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Abstract. Utilisation of �omics� technologies, in par-
ticular gene expression profiling, has increased dra-
matically in recent years. In basic research, high-
throughput profiling applications are increasingly
used and may now even be considered standard
research tools. In the clinic, there is a need for better
and more accurate diagnosis, prognosis and treatment
response indicators. As such, clinicians have looked to
omics technologies for potential biomarkers. These
prediction profiling studies have in turn attracted the

attention of basic researchers eager to uncover bio-
logical mechanisms underlying clinically useful signa-
tures. Here we highlight some of the seminal work
establishing the arrival of the omics, in particular
transcriptomics, in breast cancer research and discuss
a sample of the most current applications. We also
discuss the challenges of data analysis and integrated
data analysis with emphasis on utilising the current
publicly available gene expression datasets. (Part of a
Multi-author Review)
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Introduction

Increasingly, system-wide analyses are employed on a
large scale, whether this be at the DNA – genomics,
mRNA – transcriptomics or protein – proteomics,
expression level. These approaches form part of a vast
effort to create a more detailed view of biological
systems (Fig. 1). The most familiar omic technology is
without doubt transcriptomics and the study of gene
expression profiles [1].
A gene expression microarray �chip� consists of
thousands of DNA molecules attached in fixed
locations to a solid surface. These microarrays exploit
preferential binding of mRNAs to their complimen-
tary sequences. The abundance of mRNA molecules
in a biological sample is assessed by chemically or

fluorescently labelling its mRNA extract or cDNA,
applying this to the microarray �chip� and measuring
the fluorescence intensities of bound DNA from each
location on the array [2]. Although PCR products
from cloned cDNA were used in the first microarrays,
synthetic oligonucleotides are now widely used in the
creation of gene expression microarrays [1, 3]. This
technology has been adapted to measure genomic
DNA copy number, exon expression and even tiling
both coding and non-coding regions of whole ge-
nomes. Moreover this idea has expanded and an array
may refer to a variety of biological matter immobilised
on a solid support, including DNA, protein, antibody
and tissue or cell lysates. Although the most widely
used solid supports have been glass slides, emerging
technologies now also use silicon beads (Illumina) or
nanoparticles [4].
Gene expression microarrays require knowledge of
the reference human genome to quantify RNA or* Corresponding author.
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DNA in a biological sample, and as such can be
referred to as a �closed� method. In contrast, another
transcriptomics approach, SAGE (serial analysis of
gene expression), does not require a pre-existing
clone or knowledge of a gene [5], and is able to
identify novel transcripts. SAGE is a less high
throughput method but has some advantages over
gene expression microarrays. For example, while
microarrays quantify gene expression levels indi-
rectly using fluorescence intensity, SAGE deter-
mines absolute mRNA levels. However, SAGE has
been constrained by cost and lower data generation
speed. The invention of paired-end (di-tag) sequenc-
ing and highly parallel multiplex new-generation
sequencing technology from Solexa (Illumina) and
454 (Roche), among others, have reduced these
limitations and provided greatly increased through-
put. This new generation of sequencing technology
has recently been applied to mapping of p53 binding
sites in the genome of human colorectal carcinoma
cells [6].
In addition to transcriptional aberrations, DNA copy
number abnormalities, entire chromosomal or small
interstitial DNA losses, gains and amplifications
frequently characterise the development of cancer.
Analyses of changes occurring at the level of DNA are
referred to collectively as genomics. Changes in gene
copy number can be measured by array-based com-
parative genomic hybridisation (array CGH or
aCGH), which monitors genomic changes resulting
in amplification or deletion and accurately quantifies
changes in copy number on a genome-wide scale.

Similar to the case with gene expression analysis,
platforms vary and include bacterial artificial chro-
mosome (BAC), cDNA or oligonucleotide formats [7,
8] and platforms initially developed for genotyping.
Several studies have shown that variations in gene
copy number do not necessarily result in a change in
mRNA levels and highlight the importance of com-
bining genomic and transcriptomic data sources in
order to derive functional relevance. A recent study by
Yao et al., for example, combined cDNA array CGH
with SAGE and identified two over-expressed genes
in an amplified region of the genome as putative
breast cancer oncogenes [9].
Advances in array-printing technology together with
the completion of the human genome project have led
to generation of microarray chips with significantly
more probe sequences per array, providing greater
genome coverage. Arrays are available which detect
all know exons in the genome and provide an ability to
identify gene expression levels, alternative splicing
events and mRNA-processing alterations. Single-
nucleotide polymorphism (SNP) arrays (Affymetrix,
Illumina) containing large numbers of known SNPs
are being used to investigate genome-wide patterns of
variation. Recently the Illumina Hap300 platform was
utilized to study over 300000 SNPs in 1600 Icelandic
individuals with breast cancer and 11563 controls. Two
variants on chromosome 2q35 and 16q12 were re-
ported to be associated with increased breast cancer
risk [10]. Such genome-wide analysis can uncover
genetic alteration occurring at the level of the DNA
within exons of a transcript or surrounding regulatory

Figure 1. High-throughput
omics quantifies cellular compo-
nents on a large or genome-wide
scale. Transcriptomics is the
measurement of mRNA within
the cell. Gene expression micro-
arrays (oligonucleotide or
cDNA) or next-generation se-
quencing can be used to measure
mRNA. Genomics is the quanti-
fication of DNA copy number,
polymorphism (SNP) or methyl-
ation or protein-binding events.
Proteomics is the analysis of the
proteome or protein content of
the cell. Each of these ap-
proaches forms part of a vast
range of techniques now availa-
ble to quantitatively understand
a cell or biological system in a
much more detailed manner.
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regions such as a promoter or, indeed, in non-coding
transcribed regions of the genome.
Changes in the sequences of a given gene or genomic
region may profoundly affect the level of expression
or function of a protein. Interestingly, it has been seen
that expression changes in a given gene do not
necessarily link to SNPs in that gene transcript or
adjacent regulatory regions (working in �cis�). Rather,
many have been found to work in �trans�, meaning that
the genomic determinant is located at a distance from
the gene it regulates, possibly even on a different
chromosome [11, 12]. Transcription factor activity is
one obvious way in which one gene may act in trans to
regulate another. In the simplest scenario, genetic
variation in a transcription factor may alter its ability
to initiate transcription of another gene directly. Since
the functioning of transcription factors is essential to
understanding gene regulation, arrays which cover
promoter and intergenic DNA regions of the genome,
or even tile the whole genome, are used to map
binding sites of transcription factors using �ChIP on
chip� (or ChIP-chip) assays, which are essentially
large-scale formats of the original chromatin immu-
noprecipitation (ChIP) technique [13]. Regions of
DNA that interact with a protein of interest are
immunoprecipitated using a protein-specific antibody,
and the DNA fragments are identified by hybrid-
isation to a microarray. ChIP-Seq is a sequencing-
based alternative to ChIP-chip assays. In ChIP-Seq,
the ends of the DNA fragments are sequenced,
enabling discovery of novel binding sites across the
whole genome. Variations on this technique which are
not dependent on antibodies also exist, such as the
DamID approach, in which a transcription factor of
interest is overexpressed as a fusion protein with a
methylating enzyme. The methylated DNA is then
extracted, amplified, labelled and hybridised to an
array. The difference between fusion protein-induced
methylation and background methylation with en-
zyme alone is then analysed [14]. By mapping the
actual interactions of protein transcription factor with
the genome, one can build a profile of a specific
transcription factor�s DNA-protein interactome at a
given time under certain conditions.
Of course cell processes governing transcription and
translation in a cell are complex and may be influ-
enced by epigenetic changes. These DNA modifica-
tions, such as methylation, can also be analysed on a
genome-wide level by incorporating epigenetic anal-
ysis with microarray technology. Gene expression
microarrays can be used to identify genes with
upregulated expression following demethylation
treatment, as these are most likely to have been
silenced by promoter hypermethylation [15]. How-
ever, CpG island microarrays and methylation-spe-

cific oligonucleotide microarrays have also been
developed [16, 17].
The resolution and genome coverage of arrays has
increased as array technologies have developed. Tiling
microarrays, which consist of overlapping probes
spanning large genomic regions, have also been used
in a variety of contexts, including identification of
previously unknown coding and non-coding tran-
scripts, and high-resolution DNA-protein interactions
using ChIP-chip protocols and DNA methylation
changes. Even higher resolution can be achieved
using resequencing arrays which probe (nearly) every
base within a region and next-generation sequencing
technologies, both of which promise to open new areas
of research. For example, a recent study resequenced
the exons of 13023 genes in 11 breast and 11 colorectal
cancers and revealed that each tumour accumulated
an average of 90 mutant genes, though only a subset of
these are likely to be directly implicated in cancer
progression. Intriguingly, the majority of these genes
were not known to be genetically altered in tumours
[18]. As these and other high-throughput techniques
become commonplace in genomics laboratories, a
systematic characterisation of genetic events that give
rise to a cancer cell is rapidly becoming possible.
However, nucleic acid changes, either at the DNA or
RNA level, do not provide a complete picture. Bind-
ing of a transcription factor to the promoter of a gene
may not necessarily result in transcription of that
gene; the expression of a gene may not result in
translation of a protein or indeed in protein activity.
Therefore, we would also like to know the relative
protein expression, subcellular location and interac-
tion with other proteins in order to predict or explain a
particular biological outcome. To this end, a number
of proteomic technologies have been developed to
analyse proteins in a high-throughput fashion [19].
Proteomic techniques can be broadly divided into
those which are either antibody-dependent or -inde-
pendent.
Antibody arrays consist of characterised antibodies to
known proteins spotted on solid supports, whereas
reverse-phase arrays consist of cell lysates or purified
proteins and are in turn probed with antibodies [20,
21]. These array-based proteomic approaches are
heavily reliant upon specific antibody generation.
Discovery of novel proteins or those for which anti-
bodies are unavailable often relies on 2D gel or mass
spectrometry proteomics. 2D gel electrophoresis sep-
arates proteins in a sample based on their isoelectric
properties and mass. The mass, charge and amino acid
sequence of variants or differentially expressed pro-
teins can be discovered using mass spectrometry and
proteins identified by comparison with peptide sig-
nature databases. Part of this process can also be
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reduced to chip format using technologies such as
Protein Chips (Ciphergen) [22]. Many other proteo-
mic technologies have been developed and have been
used to screen samples for autoantibodies, to detect
protein:protein/peptide interaction, or to measure
protein activity.
Although probably not considered a proteomics
approach per se, tissue and cell line microarrays have
also greatly increased the speed at which protein
immunoreactivity can be assessed in tissue specimens
or cell lines [19, 23]. A cell line or tissue microarray
consists of thousands of cell-line pellets or microcores
from tissue sections robotically spotted onto glass
slides. Such arrays bring us a step closer to high-
throughput validation of candidate genes or proteins
by allowing direct measurements in situ. However,
their success may also be limited by both the
availability of antibodies and the reliability of immu-
nohistochemical techniques.
Because so many proteomic approaches depend on
antibodies, a recently initiated Swedish project, the
Human Protein Atlas project [http://www.proteinat-
las.org/] [24], aims to provide antibodies to all human
proteins using high-throughput antibody generation
[25]. As part of this project, each new antibody is
assessed on a number of tissue microarrays containing
normal human tissues and tissue from different human
cancers. Immunohistological images of these analyses
are made available in an online database [24]. The
second release of the Human Protein Atlas in October
2006 provided over 1 million images from more than
1500 antibodies. This data will soon be available
within the public repository ArrayExpress [personal
communication, Dr Alvis Bramza] and will provide a
significant resource for the study of the expression and
localization of the human proteome in cancer.
Finally, metabolic profiling (especially of urine or
blood plasma samples) can be used to detect physio-
logical changes in a cell or system. Metabolomics or
metabonomics measures small-molecule intermediate
products of metabolism using chromatography, nu-
clear magnetic resonance (NMR) spectroscopy or
mass spectrometry-based technique.
Each of these �omics� approaches (Fig. 1) described
has been applied in one way or another to the study of
breast cancer. Several recent reviews have discussed
the application of proteomics [19, 26, 27] and metab-
olomics [28] to the study of breast cancer. Here, we
will principally focus on transcriptomic analysis of
breast cancer and the integrated or meta-analysis of
these data.

