Cell. Mol. Life Sci. 64 (2007) 2219-2233
1420-682X/07/172219-15

DOI 10.1007/s00018-007-7220-x

© Birkhiduser Verlag, Basel, 2007

Tauopathies

F. Hernandez and J. Avila™

ICeIIuIar and Molecular Life Sciences

Centro de Biologia Molecular ‘Severo Ochoa’, CSIC/UAM, Fac. Ciencias, Universidad Auténoma de Madrid,
Cantoblanco, 28049 Madrid (Spain), Fax: 434914974799, e-mail: javila@cbm.uam.es

Online First 2 July 2007

Abstract. Tau is a microtubule-associated protein
predominantly expressed in nerve cells that promote
microtubule assembly and microtubule stabilization.
Tau is a cytosolic protein mainly present in axons and
involved in anterograde axonal transport. In several
neurodegenerative diseases, as for example Alzheim-
er’s disease, tau metabolism is altered. Thus, alter-
ations in the amount of the tau protein, missense
mutations, posttranscriptional modifications like

phosphorylation, aberrant tau aggregation or a differ-
ent expression of some of its isoforms could provoke
pathological effects resulting in the appearance of
neuronal disorders known as tauopathies. The pur-
pose of this work is to review the possible mechanisms
for tau alterations that could lead to the onset of tau
pathology. First we will focus on tau turnover, then on
tau phosphorylation and, finally, on tau aggregation.
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Tau protein

Tau was first isolated as a microtubule-associated
protein, since it copurifies with microtubules (for
review, see [1]). The binding of tau to microtubules
was found to be through specific microtubule-binding
domains (MBDs). These domains are three or four
imperfectly repeated sequences of 31 or 32 residues
located in the C-terminal half of the tau molecule [2-
4]. Apart from these MBDs, two proline-rich regions
whose phosphorylation affect the ability of tau to bind
microtubules flank MBDs. Serine and threonine
residues present in both regions are modified by
different protein kinases. Tau is a protein predom-
inantly expressed in nerve cells that promote micro-
tubule assembly and microtubule stabilization [5]. Tau
is a cytosolic protein mainly present in axons, although
it can be also found associated to the cell membrane
[6, 7]. Tau is important in neurogenesis, axonal
maintenance and axonal transport.

About 20 years ago it was found that tau was the main
component of paired helical filaments (PHFs) [8—13]
and that purified tau was able to assemble in vitro into
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fibrillar polymers that resemble the morphology of ex
vivo PHFs [14]. Subsequent studies revealed that
PHFs were rich in a phosphorylated protein [15],
which turned out to be a hyperphosphorylated form of
tau [16, 17]. Aberrant phosphotau polymers also
appear associated with other neurological diseases
like Pick’s disease, frontotemporal dementia linked to
chromosome 17 (FTDP-17), corticobasal degenera-
tion, progressive supranuclear palsy, Guam parkin-
sonism dementia complex, dementia with argyrophilic
grains, Niemann-Pick disease type C and dementia
pugilistic [18]. These disorders are collectively named
tauopathies (Table 1).

Table 1. Tauopathies involving hyperphosphorylated tau.

Alzheimer’disease: sporadic and familial FTDP-17
Progressive supranuclear palsy

Corticobasal degeneration

Down’s syndrome

Pick’s disease

Guam parkinsonism dementia complex

Dementia with argyrophilic grains

Niemann-Pick disease type C

Dementia pugilistic
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Synthesis of tau protein

Tau gene is located on human chromosome 17 where it
occupies over 100 kb and contains 16 exons [19, 20].
Upstream of the first exon there is a region that
contains consensus binding sites for promiscuous
transcription factors such as AP2 and SP1. Since tau
is mainly a neuron protein, the presence of specific
neuronal factors involved in the transcription of tau
gene has been proposed [21]. On the other hand, the
presence of RNA molecules that could regulate tau
expression was recently suggested [22]. Thus, there
are transcripts from a gene, found in the tau locus,
which overlaps with and regulates tau gene expression
being a natural antisense gene that regulate tau gene
expression.

Tau gene is transcribed into nuclear RNA, which by
alternative splicing yields different RNA species that,
upon translation, result in the expression of different
tau isoforms with different numbers of exons. In the
adult brain, six isoforms of tau are expressed [2]. The
isoforms differ in the presence or absence of a fourth
31-amino acid repeat, coded by exon 10, in the MBD,
as well as in the presence in the amino terminal part of
tau protein of zero, one or two inserts (coded by exons
2 and 3). Thus, exons 2, 3 and 10 are alternatively
spliced (Fig. 1). Exon 2 can appear alone, but exon 3
never appears independent of exon 2 [23]. In the
peripheral nervous system, there is a high-molecular-
weight tau isoform expressing exon 4A, which yields a
protein known as big tau with an approximate size of
100 kDa [24, 25]. Because exon 10 encodes one of the
regions involved in the binding of tau to microtubules,
alternative splicing of exon 10 produces tau isoforms,
with either three (tau 3R without exon 10) or four (tau
4R with exon 10) MBDs. The proportion of these tau
isoforms, as well as their phosphorylation status,
changes during development [26—-31]. Thus, the small-
est isoform, without the two N-terminal inserts and with
only three MBDs, is expressed in the foetal brain and
during the first days of postnatal development [26, 28].
There is a switch in RNA splicing after birth to produce
adult tau isoforms. That switch correlates with a
marked reduction in tau phosphorylation [28-33].
Furthermore, different neurons seem to have different
tau isoforms. An example is illustrated by the hippo-
campal granule cells of dentate gyrus containing only
tau protein that lacks exon 10 [2].

