reported for substrate selective inhibitors
of p38 MAPK that prevent phosphorylation and
activation of the downstream substrate MK2 but not
the activating transcription factor 2 (ATF2) pathway
[153]. This type of selective blocking of the p38
MAPK signaling pathway might achieve the desired
pharmacological effect but avoid modulating the
MAPK-dependent signaling associated with the skin
rash side effect.
Overall, therapeutic protein kinase inhibitors for
cancer treatment have shown better tolerability than
earlier cytotoxic drugs. Yet, the commonality of
observed cardiac and skin-related toxicities for these
targeted therapeutics, even if infrequent and manage-
able, suggests a possible class-specific response. Fur-
ther investigations are therefore warranted to deter-
mine whether or not these toxicities are class-specific
for Tyr-kinase inhibitors. It is yet to be clearly
determined if similar adverse side effects will be
observed with other kinase inhibitors, such as Ser/Thr
kinase inhibitors, which are still progressing through
clinical trials.

Closing comments

It has been nearly half a century since the discovery by
Fischer and Krebs of reversible protein phosphoryla-
tion and the initial recognition of its regulatory
function in cellular pathways. Since then, researchers
have gained a greater understanding of the diverse
cellular processes regulated by protein kinases and
their pathogenic role in various diseases. This is
highlighted by some major research advances such
as the discovery that oncogenic kinases have a role in
many cancers, the complete mapping of the human
kinome, and the development of the first therapeutic
protein kinase inhibitors, Herceptin and Gleevec.

Kinase drug discovery research continues to advance
through the application of innovative design strategies
and novel technologies such as those highlighted in
this review. These advances have allowed kinase drug
researchers to overcome much of the early skepticism
over achievable kinase inhibitor potency and selec-
tivity. And more importantly, these advances have
resulted in the generation of a new class of targeted
anti-cancer drugs that have benefited patients and
provided an improvement in tolerability over earlier
cytotoxic chemotherapies. Yet, as the next generation
of protein kinase inhibitors progresses through clinical
studies, researchers and clinicians must continue to
properly balance the value and therapeutic benefit of
these drugs and their potential safety risks.
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