Breast cancer model systems

Basic breast cancer research seeks to understand the
molecular mechanisms of cancer origin, progression
and invasion leading to metastatic disease. Although
many studies search for diagnostic or prognostic
biomarkers, most studies ultimately seek to develop
therapeutic interventions that disturb the workings of
the genes, proteins or pathways that are altered in the
disease. In both of these broad research classes, �omic�
technologies have produced a dramatic change in how
research is conducted. Rather than focusing on a
single gene or protein model, we can now look for
�signatures� consisting of multiple genes or proteins
that are altered in some way and that together define a
molecular phenotype or a particular cancer type or
subtype.
As model systems have played such a significant role
in our current understanding of cancer, one of the first
applications of omic approaches was the molecular
characterisation of such models to a level previously
unattainable. The NCI-60, a set of 60 human cancer
cell lines, including breast cancer cells, selected by the
Developmental Therapeutics program of the National
Cancer Institute for the purposes of screening anti-
cancer agents [29], was among the first to be analysed
using omic technologies. They have been extensively
profiled for mRNA expression, DNA copy number,
DNA methylation profile, mutations and protein
expression [30 – 33]. Attempts to match these cancer
cells lines with their putative tissue of origin by
examination of the expression profiles successfully
demonstrated that cell lines from the same tissue
group together. This profiling was also useful in
identifying changes that are of functional importance
for cancer and not simply indicative of tissue-type
variation [34]. Recently a panel of 51 breast cancer
cell lines have been defined, and initial character-
ization indicates that these may provide a useful in
vitro model system for investigation of breast cancer
phenotypes [35].
Because cancer does not develop in isolation, but
involves the interaction of the tumour with the
surrounding tissue, more advanced models are being
developed, including 3D tissue-culture systems that
more closely mimic the real in vivo situation. When
breast epithelial cells are grown on a laminin-rich
extracellular matrix, they form polarised acini that are
organised and growth-arrested, and are reported to be
more representative of normal breast cell behaviour.
Fournier and colleagues identified 19 genes that were
expressed during organisation and growth arrest of
cultured mammary acini, and demonstrated that
expression of these genes are associated with good
prognosis in breast cancer [36]. These 19 good
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prognosis genes were predominately associated with
cell cycle and cell division, but a subset also mapped to
cytosketal regulation, cell survival and cell-cell inter-
action processes. These experiments highlight the
applicability of the 3D system as a breast cancer model
[36], and the prognostic success of these gene signa-
tures suggests that the cellular microenvironment and
tumour cell both need to be considered as molecular
targets (reviewed by [37]).
The tumour microenvironment contains many cells,
including stromal fibroblasts, endothelial cells and
infiltrating leukocytes such as macrophages, T lym-
phocytes, and dendritic cells. These produce and
respond to an array of chemokines, cytokines and
growth factors, resulting in a complex network of cell-
cell interactions which in turn control differentiation,
activation, function and survival of multiple cell types
in the tumour microenvironment. In an interesting
study, Chang and colleagues investigated an hypoth-
esis which likened cellular behaviour during cancer
progression and wound healing [38]. To identify a
molecular signature of wound healing, they used a
transcriptomic approach to identify genes that were
expressed by fibroblasts in response to serum expo-
sure. This wound-healing gene expression signature
consisted of genes involved in matrix remodelling, cell
motility and angiogenesis; the study found these genes
were expressed either by the tumour cells themselves,
tumour-associated fibroblasts or both. Critically, tu-
mours which expressed this wound-healing gene
expression signature were significantly more likely
to progress to metastasis and death [38]. The obser-
vation that the expression signature of activated cells
in the tumour microenvironment is predictive of poor
prognosis is significant and has opened new avenues
for basic tumour biology research.
Xenograft models of breast cancer are being used to
advance our understanding of the propensity of a
tumour to metastasize. Weinberg and colleagues [39]
profiled mRNA expression levels in a series of
isogenic murine breast cancer cell lines (67NR,
168FARN, 4TO7 and 4T1) of differing metastatic
ability, revealing a significant increase in the expres-
sion of the transcription factor Twist in metastatic
variants. The role of Twist was functionally validated
using RNA interference, highlighting the ability of
transcriptomic studies to identify key targets for
functional analysis. Tumours formed by 4T1 cells
that expressed Twist-siRNA (small interfering RNA)
resulted in significantly fewer metastases compared to
controls [39].
Transcriptomic approaches have been used to under-
stand the basic biology of breast development and
breast cancer cells in vivo and the links between them
(see O�Connor et al. , in this review series and [40]).

Mostly, such work has been carried out in mouse or rat
models with a variety of induced genetic alterations.
Omic profiling of breast cancer mouse models have
also been used to elucidate the mechanism by which a
particular genetic alteration or environmental insult
leads to an observed phenotype, whether that pheno-
type produces a developmental defect in the breast or
a susceptibility for cancer development [41, 42].
Gene expression profiling has also been applied to
define the intrinsic changes which occur during cancer
progression in clinical tumour samples. Using a
combination of laser capture microdissection and
cDNA microarrays, normal epithelium, premalignant,
preinvasive and invasive tumours were profiled [43].
Perhaps surprisingly, the results from this study
indicated that discrete pathological stages, e.g. ductal
carcinoma in situ versus infiltrating ductal carcinoma,
were not that dissimilar in terms of their expression
profiles. This supports the idea that genes controlling
infiltrating or invasive behaviour are active even in
preinvasive stages, and is consistent with reports of
significant correlation between germ-line mutations
or SNPs, and tumour mRNA levels [44]. These
observations support the hypothesis that progression
of disease may not be the primary factor resulting in
genetic rearrangements or expression change, but that
the propensity to tumorigenesis is determined much
earlier [45].

Molecular Breast Cancer Subtypes

Breast cancer is phenotypically diverse in prognosis
and responsiveness to treatment. One of the main
observations arising from gene expression studies of
breast cancer is that this diversity is reflected in the
intrinsic heterogeneity of breast cancer gene expres-
sion profiles. Gene expression profiles of breast
tumours group into distinct classes. In a seminal
study, Perou et al. [46] distinguished four subtypes of
breast cancer based on their gene expression profiles.
These subtypes were identified using unsupervised
hierarchical clustering analysis of cDNA microarray
profiles of 8102 human genes in 65 cancer and normal
breast samples; these 65 samples were derived from 42
different individuals and included profiles from indi-
viduals (n=10) who provided specimens before and
after a 16-week course of doxorubicin chemotherapy.
Perou et al. [46] observed that gene expression
patterns in pairs of tumour samples from the same
individual were almost always more similar to each
other than either was to any other sample. Therefore,
they defined a set of genes whose variation was
significantly greater between samples from different
tumours than between samples from the same tumour
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before and after treatment. This set of 496 intrinsic
genes clustered the breast tumour profiles into four
groups, which they designed as basal-like, Erb-B2+,
normal breast-like, and luminal epithelial/ER+ [46].
The luminal and basal clusters were defined based on
their expression of keratin genes, and were not
specifically associated with epithelial cell lineages.
The luminal group formed the largest cluster, and the
expression profiles of these tumours were character-
ized by the expression of estrogen receptor (ESR1),
keratins 8/18, GATA3 and several transcription fac-
tors. Tumours which were negative for ESR1 expres-
sion segregated into two distinct clusters, basal-like
and ERBB2+. The basal gene expression cluster
expressed genes which are considered characteristic of
basal epithelial cells including keratin 5/6, keratin 17,
integrin b4 and laminin. The ERBB2+ cluster ex-
pressed genes associated with expression of the Erb-
B2 oncogene and GRB7. Finally, a few tumours, a
fibroadenoma and the normal breast samples formed
a cluster designated normal-like.
In a follow-up study using the same cDNA microarray
platform, hierarchical clustering of these same 496
genes in 85 breast cancer, fibroadenoma and normal
breast tissues also produced three ESR1-negative
groups (basal epithelial-like, ERBB2-overexpressing,
normal-like). However the luminal/ESR1-positive
cluster could be further subdivided into three groups,
luminal A, B and C [47]. Two years later these
subtypes were further refined in a study that combined
84 of 85 of these cDNA arrays with a new set of 38
cDNA array gene expression profiles [48]. This
investigation identified a set of 534 intrinsic genes
and defined five subtypes: basal-like, normal-like,
ERBB2+, and two luminal subtypes, A and B [48].
Luminal A tumours had a higher expression of ESR1-
related genes (such as GATA3) and lower expression
of proliferative genes. By contrast, luminal B tumours
expressed more proliferative genes. These subgroup-
ings or clusters were independent of stage and grade
[46, 47]. Significantly, the clinical importance and
distinction between these clusters was supported by
their associated prognosis [49 – 51]. Survival analyses
showed different outcomes for each subtype. The
luminal tumours were associated with more favour-
able outcome, whilst the basal-like subtype was
associated with poor prognosis [46 –48]. Women
with BRCA1 mutations are more likely to have triple
negative hormone receptor status, i.e. negative for
ESR1, progesterone receptor (PGR) and ERBB2,
and a gene expression profile correlated to the basal
subtype of breast cancer [48]. Furthermore, these
gene expression subtypes may be predictive of chemo-
therapeutic response. It is reported that the basal-like
and ERBB2+ subtypes are more sensitive to pacli-