The contribution of the tau isoforms to the develop-
ment of tauopathies is important as evidenced by the
fact that several tau mutations responsible for FTDP-
17 affect the splicing of exon 10, increasing the ratio of
four-repeat with respect to three-repeat isoforms. This
is mainly due to intronic mutations that result in the
forced expression of exon 10 [34-38]. On the other
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Figure 1. Tau expression. A single tau gene located on human
chromosome 17 is transcribed into the corresponding nuclear RNA
that, after alternative splicing, yields several tau messenger RNAs
(mRNAs). These mRNAs, upon translation, originate the different
tau isoforms. The complexity of the tau isoforms can then be
increased by posttranslational modification, such as phosphoryla-
tion. A scheme of tau isoforms present in the central nervous
system is indicated, showing the microtubule binding domains
(MBD) on the tau molecule. The tubulin binding repeats are
indicated in black (except exon 10, which is shown dashed) within
the tau molecule. Exons 2 (green) at the amino-terminal region and
exon 3 (blue) are also shown.

hand, mutations resulting in the deletion of lysine-280
lead to reduced splicing of exon 10 [39], while the
E342V mutation may affect the splicing of exons 2 and
3 [40]. This is in contrast to Pick’s disease in which tau
filaments are predominantly made up of isoforms with
three repeats [41]. It is assumed that in AD no
alteration in tau isoforms is observed. However, it has
been reported that in affected areas, the amount of
mRNAs of tau isoforms including exon 10 are signifi-
cantly increased [42]. Therefore, an imbalance among
tauisoforms and probably the type of neuron involved
are relevant for the development of a specific tauop-
athy.

Taking into account its role in FTDP-17 pathology,
splicing of exon 10 has been studied in detail.
Mutations mapped around exon 10 lead to increased
levels of tau isoforms containing exon 10. These
include missense mutations that alter splicing enhanc-
ers and silencer regions [43-45] as well as mutations
that alter the formation of an RNA stem-loop
structure at the 5’ splice site of exon 10 [34]. Another
level of regulation is phosphorylation. Thus, the
selection of alternative splicing sites by SC-35 (an
SR protein with an arginine- and serine-rich domain in
its C-terminal end) is modulated by GSK-3f phos-
phorylation [46].

To add more complexity to the system, tau gene
polymorphism has been described. Thus, two different
tau gene haplotypes, H1 and H2, have been identified
[47]. H1 is the most common, while the H2 haplotype
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is only present in Caucasian populations [48]. The H1
haplotype, or at least some variants, is a risk factor for
tau disorders like progressive supranuclear palsy and
corticobasal degeneration [49-51]. Although the
mechanism for disease susceptibility associated to
H1 haplotype remains unknown, it has been suggested
that, taking into account that the H1 promoter region
seems to be more efficient than H2 at the transcrip-
tional level, high levels of tau protein may be the basis
for the risk factor associated to tau haplotype [52].
This idea is in agreement with the notion that some of
the pathological aspects observed in transgenic mice
overexpressing tau protein may be due to the high
levels of tau protein obtained in murine models.

Degradation of tau protein

A major factor that determines the half-life of a
protein is the presence of signals that control its
degradation and stabilization. Among the signals for
degradation, the presence of specific N-terminal
residues, the PEST sequence and the destruction box
must be considered [53]. Of the stabilization signals,
amino acid repeats containing polyglutamine, glycine
or alanine residues are among the most common [53].
PEST sequences are present in the N-terminal end of
the tau molecule, while the MBD is a glycine-rich
sequence. Little is known about the implication of
these two regions in the stability of tau protein.

The existence of ubiquitin-independent proteosomal
degradation of tau protein has been reported based on
the fact that tau protein is degraded by the 20S
proteasome in vitro [54]. However, there is strong
evidences of tau degradation by the ubiquitin-protea-
some system (UPS) after ubiquitylation of the protein.
The ubiquitin-conjugating enzymes involved in the
first steps of tau degradation by the UPS were
characterized after purification of phosphorylated
tau obtained from AD brain. That hyperphosphory-
lated tau binds to Hsc70. Its phosphorylation is
necessary for the addition of ubiquitin by the E3
Ubiquitine ligase known by the acronym CHIP
(carboxyl terminus of the Hsc70-interacting protein).
Its C-terminal U box domain associates with the E2
protein-conjugating enzyme UbcHSB [55, 56]. As a
consequence, deletion of CHIP in mice leads to the
accumulation of hyperphosphorylated tau [57].