taxel- and doxorubicin-containing preoperative che-
motherapy than the luminal and normal-like cancers
[52]. These intrinsic subtypes are discussed in more
detail in the accompanying review in this series by
Mullan and Milikan.
Numerous studies have now confirmed the existence
of breast cancer molecular subtypes; however, the
number of intrinsic subtypes remains to be resolved
(Table 1). A recent meta-analysis of 599 microarrays
from five separate cDNA microarray studies of breast
cancer found support for only three subtypes of breast
cancer [53]. These three subtypes were defined by
their ESR1/ERBB2 status. These subtypes were
ESR1+/ERBB2 (group 1), ERBB2+ (group 2) and
ESR1�/ERBB2� (group 3), and although similar, did
not exactly match the intrinsic subtypes defined by the
Sørlie et al. (2003) classification [48]. The normal-like,
luminal A and most of luminal B samples were
classified to group 1 (ESR1+/ERBB2� subtype).
Most of intrinsic ERBB2+ samples [48] were classified
in the group 2 subtype [53]. Group 3 captured only a
subset of intrinsic basal subtype [48]. The remainder
of intrinsic basal samples were distributed among the
three ESR1/ERBB2 subtypes. Whether these three
subtypes can be further subdivided into four, five, or
six subtypes remains to be confirmed.
Genomic and proteomic studies reinforce the robust-
ness of the molecular taxonomy that emerged from
these gene expression microarray studies. Genome-
wide aCGH of 89 breast tumours has demonstrated
that different DNA copy number alterations are
associated with each molecular subtype [54]. Not
surprisingly, ERBB2 subtype tumours exhibited more
frequent amplification at 17q12-q21, a region which
harbours the ERBB2 gene. Higher numbers of gains
and losses were associated with basal-like tumours.
For example, loss on 5q was associated with high-
grade, ESR1-negative, TP53-mutant and basal-like
breast tumours, whereas high levels of DNA amplifi-
cation, including more frequent gains on 8q, were
observed in luminal B tumours [54], which have high
proliferation. Interestingly, the oncogene MYC re-
sides on 8q and may be implicated in higher levels of
cell proliferation in these tumours. The observation
that different DNA copy number alterations are
associated with different subtypes may suggest that
different genomic instability mechanisms are impli-
cated in the pathogenesis of different subtypes. The
existence of three ESR1/ERBB2 subtypes is support-
ed in immunohistological studies [19, 49] (please refer
to the accompanying review in this series by Mullan
and Milikan).
In order for this molecular subtyping to be translated
into a clinically useful assay, a definitive gene
signature with predictive accuracy needs to be
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defined, and tested. To date such a set of intrinsic
genes has yet to be defined and intrinsic gene
expression lists of between 133 and 1300 genes are
reported (Table 1). A qRT-PCR assay with a set of 59
genes that stratifies breast tumours into molecular
subtypes [55] is promising, but the robustness of this
signature must be confirmed. Further studies on
larger cohorts of patients such as the EORTC-
MINDACT (Microarray In Node negative Disease
may Avoid ChemoTherapy) Trial are under way.
Future analyses of these data together with meta-
analyses of public data will lead to refinements in our
understanding of breast cancer subtypes and provide
more precise gene signatures that are predictive of
intrinsic breast cancer molecular subtypes.

Diagnosis and prognosis

There has been an increased focus on the implemen-
tation of rational molecular targeted therapy for
cancer [56]. The failure of current markers and
prognostic indicators to accurately predict the pa-
tients that would eventually succumb to fatal meta-
static disease without intervention, and those whose
disease course could not be altered, prompted clini-
cians to look for something new to try. Avoidance of
aggressive adjuvant therapy for patients who ulti-
mately would not benefit is highly desirable, but
current pathological markers do not have the ability to
classify such patients based on initial diagnosis.
Currently, therapies based on molecular diagnosis
are limited to hormonal based chemotherapy such as
tamoxifen for estrogen-responsive tumours or treat-

ment of ERBB2/Her2-positive tumours with Hercep-
tin. The hope for omics in the clinic is to ultimately tie
a molecular classification and signature to a specific
treatment regime.
While unsupervised clustering of gene expression
profiles has been used to identify intrinsic molecular
subtypes, supervised analysis of breast cancer gene
expression profiles has been used to find genes
associated with clinically important prognostic infor-
mation such as grade [57] and histology [58]. A
number of gene expression signature assays devel-
oped from microarray studies of breast cancer are
already commercially available. These include the 70-
gene prognosis signature MammaPrint [59] and the
21-gene Oncotype DX [60]. Both of these are
designed to be applied in selection of adjuvant therapy
for individual patients. Genomic Health released the
Oncotype DX Recurrence Score gene signature of
breast cancer prognosis test in 2004. That test tracks a
21 gene expression signature [60, 61] using qRT-PCR
and can be performed on formalin-fixed, paraffin-
embedded tumour tissue. The US Food and Drug
Administration (FDA) approved the 70-gene signa-
ture, MammaPrint, developed by Agendia (Amster-
dam, Netherlands) as the first in vitro diagnostic
multivariate index assay device. It will be marketed as
a test that distinguishes lymph node-negative breast
cancer patients who would benefit from additional
therapy and those who would not. Though the
prognostic ability of the 70-gene signature has been
supported by subsequent studies from this research
team [62, 63], concerns regarding the design and
statistical analysis used to derive the original 70-gene
signature have been raised [64 – 66]. A diagnostic test

Table 1. Gene Expression Studies of Intrinsic Breast Cancer Subtypes.

Breast cancer subtypes Number of
features (probes)

Number of
arrays

Microarray platform References

Basal Basal
II

Normal-
like

ERBB2+ Luminal
A

Luminal
B

Luminal
C

IFN

p p p p
496 84 8K cDNA

microarrays
[45]

p p p p p p
456 85 8K cDNA

microarrays
[46]

p p p p p
552 122 42K, 23K, 8K cDNA

microarrays
[47]

p p p p p p
706 99 7.6K cDNA

microarrays
[50]

p p p
367 126 Affymetrix U133A [118]

p p p p
37 123 Agilent A1, A2,

custom qRT-PCR
[54]

p p
54 20 ABI, Stanford

cDNA, Agilent
[49]

p p p p p p
1410 146 Agilent 1Av1, 1Av2

and custum
[100]
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is also being developed by Veridex, LLC, using a set of
76 genes that were identified in a study of gene
expression profiles of 286 lymph node-negative pa-
tients who had not received adjuvant systemic treat-
ment [67, 68].
Large prospective studies have been initiated to
determine the accuracy of test predictions from
these assays. The ongoing European MINDACT
clinical trial will examine the MammaPrint test and
may also prospectively evaluate the 76-gene Veridex
signature. The TAILORx study, which is sponsored by
the US National Cancer Institute and led by the
Eastern Cooperative Oncology Group, will test the
Oncotype DX Breast Cancer Assay. The TAILORx
study plans to enrol more than 10 000 women with
hormone-positive (ESR1+ and/or PgR+), ERBB2�
breast cancer that has not spread to the lymph nodes
and will use the Oncotype DX array to determine
which women will receive adjuvant chemotherapy in
addition to hormone therapy. Initial studies of the 21-
gene Oncotype DX signature are inconclusive. RT-
PCR analysis of the Oncotype DX 21 genes in
archived material from 4964 lymph node-negative
breast cancers that were not treated with adjuvant
chemotherapy reported that it was associated with risk
of breast cancer-specific mortality among ER-posi-
tive, tamoxifen-treated patients [69]. However, an-
other study at MD Anderson Cancer Center reported
no clear association between the Recurrence Score
and risk for distant recurrence in 149 patients who
were not treated with adjuvant therapy [70]. Further
studies are required to establish the clinical usefulness
of this assay.
Whilst these assays may help in decision making
regarding whether patients should undergo adjuvant
therapy, molecular tests are also required for predic-
tion of risk of local or distant recurrence. To address
this issue Kreike et al. , used cDNA microarrays, to
study gene expression profiles of pairs of primary
tumours and their recurrences [71]. They report that
primary tumours and their recurrences have highly
correlated gene expression profiles. Neither unsuper-
vised or supervised analysis of gene expression
profiles could reveal significant differences in gene
expression profiles between recurring and non-recur-
ring primary breast tumours [71].
Similarly, Nuyten et al. , were unable to recover gene
predictors of recurrence in a recent study in which
they applied a supervised analysis approach to identify
predictors of recurrence in a set of 161 gene expression
profiles of patients [62] with stage I or II breast cancer
who were treated with complete surgical excision of
the tumour followed by whole breast irradiation
(breast-conserving therapy) at the Netherlands Can-
cer Institute between 1984 and 1995 [72]. They report

also that other published prognostic signatures, in-
cluding MammaPrint [59], did not predict recurrence
in these data. The most successful predictor of local
recurrence identified in this study was the Chang et al.
2004 wound-healing signature [38], which correctly
predicted local recurrence in 7 out of 8 cases of the test
dataset (88 % sensitivity) with a specificity of 74 % (53
out of 72) [72]. However, the number of local
recurrences in the dataset was low (17/161), and
these results need to be confirmed in a larger study
[62].
Breast tumours normally metastasize to bone, lung or
other visceral sites. To investigate lung-specific meta-
stasis, Minn et al. [73] generated a xenograft model
from a derivative of the MDAMB-231 cell line which
was selected to be highly metastatic to lung, and using
transcriptomic analysis identified several genes whose
altered expression constituted a 54-gene Lung Meta-
static Signature (LMS). When cross-validated on a
cohort of 82 patients, the LMS predicted patients at
high risk for selective distant relapse to lung, but not to
bone. Recently, this group has supported this LMS in a
study on a larger cohort of 738 primary tumours [74] in
which they show that tumours which expressed the
LMS, and consequently were more likely to relapse in
lung than in bone, liver or pleura, were mostly ESR1-
negative (73 %), grade 3 (69 %), and the majority
belonged to basal (65 %) or ERBB2 (19 %) subtype
[74]. Interestingly, tumours which were LMS-positive
were also likely to be predicted as poor prognosis
using the MammaPrint signature (92 %) [59], Chang
et al. wound response signature [38, 75] or the
Oncotype DX Recurrence Score [60, 61].
Serious methodological issues, including small or
biased cohorts of patients, inappropriate statistical
analysis or validation are evident in landmark papers
on breast cancer expression profiling and need to be
addressed before these signatures are adopted as
clinical tools [27, 76 – 78]. The transition from an
observation that gene expression profiles can predict
clinical outcome to actual routine use of such profiles
is a long process, and success in well-designed clinical
trials must be demonstrated. A disappointing finding
in this regard was the fact that gene expression
measurements may not necessarily perform better
than conventional markers as reported by Eden et al.
2004 [79, 80]. These issues together with problems
relating to design and analysis of results of the
MINDACT clinical trial are described in detail in
several recent papers [76, 77, 81].
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Omics for drug discovery and therapeutics

Ultimately, even if the newly defined breast cancer
signatures and subtypes are not quite ready for the
clinic, they still have an enormous potential to
contribute to the drug discovery process. This is by
virtue of the fact that they can be used to identify
potential new rational molecular targets specific for
individual cancer subtypes. One example of this may
be the observation that the triple receptor negative
(ESR1, PGR, ERBB2) basal cancer subtype (see
above) may in fact be amenable to anti-EGFR
targeted therapies, as most of this subgroup express
EGFR, a fact previously unappreciated [82]. This
provides at least a possible molecular target in a
subgroup that has few satisfactory treatment options
at present.
The promise of connecting a cancer subtype to one
gene or protein drug target with efficacious com-
pounds is oversimplified as an ultimate objective.
However, the goal of individualised therapy tailored
to specific patients� phenotypes is enticing. Current
treatment of breast cancer is limited to a small range of
options. Following biopsy and/or surgery, patients may
be treated with antihormonal or growth factor drugs
either alone or in combination with conventional
cytotoxic chemotherapy and possibly radiation. These
treatment options fall short of ideal and can lead to
overtreatment of those who either do not need or will
not benefit from adjuvant therapy.
In response to this need for increased individualised
therapy, increased understanding of drug mechanisms
of action is required. As a result there have been many
developments to optimize genomic-scale readouts
applicable to drug development. High-throughput
omics technologies have been applied to screening
of new breast cancer drugs, elucidating the molecular
mechanism of drug action, predicting response and
potential harmful effects. Traditional drug discovery
processes have been revolutionised by high-through-
put approaches; now genome-wide high-throughput
approaches are being used to facilitate pharmacolog-
ical studies in silico. Toxicological screens have been
performed using traditional gene arrays and also so
called tox-chips, which contain only a subset of genes
most likely to be involved in various toxic responses
[83, 84]. These can be used both as rapid screens and as
a means of generating patterns of expression that may
help identify mechanisms of toxicological action. This
approach has been successful in identifying a mech-
anism of drug action which was previously unknown;
the response to 5-fluorouracil (5-FU), used to treat
breast cancer and colorectal cancer, was found to
directly correlate to the levels of DPYD (dihydropyr-
imidine dehydrogenase) mRNA. Tumours with high

levels of this enzyme showed increased resistance to 5-
FU owing to the fact that this enzyme catalyses the
breakdown of 5-FU [85].
Successful chemotherapy can in many cases lead to a
significantly better outcome after breast cancer sur-
gery; however, intrinsic or acquired drug resistance
can reduce potential responders by up to 50 % [86].
Identification of molecular markers of drug resistance
is one approach to uncovering common mechanisms
of drug resistance and finding ways to circumvent
them. Distinct gene expression and DNA methylation
profiles associated with acquired resistance to fulves-
trant or tamoxifen were described by Fan et al. (2006).
These authors demonstrated that different molecular
changes result from resistance to different antiestro-
gens. Most notably, there was dramatically reduced
expression of ESR1 in cells refractory to estrogen
treatment in fulvestrant-resistant lines and mainte-
nance of functional ESR1 but altered signalling
patterns in tamoxifen-resistant cells [87].
Omic approaches have also been applied to increase
our understanding of response to radiation therapy.
Radiation-induced gene or protein expression
changes have the potential to identify radiation-
specific genes that can be used as biomarkers to assess
radiation exposure and to probe the mechanism of
cellular responses to radiation. In 1999, Amundsen
et al. discovered various transcripts not previously
known to be induced by radiation in MCF-7 breast
cancer cells. Additionally, they demonstrated that
FRA1 was involved in p53-mediated radiation re-
sponse by virtue of its upregulation following radia-
tion treatment only in breast cancer cells with wild-
type p53 [88]. Park et al. (2002) developed a radiation-
specific cDNA array or Rad Chip of 384 genes, based
on gene expression responses to gamma irradiation.
From this defined set it was then possible to distin-
guish different types of genotoxic stress and detect
radiation exposure ex vivo [89]. As with drug com-
pounds, radio resistance can become a problem for
certain tumours, and omic approaches have also been
used to define gene expression responses indicative of
resistance in order to better understand the mecha-
nism and to develop strategies to overcome it [90, 91].
Identifying gene targets for radiosensitisation and/or
chemosensitisation is an important strategy in im-
proving anticancer treatments. Ideally, we will get to a
stage where our understanding of drug action allows
us to tailor therapeutic regimens so that each patient
receives the maximum benefit based on the omic
characteristics of their particular disease.
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Genes which contribute to gene expression signatures
of breast cancer

As discussed previously, there have been a number of
studies that have produced gene expression signatures
that characterise different breast cancer phenotypes.
If one looks at these in detail, the overlap in the gene
lists comprising each signature is generally small,
causing some to question their validity. For example,
there are only 3 genes in common between the 70-gene
MammaPrint and the 76-gene Rotterdam signature
[59,68]. Even the genes in the various intrinsic breast
cancer molecular subtype signatures vary between
studies (Table 1). However, a recent study that
examined different gene expression signatures ap-
plied to a single dataset of 295 samples [92] found
similar patient outcome was predicted using the
intrinsic gene signature or many different prognostic
gene classifiers [38, 59, 60, 75]. Most tumours with a
basal-like, ERRB2+ or luminal B subtypes were
classified as having a poor 70-gene MammaPrint
profile signature [59], activated wound response gene
signature [38] and high Recurrence Score [60, 92]
while all luminal A subtype tumours were predicted to
have a good outcome using the 70-gene profile [59,
92]. Overall, there was a high level of concordance in
prognosis prediction even though the overlap in gene
signatures was minimal. In many ways, this is not
unexpected and can be partly explained by the highly
correlated nature of gene expression. Because many
genes interact in overlapping pathways and networks
in producing a phenotype, correlations reflecting their
co-regulation allow one to select several combina-
tions, each of which has similar predictive power. The
observation that many genes (Table 1) contribute to
the intrinsic subtypes and breast cancer signatures
may reflect different transcriptional or epigenetic
processes.
The predominant phenotypic distinction in breast
cancer is between ESR1+ and ESR1� and this is
evident in the intrinsic breast cancer molecular
subtypes and in prognostic gene predictors. Each
intrinsic gene list includes a significant number of
genes that are responsive to estrogen, and overlaps
with a set of 822 estrogen-responsive genes that were
identified by exposing ESR1+ MCF-7 breast cancer
cell line to 17-beta-estradiol [93]. Perhaps unsurpris-
ingly, hormone receptor-positive (ESR+) breast can-
cer patients who are treated with tamoxifen have a
better prognosis if they express estrogen-responsive
genes [93].
Other genes within the intrinsic list are genes asso-
ciated with proliferation (CENF, BIRC5, BUB1,
GTPBP4, TTK) and have a high correlation with
tumour grade and poor patient prognosis [57,93]. In a

study of gene expression profiles of 189 invasive breast
carcinomas, a set of 97 genes were identified that
strongly associated with the distinction between grade
1 and 3. Most of these 97 were involved in cell cycle
regulation and proliferation [57]. This set of genes was
validated on an independent set of 597 expression
profiles from previously published studies, and it was
demonstrated that high expression levels for these
genes were associated with a higher risk of recurrence.
Proliferation-associated genes are a significant com-
ponent of both the Oncotype Dx [60] and MammaP-
rint 70-gene prognosis signature [59]. Furthermore,
proliferation-associated genes also form a major part
(14/53) of the recently described qRT-PCR intrinsic
gene list [55].
Other studies have examined which genes are ex-
pressed in tumour stroma and in tumour cells exposed
to different environmental conditions. Bacac et al.
examined gene expression profiles of laser capture
microdissected murine stromal cells derived from an
animal model of non-invasive and invasive prostate
cancer. Investigation of human orthologues of these
murine stromal genes showed they were also ex-
pressed in invasive human cancer and were associated
with poor prognosis in prostate and breast cancer [94].
Two recent studies have derived significant predictors
of prognosis of breast tumour by examining the genes
that are induced when cells are grown in vitro under
different conditions [36, 95]. Park et al. identified a set
of genes that were differentially expressed between
transplanted mouse plasma cell tumor tissue and cell
lines derived from them [95]. Genes induced when
mouse plasma cell tumours are first grown in vivo then
in vitro were associated with ESR expression, grade,
the 70-gene prognosis signature, the wound-healing
signature and ERBB2+ genes of human breast cancer
[95]. Network analysis of pathways in which these
genes are expressed implicated genes activated by
EGF (epidermal growth factor), IFNg, IL-4, cyclin
A2, TNF and AKT1 in the poor prognosis group. In
contrast, genes that were activated by PTGS2 (COX2)
had lower expression in poor prognosis tumours [95].

Experimental challenges in breast cancer
transcriptomics

Although microarrays and other omic technologies
allow the generation of vast quantities of data on each
individual sample, the wealth of data they provide
does not mean that one can ignore the basics of good
experimental design. Many early studies did not
include sufficient replication to estimate and account
for experimental and biological variance and such
replication is necessary to assure that the signatures
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that are found can be translated from the laboratory to
the clinic. Replicates of each covariate are essential. A
covariate is a variable that is potentially predictive of
the outcome under study. Whilst it is hoped that these
predictive covariates are biologically or clinically
relevant, sometimes covariates may explain experi-
mental variance (e.g. sample batch date). Analyses
should be designed so as to minimize confounding
covariates. For example, if all ESR1+ cases were
hybridized on a specific date, then it would be
impossible to determine whether a dependent effect
was due to ESR1 status or a batch effect. This hidden
covariate is called confounding. Sampling, mRNA
extractions, microarray hybridisation batches and
other experimental procedures should be randomised
to minimise the chance of this occurring.
But other elements of sound experimental design
cannot be ignored either. For example, high-quality,
reproducible arrays and optimised, standardised pro-
tocols should be used. Similarly, high-quality RNA
extracts should be used and the quality confirmed
before labelling and hybridisation. Poor-quality RNA
or hybridisation assays failing to meet quality stand-
ards should be excluded from analysis. One of the key
steps in data analysis is normalisation, which adjusts
the measurements across arrays to allow effective
comparisons. Many normalisation algorithms assume
that either the sum or the mean of gene expression
should be equal across all arrays, but outlying or poor-
quality data can skew the results.
Another often ignored element of good omic analysis
is the use of a well-designed data management system
to track information regarding clinical samples and
laboratory processes. This is essential not only for day-
to-day laboratory management and quality control,
but also to effectively link clinical information neces-
sary for analysis of the data that are ultimately
produced. For both legislative (Health Insurance
Portability and Accountability compliance) and eth-
ical reasons it is important that such a sample
annotation database or data management system
provide a confidential and secure process for de-
identifying or anonymising subject records. Many
laboratories have found that commercial Laboratory
Information Management Systems (LIMS) software is
designed for large-scale or institutional use and cannot
afford the high investment of time and cost that these
require. However, groups that neglect the data
management aspect of an omic study and implement
poorly managed in-house databases with inadequate
access to subject and sample information considerably
limit the analysis that can be performed on exper-
imental data. Indeed, due to the high dimensional
nature of omic data and the fact that sample param-
eters may be confounded, insufficient metadata (such

as incomplete clinical information) may significantly
bias interpretation. This may result in a study that
produces a large amount of data that was expensive to
generate but reveals no significant biological insights.
An open source, lightweight, simple Web-based tool,
PASSIM, that fulfils many of the above criteria and
may meet the needs of research projects was recently
developed by the microarray group at the European
Bioinformatics Institute [96].
A complete description of methods for the analysis of
microarrays is beyond the scope of this article, but it
has been discussed in depth in several other reviews
[97, 98]. Several early microarray gene expression
studies suffered from poor design, confounding co-
variates and insufficient or overfitting during classifier
cross-validation [65]. Different feature selection ap-
proaches, even when applied to the same dataset, can
produce different gene lists [99], and similarly differ-
ent classification algorithms may result in different
classifier success. Consequently, the findings from
high-throughput omic studies need to be validated.
Gene expression studies are now frequently support-
ed with qRT-PCR data, and increasingly tissue micro-
arrays are used. Data mining of published microarray
studies represents another approach to validate a
selected gene signature [48, 100, 101], although this
requires that public databases include appropriate
clinical information on each sample so that valid
conclusions can be drawn.

Integrated data analysis – gene expression
microarrays

Several public repositories have been established to
collect the publicly available microarray data – Gene
Expression Omnibus (GEO) at the NCBI [102],
Center for Information Biology gene EXpression
(CIBEX) in DDBJ, Japan [103], and ArrayExpress at
the European Bioinformatics Institute [104]. A re-
searcher can query these databases for all experiments
of a given type and retrieve the respective data, which
then can be combined with the researcher�s own data
or used for designing new experiments. These repo-
sitories represent a considerable data resource. The
public microarray repositories ArrayExpress and the
GEO now contain over 100 000 microarray gene
expression profiles (Table 2). With growing amounts
of microarray data, improving quality and new
analysis methods being developed, these form a rich
resource for both data mining and validation of omic
studies of breast cancer (reviewed by [105]). It is likely
that these data will generate findings and produce new
information long after the experiments have been
completed. Several new gene lists have been gener-
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ated from reanalysis of published data. For example,
CENPF was recently identified as a marker of poor
prognosis and chromosomal instability in a reanalysis
of previously published data [59], and the significance
of this gene was confirmed using tissue microarray
analysis [64].
Datasets can also be combined in meta analysis. The
average number of arrays per study is only 30 – 40
(Table 2). Given that the number of features (genes)
on microarrays now regularly exceeds 50000, this
presents a considerable dimensionality problem.
Since the cost and availability of biomaterial, such
biopsy tissue, limits the number of samples analysed,
this low case-to-feature ratio is likely to remain an
issue. As a result, meta-analysis, or merging data from
multiple studies, is an attractive option. Meta-analysis
of many gene expression datasets has been applied to
obtain more robust breast cancer gene signatures
[101] and to define the number of well-supported
intrinsic molecular subtypes of breast cancer [53].
Simple methods, such as co-inertia analysis, can be
used to compare the global correlation between gene
expression profiles of the same tissues or cell lines
obtained in different studies, even if these studies have
used arrays with different catalogues and numbers of
genes [106].
Matching of genes or DNA probes across microarray
platforms remains challenging. Older or custom
microarrays may contain different subsets of the
genome. Even when whole-genome arrays are used,
microarray platforms may not be directly comparable.
Probes may be designed to different gene regions or
splice variants. Moreover, the quality of probe design
may vary. Whilst older cross-platform analysis of
microarray data showed poor concordance, more
rigorous matching of probes greatly improved corre-
lation across platforms [107]. Several reports have
demonstrated that cross-platform correlation is in-
creased when DNA probes are sequence-matched
[108, 109]. Matched sets of genes across different
microarray studies can be combined in a meta-analysis
using simple non-parametric rank statistics [110] or a
Bayesian framework [111]. Bayesian methods are

particularly attractive as they use prior knowledge (or
assumptions) about relative accuracies of data sour-
ces, and their utility has been demonstrated in an
integrated analysis of four breast cancer datasets
[112]. Shen et al. applied a two-stage Bayesian
mixture modelling approach to analyse four inde-
pendent microarray studies obtained on different
technological platforms (n=305 samples) and identi-
fied a 90-gene meta-interstudy signature that was
predictive of survival in breast cancer patients [112].
Much information can be obtained by comparing gene
profiles across studies or even between species. For
instance, comparison of the expression profiles of
homologues across a range of organisms can help
identify orthologous genes [113], or even orthologous
processes such as the cell cycle in different organisms.
Furthermore, gene signatures observed using animal
models have been validated using human clinical
expression profiles [94,95]. Increasingly, studies inte-
grate microarray data with data from other omic
technologies [9, 114], and software algorithms and
tools are being developed to support such a systems
approach. New integrated meta-analysis methods are
being developed and applied to many types of omic
data from ongoing large clinical trials and other
studies, including transcriptomic, proteomics [115]
and metabolomic data, as well as others. These
integrated datasets and their analyses promise to
yield a more complete understanding and insight than
can be obtained from any single approach.

Conclusions and perspectives

In the past decade, high-throughput biology and gene
expression profiling have matured considerably. The
technology has developed rapidly, and these have
been complemented by better experimental design
and laboratory protocols, statistical tools, data stand-
ards, public data repositories and analysis software.
Whilst considerable developments in all of these areas
are still required, the development of commercial
gene signature assays such as MammaPrint and

Table 2. Omics data in public repositories*.

Repository Experiments Number of arrays URL

ArrayExpress 2077 67 863 http://www.ebi.ac.uk/arrayexpress/

GEO 5614 141 830 http://www.ncbi.nlm.nih.gov/geo/

CIBEX 10 483 http://cibex.nig.ac.jp/

SMD 12 385 http://smd.stanford.edu/

GEO, Gene Expression Omnibus; SMD, Stanford Microarray Database; CIBEX, An array is a single-microarray hybridisation; an
experiment is a collection of arrays. Counts compiled May 2007. ArrayExpress statistics based on monthly report April 2007. SMD is a
repository for researchers at Stanford and their collaborators. SMD holds>66000 arrays; however, much of this data is private. Only public
data in SMD listed.
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Oncotype DX demonstrates the potential of omic
studies. These gene signatures were derived when
microarrays were a relatively new and immature
technology. Whilst the ultimate success of these assays
remains to be determined, through several ongoing
large-scale trials, the next generation of omic signa-
tures is already being developed using more advanced
technology and with computational methods that
utilise integrated approaches.
In the context of breast cancer, new omic studies are
likely to provide unprecedented capabilities to derive
biomarkers of prognosis and drug response. These
may be combined with, new less-invasive approaches
for detection and monitoring of breast tissue. Cur-
rently, most breast tumours are detected in breast
examination and mammography, and if abnormalities
are found, these are followed up with invasive needle
or surgical biopsy. Less-invasive approaches would be
a significant advance, and the use of fine-needle
aspirate, nipple aspirate and ductal lavage fluid is
being assessed; recent studies have used microarrays
and proteomics to identify ESR1-positive and -
negative molecular differences and biomarkers in
nipple aspirate samples [116 – 118]. For patients, the
feasibility of developing omic applications that rely on
such less-invasive approaches would represent a
particularly important advance, as they may encour-
age more women to be screened more often and to
allow earlier detection, when survival and response to
therapy are optimal.

1 Lipshutz, R. J., Fodor, S. P., Gingeras, T. R. and Lockhart,
D. J. (1999) High density synthetic oligonucleotide arrays.
Nat. Genet. 21, 20 –24.

2 Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P. and Trent,
J. M. (1999) Expression profiling using cDNA microarrays.
Nat. Genet. 21, 10 –14.

3 Cheung, V. G., Morley, M., Aguilar, F., Massimi, A., Kucher-
lapati, R. and Childs, G. (1999) Making and reading micro-
arrays. Nat. Genet. 21, 15 –19.

4 Yezhelyev, M. V., Gao, X., Xing, Y., Al-Hajj, A., Nie, S. and
O�Regan, R. M. (2006) Emerging use of nanoparticles in
diagnosis and treatment of breast cancer. Lancet Oncol. 7,
657–667.

5 Porter, D., Yao, J. and Polyak, K. (2006) SAGE and related
approaches for cancer target identification. Drug Discov.
Today. 11, 110–118.

6 Ng, P., Tan, J. J., Ooi, H. S., Lee, Y. L., Chiu, K. P., Fullwood,
M. J., Srinivasan, K. G., Perbost, C., Du, L., Sung, W. K., Wei,
C. L. et al. (2006) Multiplex sequencing of paired-end ditags
(MS-PET): a strategy for the ultra-high-throughput analysis
of transcriptomes and genomes. Nucleic Acids Res. 34, e84.

7 Mantripragada, K. K., Buckley, P. G., de Stahl, T. D. and
Dumanski, J. P. (2004) Genomic microarrays in the spotlight.
Trends Genet. 20, 87 –94.

8 Albertson, D. G. and Pinkel, D. (2003) Genomic microarrays
in human genetic disease and cancer. Hum. Mol. Genet. 12
Spec. No. 2, R145–152.

9 Yao, J., Weremowicz, S., Feng, B., Gentleman, R. C., Marks,
J. R., Gelman, R., Brennan, C. and Polyak, K. (2006)
Combined cDNA array comparative genomic hybridization

and serial analysis of gene expression analysis of breast tumor
progression. Cancer Res. 66, 4065–4078.

10 Stacey, S. N., Manolescu, A., Sulem, P., Rafnar, T., Gud-
mundsson, J., Gudjonsson, S. A., Masson, G., Jakobsdottir,
M., Thorlacius, S., Helgason A. et al. (2007) Common variants
on chromosomes 2q35 and 16q12 confer susceptibility to
estrogen receptor-positive breast cancer. Nat. Genet. 39, 865–
869.

11 Morley, M., Molony, C. M., Weber, T. M., Devlin, J. L.,
Ewens, K. G., Spielman, R. S. and Cheung, V. G. (2004)
Genetic analysis of genome-wide variation in human gene
expression. Nature 430, 743–747.

12 ENCODE Project Consortium (2007) Identification and
analysis of functional elements in 1% of the human genome
by the ENCODE pilot project. Nature 447, 799–816.

13 Das, P. M., Ramachandran, K., vanWert, J. and Singal, R.
(2004) Chromatin immunoprecipitation assay. Biotechni-
ques 37, 961–969.

14 Bulyk, M. L. (2006) DNA microarray technologies for
measuring protein-DNA interactions. Curr. Opin. Biotech-
nol. 17, 422–430.

15 Suzuki, H., Gabrielson, E., Chen, W., Anbazhagan, R., van
Engeland, M., Weijenberg, M. P., Herman, J. G. and Baylin,
S. B. (2002) A genomic screen for genes upregulated by
demethylation and histone deacetylase inhibition in human
colorectal cancer. Nat. Genet. 31, 141–149.

16 Yan, P. S., Chen, C. M., Shi, H., Rahmatpanah, F., Wei, S. H.,
Caldwell, C. W. and Huang, T. H. (2001) Dissecting complex
epigenetic alterations in breast cancer using CpG island
microarrays. Cancer Res. 61, 8375–8380.

17 Gitan, R. S., Shi, H., Chen, C. M., Yan, P. S. and Huang, T. H.
(2002) Methylation-specific oligonucleotide microarray: a
new potential for high-throughput methylation analysis.
Genome Res. 12, 158–164.

18 Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J.,
Barber, T. D., Mandelker, D., Leary, R. J., Ptak, J., Silliman,
N. et al. (2006) The consensus coding sequences of human
breast and colorectal cancers. Science 314, 268–274.

19 Bertucci, F., Birnbaum, D. and Goncalves, A. (2006) Proteo-
mics of breast cancer: principles and potential clinical
applications. Mol. Cell. Proteomics 5, 1772–1786.

20 MacBeath, G. and Schreiber, S. L. (2000) Printing proteins as
microarrays for high-throughput function determination.
Science 289, 1760–1763.

21 Ivanov, S. S., Chung, A. S., Yuan, Z. L., Guan, Y. J., Sachs,
K. V., Reichner, J. S. and Chin, Y. E. (2004) Antibodies
immobilized as arrays to profile protein post-translational
modifications in mammalian cells. Mol. Cell. Proteomics 3,
788–795.

22 Keller, E. T. and Yao, Z. (2002) Applications of high-
throughput methods to cancer metastases. J. Musculoskelet.
Neuronal Interact. 2, 575–578.

23 Hoos, A. and Cordon-Cardo, C. (2001) Tissue microarray
profiling of cancer specimens and cell lines: opportunities and
limitations. Lab. Invest. 81, 1331–1338.

24 Nilsson, P., Paavilainen, L., Larsson, K., Odling, J., Sundberg,
M., Andersson, A. C., Kampf, C., Persson, A., Al-Khalili
Szigyarto, C., Ottosson, J. et al. (2005) Towards a human
proteome atlas: high-throughput generation of mono-specific
antibodies for tissue profiling. Proteomics 5, 4327–4337.

25 Taussig, M. J., Stoevesandt, O., Borrebaeck, C. A., Bradbury,
A. R., Cahill, D., Cambillau, C., de Daruvar, A., Dubel, S.,
Eichler, J., Frank, R. et al. (2007) ProteomeBinders: planning
a European resource of affinity reagents for analysis of the
human proteome. Nat. Methods. 4, 13–17.

26 Davis, M. A. and Hanash, S. (2006) High-throughput genomic
technology in research and clinical management of breast
cancer. Plasma-based proteomics in early detection and
therapy. Breast Cancer Res. 8, 217.

27 Lau, T. Y., O�Connor, D. P., Brennan, D. J., Duffy, M. J.,
Pennington, S. R. and Gallagher, W. M. (2007) Breast cancer

Cell. Mol. Life Sci. Vol. 64, 2007 Multi-author Review Article 3197



proteomics: clinical perspectives. Expert Opin. Biol. Ther. 7,
209–219.

28 Claudino, W. M., Quattrone, A., Biganzoli, L., Pestrin, M.,
Bertini, I. and Di Leo, A. (2007) Metabolomics: available
results, current research projects in breast cancer, and future
applications. J. Clin. Oncol. 25, 2840–2846.

29 Shoemaker, R. H. (2006) The NCI60 human tumour cell line
anticancer drug screen. Nat. Rev. Cancer. 6, 813–823.

30 Weinstein, J. N. and Pommier, Y. (2003) Transcriptomic
analysis of the NCI-60 cancer cell lines. C. R. Biol. 326, 909–
920.

31 Roschke, A. V., Tonon, G., Gehlhaus, K. S., McTyre, N.,
Bussey, K. J., Lababidi, S., Scudiero, D. A., Weinstein, J. N.
and Kirsch, I. R. (2003) Karyotypic complexity of the NCI-60
drug-screening panel. Cancer Res. 63, 8634–8647.

32 Reinhold, W. C., Reimers, M. A., Maunakea, A. K., Kim, S.,
Lababidi, S., Scherf, U., Shankavaram, U. T., Ziegler, M. S.,
Stewart, C., Kouros-Mehr, H. et al. (2007) Detailed DNA
methylation profiles of the E-cadherin promoter in the NCI-
60 cancer cells. Mol. Cancer Ther. 6, 391–403.

33 Nishizuka, S., Charboneau, L., Young, L., Major, S., Rein-
hold, W. C., Waltham, M., Kouros-Mehr, H., Bussey, K. J.,
Lee, J. K., Espina, V. et al. (2003) Proteomic profiling of the
NCI-60 cancer cell lines using new high-density reverse-phase
lysate microarrays. Proc. Natl. Acad. Sci. USA. 100, 14229–
14234.

34 Ross, D. T., Scherf, U., Eisen, M. B., Perou, C. M., Rees, C.,
Spellman, P., Iyer, V., Jeffrey, S. S., Van de Rijn, M., Waltham,
M. et al. (2000) Systematic variation in gene expression
patterns in human cancer cell lines. Nat. Genet. 24, 227–35.

35 Neve, R. M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F. L.,
Fevr, T., Clark, L., Bayani, N., Coppe, J. P., Tong, F. et al.
(2006) A collection of breast cancer cell lines for the study of
functionally distinct cancer subtypes. Cancer Cell 10, 515–
527.

36 Fournier, M. V., Martin, K. J., Kenny, P. A., Xhaja, K., Bosch,
I., Yaswen, P. and Bissell, M. J. (2006) Gene expression
signature in organized and growth-arrested mammary acini
predicts good outcome in breast cancer. Cancer Res. 66,
7095–7102.

37 Hu, M., Yao, J., Cai, L., Bachman, K. E., van den Brule, F.,
Velculescu, V. and Polyak, K. (2005) Distinct epigenetic
changes in the stromal cells of breast cancers. Nat. Genet. 37,
899–905.

38 Chang, H. Y., Sneddon, J. B., Alizadeh, A. A., Sood, R.,
West, R. B., Montgomery, K., Chi, J. T., van de Rijn, M.,
Botstein, D. and Brown, P. O. (2004) Gene expression
signature of fibroblast serum response predicts human cancer
progression: similarities between tumors and wounds. PLoS
Biol. 2, E7.

39 Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S.,
Itzykson, R. A., Come, C., Savagner, P., Gitelman, I. ,
Richardson, A. and Weinberg, R. A. (2004) Twist, a master
regulator of morphogenesis, plays an essential role in tumor
metastasis. Cell 117, 927–939.

40 McGee, S. F., Lanigan, F., Gilligan, E. and Groner, B. (2006)
Mammary gland biology and breast cancer. Conference on
Common Molecular Mechanisms of Mammary Gland Devel-
opment and Breast Cancer Progression. EMBO Rep. 7, 1084–
1088.

41 Howlin, J., McBryan, J., Napoletano, S., Lambe, T., McArdle,
E., Shioda, T. and Martin, F. (2006) CITED1 homozygous null
mice display aberrant pubertal mammary ductal morpho-
genesis. Oncogene 25, 1532–1542.

42 Shan, L., Yu, M. and Snyderwine, E. G. (2005) Global gene
expression profiling of chemically induced rat mammary
gland carcinomas and adenomas. Toxicol. Pathol. 33, 768–
775.

43 Ma, X. J., Salunga, R., Tuggle, J. T., Gaudet, J., Enright, E.,
McQuary, P., Payette, T., Pistone, M., Stecker, K., Zhang,
B. M. et al. (2003) Gene expression profiles of human breast

cancer progression. Proc. Natl. Acad. Sci. USA 100, 5974–
5979.

44 Kristensen, V. N., Edvardsen, H., Tsalenko, A., Nordgard,
S. H., Sorlie, T., Sharan, R., Vailaya, A., Ben-Dor, A.,
Lonning, P. E., Lien, S., Omholt, S. et al. (2006) Genetic
variation in putative regulatory loci controlling gene expres-
sion in breast cancer. Proc. Natl. Acad. USA 103, 7735–7740.

45 Turashvili, G., Bouchal, J., Baumforth, K., Wei, W., Dziech-
ciarkova, M., Ehrmann, J., Klein, J., Fridman, E., Skarda, J.,
Srovnal, J. et al. (2007) Novel markers for differentiation of
lobular and ductal invasive breast carcinomas by laser micro-
dissection and microarray analysis. BMC Cancer 7, 55.

46 Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey,
S. S., Rees, C. A., Pollack, J. R., Ross, D. T., Johnsen, H.,
Akslen, L. A. et al. (2000) Molecular portraits of human
breast tumours. Nature 406, 747–752.

47 Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S.,
Johnsen, H., Hastie, T., Eisen, M. B., van de Rijn, M., Jeffrey,
S. S. et al. (2001) Gene expression patterns of breast
carcinomas distinguish tumor subclasses with clinical impli-
cations. Proc. Natl. Acad. USA 98, 10869–10874.

48 Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S.,
Nobel, A., Deng, S., Johnsen, H., Pesich, R., Geisler, S. et al.
(2003) Repeated observation of breast tumor subtypes in
independent gene expression data sets. Proc. Natl. Acad.
USA 100, 8418–8423.

49 Carey, L. A., Perou, C. M., Livasy, C. A., Dressler, L. G.,
Cowan, D., Conway, K., Karaca, G., Troester, M. A., Tse,
C. K., Edmiston, S. et al. (2006) Race, breast cancer subtypes,
and survival in the Carolina Breast Cancer Study. JAMA 295,
2492–2502.

50 Sorlie, T., Wang, Y., Xiao, C., Johnsen, H., Naume, B.,
Samaha, R. R. and Borresen-Dale, A. L. (2006) Distinct
molecular mechanisms underlying clinically relevant sub-
types of breast cancer: gene expression analyses across three
different platforms. BMC Genomics 7, 127.

51 Sotiriou, C., Neo, S. Y., McShane, L. M., Korn, E. L., Long,
P. M., Jazaeri, A., Martiat, P., Fox, S. B., Harris, A. L. and Liu,
E. T. (2003) Breast cancer classification and prognosis based
on gene expression profiles from a population-based study.
Proc. Natl. Acad. USA 100, 10393–10398.

52 Rouzier, R., Perou, C. M., Symmans, W. F., Ibrahim, N.,
Cristofanilli, M., Anderson, K., Hess, K. R., Stec, J., Ayers,
M., Wagner, P. et al. (2005) Breast cancer molecular subtypes
respond differently to preoperative chemotherapy. Clin.
Cancer Res. 11, 5678–5685.

53 Kapp, A. V., Jeffrey, S. S., Langerod, A., Borresen-Dale,
A. L., Han, W., Noh, D. Y., Bukholm, I. R., Nicolau, M.,
Brown, P. O. and Tibshirani, R. (2006) Discovery and
validation of breast cancer subtypes. BMC Genomics 7, 231.

54 Bergamaschi, A., Kim, Y. H., Wang, P., Sorlie, T., Hernandez-
Boussard, T., Lonning, P. E., Tibshirani, R., Borresen-Dale,
A. L. and Pollack, J. R. (2006) Distinct patterns of DNA copy
number alteration are associated with different clinicopatho-
logical features and gene-expression subtypes of breast
cancer. Genes Chromosomes Cancer 45, 1033–1040.

55 Perreard, L., Fan, C., Quackenbush, J. F., Mullins, M.,
Gauthier, N. P., Nelson, E., Mone, M., Hansen, H., Buys,
S. S., Rasmussen, K. et al.(2006) Classification and risk
stratification of invasive breast carcinomas using a real-time
quantitative RT-PCR assay. Breast Cancer Res. 8, R23.

56 Hennessy, B. T., Gonzalez-Angulo, A. M. and Hortobagyi,
G. N. (2005) Individualization of neoadjuvant therapy for
breast cancer according to molecular tumor characteristics.
Nat. Clin. Pract. Oncol. 2, 598–599.

57 Sotiriou, C., Wirapati, P., Loi, S., Harris, A., Fox, S., Smeds, J.,
Nordgren, H., Farmer, P., Praz, V., Haibe-Kains, B. et al.
(2006) Gene expression profiling in breast cancer: under-
standing the molecular basis of histologic grade to improve
prognosis. J. Natl. Cancer Inst. 98, 262–272.

58 Hannemann, J., Velds, A., Halfwerk, J. B., Kreike, B., Peterse,
J. L. and van de Vijver, M. J. (2006) Classification of ductal

3198 A. C. Culhane and J. Howlin Transcriptomics and beyond



carcinoma in situ by gene expression profiling. Breast Cancer
Res. 8, R61.

59 van �t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart,
A. A., Mao, M., Peterse, H. L., van der Kooy, K., Marton,
M. J., Witteveen, A. T. et al. (2002) Gene expression profiling
predicts clinical outcome of breast cancer. Nature 415, 530–
536.

60 Paik, S., Shak, S., Tang, G., Kim, C., Baker, J., Cronin, M.,
Baehner, F. L., Walker, M. G., Watson, D., Park, T. et al.
(2004) A multigene assay to predict recurrence of tamoxifen-
treated, node-negative breast cancer. N. Engl. J. Med. 351,
2817–2826.

61 Paik, S., Tang, G., Shak, S., Kim, C., Baker, J., Kim, W.,
Cronin, M., Baehner, F. L., Watson, D., Bryant, J. et al. (2006)
Gene expression and benefit of chemotherapy in women with
node-negative, estrogen receptor-positive breast cancer.
J. Clin. Oncol. 24, 3726–3734.

62 van de Vijver, M. J., He, Y. D., van�t Veer, L. J., Dai, H., Hart,
A. A., Voskuil, D. W., Schreiber, G. J., Peterse, J. L., Roberts,
C., Marton, M. J. et al. (2002) A gene-expression signature as
a predictor of survival in breast cancer. N. Engl. J. Med. 347,
1999–2009.

63 Buyse, M., Loi, S., van�t Veer, L., Viale, G., Delorenzi, M.,
Glas, A. M., d�Assignies, M. S., Bergh, J., Lidereau, R., Ellis,
P. et al. (2006) Validation and clinical utility of a 70-gene
prognostic signature for women with node-negative breast
cancer. J. Natl. Cancer Inst. 98, 1183–1192.

64 O�Brien, S. L., Fagan, A., Fox, E. J., Millikan, R. C., Culhane,
A. C., Brennan, D. J., McCann, A. H., Hegarty, S., Moyna, S.,
Duffy, M. J. et al. (2007) CENP-Fexpression is associated with
poor prognosis and chromosomal instability in patients with
primary breast cancer. Int. J. Cancer 120, 1434–1443.

65 Simon, R., Radmacher, M. D. and Dobbin, K. (2002) Design
of studies using DNA microarrays. Genet. Epidemiol. 23, 21 –
36.

66 Ein-Dor, L., Kela, I. , Getz, G., Givol, D. and Domany, E.
(2005) Outcome signature genes in breast cancer: is there a
unique set? Bioinformatics 21, 171–178.

67 Desmedt, C., Piette, F., Loi, S., Wang, Y., Lallemand, F.,
Haibe-Kains, B., Viale, G., Delorenzi, M., Zhang, Y.,
d�Assignies, M. S. et al. (2007) Strong time dependence of
the 76-gene prognostic signature for node-negative breast
cancer patients in the TRANSBIG multicenter independent
validation series. Clin. Cancer Res. 13, 3207–3214.

68 Wang, Y., Klijn, J. G., Zhang, Y., Sieuwerts, A. M., Look,
M. P., Yang, F., Talantov, D., Timmermans, M., Meijer-van
Gelder, M. E., Yu, J. et al. (2005) Gene-expression profiles to
predict distant metastasis of lymph-node-negative primary
breast cancer. Lancet 365, 671–679.

69 Habel, L. A., Shak, S., Jacobs, M. K., Capra, A., Alexander,
C., Pho, M., Baker, J., Walker, M., Watson, D., Hackett, J. et
al. (2006) A population-based study of tumor gene expression
and risk of breast cancer death among lymph node-negative
patients. Breast Cancer Res. 8, R25.

70 Esteva, F. J., Sahin, A. A., Cristofanilli, M., Coombes, K.,
Lee, S. J., Baker, J., Cronin, M., Walker, M., Watson, D.,
Shak, S. et al. (2005) Prognostic role of a multigene reverse
transcriptase-PCR assay in patients with node-negative breast
cancer not receiving adjuvant systemic therapy. Clin. Cancer
Res. 11, 3315–3319.

71 Kreike, B., Halfwerk, H., Kristel, P., Glas, A., Peterse, H.,
Bartelink, H. and van de Vijver, M. J. (2006) Gene expression
profiles of primary breast carcinomas from patients at high
risk for local recurrence after breast-conserving therapy. Clin.
Cancer Res. 12, 5705–5712.

72 Nuyten, D. S., Kreike, B., Hart, A. A., Chi, J. T., Sneddon,
J. B., Wessels, L. F., Peterse, H. J., Bartelink, H., Brown, P. O.,
Chang, H. Y. et al.. (2006) Predicting a local recurrence after
breast-conserving therapy by gene expression profiling.
Breast Cancer Res. 8, R62.

73 Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W.,
Giri, D. D., Viale, A., Olshen, A. B., Gerald, W. L. and

Massague, J. (2005) Genes that mediate breast cancer meta-
stasis to lung. Nature 436, 518–524.

74 Minn, A. J., Gupta, G. P., Padua, D., Bos, P., Nguyen, D. X.,
Nuyten, D., Kreike, B., Zhang, Y., Wang, Y., Ishwaran, H. et
al. (2007) Lung metastasis genes couple breast tumor size and
metastatic spread. Proc. Natl. Acad. USA 104, 6740–6745.

75 Chang, H. Y., Nuyten, D. S., Sneddon, J. B., Hastie, T.,
Tibshirani, R., Sorlie, T., Dai, H., He, Y. D., van�t Veer,
L. J., Bartelink, H. et al. (2005) Robustness, scalability, and
integration of a wound-response gene expression signature in
predicting breast cancer survival. Proc. Natl. Acad. USA 102,
3738–3743.

76 Mazumder, A. and Wang, Y. (2006) Gene-expression signa-
tures in oncology diagnostics. Pharmacogenomics 7, 1167–
1173.

77 Lonning, P. E., Sorlie, T. and Borresen-Dale, A. L. (2005)
Genomics in breast cancer-therapeutic implications. Nat.
Clin. Pract. Oncol. 2, 26–33.

78 Brennan, D. J., O�Brien, S. L., Fagan, A., Culhane, A. C.,
Higgins, D. G., Duffy, M. J. and Gallagher, W. M. (2005)
Application of DNA microarray technology in determining
breast cancer prognosis and therapeutic response. Expert
Opin. Biol. Ther. 5, 1069–1083.

79 Eden, P., Ritz, C., Rose, C., Ferno, M. and Peterson, C. (2004)
”Good Old” clinical markers have similar power in breast
cancer prognosis as microarray gene expression profilers. Eur.
J. Cancer 40, 1837–1841.

80 Nimeus-Malmstrom, E., Ritz, C., Eden, P., Johnsson, A.,
Ohlsson, M., Strand, C., Ostberg, G., Ferno, M. and Peterson,
C. (2006) Gene expression profilers and conventional clinical
markers to predict distant recurrences for premenopausal
breast cancer patients after adjuvant chemotherapy. Eur.
J. Cancer 42, 2729–2737.

81 Bogaerts, J., Cardoso, F., Buyse, M., Braga, S., Loi, S.,
Harrison, J. A., Bines, J., Mook, S., Decker, N., Ravdin, P. et
al. (2006) Gene signature evaluation as a prognostic tool:
challenges in the design of the MINDACT trial. Nat. Clin.
Pract. Oncol. 3, 540–551.

82 Siziopikou, K. P. and Cobleigh, M. (2007) The basal subtype
of breast carcinomas may represent the group of breast
tumors that could benefit from EGFR-targeted therapies.
Breast 16, 104–107.

83 Afshari, C. A., Nuwaysir, E. F. and Barrett, J. C. (1999)
Application of complementary DNA microarray technology
to carcinogen identification, toxicology, and drug safety
evaluation. Cancer Res. 59, 4759–4760.

84 Nuwaysir, E. F., Bittner, M., Trent, J., Barrett, J. C. and
Afshari, C. A. (1999) Microarrays and toxicology: the advent
of toxicogenomics. Mol. Carcinog. 24, 153–159.

85 Cooper, C. S. (2001) Applications of microarray technology in
breast cancer research. Breast Cancer Res. 3, 158–175.

86 O�Driscoll, L. and Clynes, M. (2006) Biomarkers and multiple
drug resistance in breast cancer. Curr. Cancer Drug Targets 6,
365–384.

87 Fan, M., Yan, P. S., Hartman-Frey, C., Chen, L., Paik, H.,
Oyer, S. L., Salisbury, J. D., Cheng, A. S., Li, L., Abbosh, P. H.
et al. (2006) Diverse gene expression and DNA methylation
profiles correlate with differential adaptation of breast cancer
cells to the antiestrogens tamoxifen and fulvestrant. Cancer
Res. 66, 11954–11966.

88 Amundson, S. A., Bittner, M., Chen, Y., Trent, J., Meltzer, P.
and Fornace, A. J., Jr. (1999) Fluorescent cDNA microarray
hybridization reveals complexity and heterogeneity of cellu-
lar genotoxic stress responses. Oncogene 18, 3666–3672.

89 Park, W. Y., Hwang, C. I., Im, C. N., Kang, M. J., Woo, J. H.,
Kim, J. H., Kim, Y. S., Kim, J. H., Kim, H., Kim, K. A. et al.
(2002) Identification of radiation-specific responses from
gene expression profile. Oncogene. 21, 8521–8528.

90 Li, Z., Xia, L., Lee, L. M., Khaletskiy, A., Wang, J., Wong,
J. Y. and Li, J. J. (2001) Effector genes altered in MCF-7
human breast cancer cells after exposure to fractionated
ionizing radiation. Radiat. Res. 155, 543–553.

Cell. Mol. Life Sci. Vol. 64, 2007 Multi-author Review Article 3199



91 Guo, G., Yan-Sanders, Y., Lyn-Cook, B. D., Wang, T., Tamae,
D., Ogi, J., Khaletskiy, A., Li, Z., Weydert, C., Longmate,
J. A. et al. (2003) Manganese superoxide dismutase-mediated
gene expression in radiation-induced adaptive responses.
Mol. Cell Biol. 23, 2362–2378.

92 Fan, C., Oh, D. S., Wessels, L., Weigelt, B., Nuyten, D. S.,
Nobel, A. B., van�t Veer, L. J. and Perou, C. M. (2006)
Concordance among gene-expression-based predictors for
breast cancer. N. Engl. J. Med. 355, 560–569.

93 Oh, D. S., Troester, M. A., Usary, J., Hu, Z., He, X., Fan, C.,
Wu, J., Carey, L. A. and Perou, C. M. (2006) Estrogen-
regulated genes predict survival in hormone receptor-positive
breast cancers. J. Clin. Oncol. 24, 1656–1664.

94 Bacac, M., Provero, P., Mayran, N., Stehle, J. C., Fusco, C. and
Stamenkovic, I. (2006) A mouse stromal response to tumor
invasion predicts prostate and breast cancer patient survival.
PLoS ONE 1, e32.

95 Park, E. S., Lee, J. S., Woo, H. G., Zhan, F., Shih, J. H.,
Shaughnessy, J. D. and Frederic Mushinski, J. (2007) Heter-
ologous tissue culture expression signature predicts human
breast cancer prognosis. PLoS ONE 2, e145.

96 Viksna, J., Celms, E., Opmanis, M., Podnieks, K., Rucevskis,
P., Zarins, A., Barrett, A., Neogi, S. G., Krestyaninova, M.,
McCarthy, M. I. et al. (2007) PASSIM–an open source
software system for managing information in biomedical
studies. BMC Bioinformatics 8, 52.

97 Brazma, A. and Culhane, A. (2005) Algorithms for gene
expression analysis. In: Encyclopedia of Genetics, Genomics,
Proteomics and Bioinformatics, pp. 3148–3159, Jorde, L.,
Little, P., Dunn, M. and Subramaniam, S. (eds.) John Wiley &
Sons., London.

98 Steinhoff, C. and Vingron, M. (2006) Normalization and
quantification of differential expression in gene expression
microarrays. Brief Bioinform. 7, 166–77.

99 Jeffery, I. B., Higgins, D. G. and Culhane, A. C. (2006)
Comparison and evaluation of methods for generating differ-
entially expressed gene lists from microarray data. BMC
Bioinformatics 7, 359.

100 Hu, Z. , Fan, C. , Oh, D. S. , Marron, J. S. , He, X. , Qaqish,
B. F. , Livasy, C. , Carey, L. A. , Reynolds, E. , Dressler, L. et
al. (2006) The molecular portraits of breast tumors are
conserved across microarray platforms. BMC Genomics 7,
96.

101 Calza, S. , Hall, P. , Auer, G. , Bjohle, J. , Klaar, S. ,
Kronenwett, U. , Liu, E. T. , Miller, L. , Ploner, A. , Smeds,
J. et al. (2006) Intrinsic molecular signature of breast
cancer in a population-based cohort of 412 patients. Breast
Cancer Res. 8, R34.

102 Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Rudnev,
D., Evangelista, C., Kim, I. F., Soboleva, A., Tomashevsky, M.
and Edgar, R. (2007) NCBI GEO: mining tens of millions of
expression profiles – database and tools update. Nucleic Acids
Res. 35, D760–765.

103 Ikeo, K., Ishi-i, J., Tamura, T., Gojobori, T. and Tateno, Y.
(2003) CIBEX: center for information biology gene expres-
sion database. C. R. Biol. 326, 1079–1082.

104 Parkinson, H., Kapushesky, M., Shojatalab, M., Abeyguna-
wardena, N., Coulson, R., Farne, A., Holloway, E., Kolesny-
kov, N., Lilja, P., Lukk, M. et al. (2007) ArrayExpress–a public
database of microarray experiments and gene expression
profiles. Nucleic Acids Res. 35, D747–750.

105 Hanauer, D. A., Rhodes, D. R., Sinha-Kumar, C. and Chin-
naiyan, A. M. (2007) Bioinformatics approaches in the study
of cancer. Curr. Mol. Med. 7, 133–141.

106 Culhane, A. C., Perriere, G. and Higgins, D. G. (2003) Cross-
platform comparison and visualisation of gene expression
data using co-inertia analysis. BMC Bioinformatics 4, 59.

107 Larkin, J. E., Frank, B. C., Gavras, H., Sultana, R. and
Quackenbush, J. (2005) Independence and reproducibility
across microarray platforms. Nat. Methods. 2, 337–344.

108 Lu, J., Lee, J. C., Salit, M. L. and Cam, M. C. (2007) Tran-
script-based redefinition of grouped oligonucleotide probe
sets using AceView: high-resolution annotation for micro-
arrays. BMC Bioinformatics 8, 108.

109 Carter, S. L., Eklund, A. C., Mecham, B. H., Kohane, I. S. and
Szallasi, Z. (2005) Redefinition of Affymetrix probe sets by
sequence overlap with cDNA microarray probes reduces
cross-platform inconsistencies in cancer-associated gene ex-
pression measurements. BMC Bioinformatics 6, 107.

110 Hong, F., Breitling, R., McEntee, C. W., Wittner, B. S.,
Nemhauser, J. L. and Chory, J. (2006) RankProd: a biocon-
ductor package for detecting differentially expressed genes in
meta-analysis. Bioinformatics 22, 2825–2827.

111 Wang, J., Coombes, K. R., Highsmith, W. E., Keating, M. J.
and Abruzzo, L. V. (2004) Differences in gene expression
between B-cell chronic lymphocytic leukemia and normal B
cells: a meta-analysis of three microarray studies. Bioinfor-
matics 20, 3166–3178.

112 Shen, R., Ghosh, D. and Chinnaiyan, A. M. (2004) Prognostic
meta-signature of breast cancer developed by two-stage
mixture modeling of microarray data. BMC Genomics 5, 94.

113 Grigoryev, D. N., Ma, S. F., Irizarry, R. A., Ye, S. Q., Quack-
enbush, J. and Garcia, J. G. (2004) Orthologous gene-expres-
sion profiling in multi-species models: search for candidate
genes. Genome Biol. 5, R34.

114 Shankavaram, U. T., Reinhold, W. C., Nishizuka, S., Major,
S., Morita, D., Chary, K. K., Reimers, M. A., Scherf, U.,
Kahn, A., Dolginow, D. et al. (2007) Transcript and protein
expression profiles of the NCI-60 cancer cell panel: an
integromic microarray study. Mol. Cancer Ther. 6, 820–832.

115 Fagan, A., Culhane, A. C. and Higgins, D. G. (2007) A
multivariate analysis approach to the integration of proteomic
and gene expression data. Proteomics. 7, 2162–2171.

116 Pusztai, L., Ayers, M., Stec, J., Clark, E., Hess, K., Stivers, D.,
Damokosh, A., Sneige, N., Buchholz, T. A., Esteva, F. J. et al.
(2003) Gene expression profiles obtained from fine-needle
aspirations of breast cancer reliably identify routine prognos-
tic markers and reveal large-scale molecular differences
between estrogen-negative and estrogen-positive tumors.
Clin. Cancer Res. 9, 2406–2415.

117 Alexander, H., Stegner, A. L., Wagner-Mann, C., Du Bois,
G. C., Alexander, S. and Sauter, E. R. (2004) Proteomic
analysis to identify breast cancer biomarkers in nipple
aspirate fluid. Clin. Cancer Res. 10, 7500–7510.

118 Pawlik, T. M., Hawke, D. H., Liu, Y., Krishnamurthy, S.,
Fritsche, H., Hunt, K. K. and Kuerer, H. M. (2006) Proteomic
analysis of nipple aspirate fluid from women with early-stage
breast cancer using isotope-coded affinity tags and tandem
mass spectrometry reveals differential expression of vitamin
D binding protein. BMC Cancer 6, 68.

To access this journal online:
http://www.birkhauser.ch/CMLS

3200 A. C. Culhane and J. Howlin Transcriptomics and beyond

http://www.birkhauser.ch/CMLS