The notion that alterations in the UPS might play a
role in tauopathies arises from the observation that in
most of these diseases aberrant proteinaceous depos-
its can be detected inside the affected neurons using
anti-ubiquitin and anti-proteasome antibodies [58,
59]. This hypothesis is supported by the previous
observation that a significant decrease in proteasome
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activity was observed in AD patients [60]. Data to
suggest that the UPS inhibition is involved in tauo-
pathies are the following: (i) tau protein present in
PHFs is ubiquitinated [61]; (ii) by doing tandem mass
spectrometry, it has been observed that tau, isolated
from PHF, is modified by ubiquitination, at lys 254, lys
311 and lys 353 [62]; (iii) immunohistochemistry
studies have demonstrated that intracellular neuro-
fibrillar tangles (NFTs) and pick bodies are CHIP- and
ubiquitin-positive [56]; (iv) PHF-tau isolated from
AD brain resulted in inhibition of proteasome activity
[63].

The degradation of tau by different proteases has been
studied. Thus, tau cleavage by caspases has been
reported [64]. Tau is cleavaged by caspases at a highly
conserved aspartate residue (Asp421) in its C termi-
nus in vitro and in neurons treated with amyloid-beta
(Abeta) (1-42) peptide generating a truncated pro-
tein that lacks its C-terminal 20 amino acids and
assembles more rapidly and more extensively into tau
filaments in vitro than wild-type tau [65]. These data
suggest that activation of caspases and cleavage of tau
in the AD brain may proceed to the formation of
NFTs. Tau is also a substrate of the calcium-activated
protease calpain [66], although phosphorylated tau is
more resistant to proteolysis by calpain degradation
than unphosphorylated tau.

Cathepsin D has been shown to cleave tau proteins,
generating fragments similar to those found in NFT
[67]. Interestingly, overexpresion of tau protein with
FTDP-17 mutations in transgenic mice increased
numbers of lysosomes displaying aberrant morphol-
ogy similar to those found in AD [68]. Recently, a
puromycin-sensitive aminopeptidase (PSA) was iden-
tified as a peptidase that proteolyzes tau protein [69].
PSA protected against tau-induced neurodegenera-
tion in vivo, whereas PSA loss of function exacerbated
neurodegeneration [69]. Finally, phosphorylated tau
interacts with the protein HSP-27 [70]. HSP-27 is a
protein that facilitates degradation of pathogenic
hyperphosphorylated tau by an unknown mechanism.

Posttranslational modifications

Several modifications have been described for tau
protein, including phosphorylation, glycosylation,
ubiquitinylation, deamidation, oxidation, tyrosine
nitration, cross-linking, glycation and truncation by
protein cleavage [1]. However, the most studied of
these has been serine/threonine phosphorylation. Tau
is a phosphoprotein [11, 17, 71] with 79 putative serine
or threonine phosphorylation sites on the longest
central nervous system (CNS) tau isoform, which
contains 441 residues (Fig. 1). These sites have been
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divided into two main groups: those that can be
modified by proline-directed kinases like tau protein
kinase I (GSK3), tau protein kinase II (cdk5), MAP
kinase (p38), JNK and other stress kinases or cdc2;
and those that can be modified by non-proline-
directed kinases like PKA, PKC, CaM kinase II,
MARK kinases [72-79] or CKII, which modifies
residues close to acidic residues mainly in exon 2 and 3
[74]. In the last year, new features of tau phosphor-
ylation were reported. Thus, tau can be modified by a
novel tau-tubulin kinase, member of the casein kinase
I superfamily [80] that not only modifies tau residues
198, 199, 28 and 422 but also facilitates tau aggrega-
tion. Also, it has been reported that the phosphoepi-
tope recognized by ab AT 100 could be raised by the
sequential phosphorylation of tau by PKA and a stress
kinase like p38 delta or JNK2 [81]. In addition, the
roles for cdk5 and GSK3 on tau phosphorylation have
been discussed, since cdk5 could act like a priming
kinase for GSK3 [82], but it could also inhibit GSK3
activity [83].

In addition to serine/threonine modifications, phos-
phorylation at tau tyrosines has been also reported.
The protein of the src family, fyn, modifies tyrosine 18
at early stages of development [84]. It has been
suggested that missense mutations of tau, present in
FTDP-17, could increase the binding of tau to fyn [85],
facilitating the phosphorylation of tau by that kinase.
Phosphorylation at other tyrosines has been also
reported [86]. More recently, it was reported that not
only fyn (which modifies tyr 394) can modify tau
tyrosines but also c-ab/ [87]. On the other hand, other
tyrosine modifications, such as nitration, take place at
tyr 29 [88].

Several phosphatases, such an protein phosphatase
(PP)1, PP2A, PP2B (calcineurin) and PP2C [89-93],
are able to dephosphorylate tau protein. However,
only PP1, PP2 and PP2B have been shown to
dephosphorylate abnormally hyperphosphorylated
tau [94, 95]. Although PP2C can dephosphorylate
tau when it is phosphorylated by PK A in vitro, it is not
capable of dephosphorylating the abnormally hyper-
phosphorylated tau isolated from AD brain tissue
[96]. It seems probable that PP2A is the phosphatase
that acts on most phosphorylation sites [97, 98]. PP2A
binds to tau through its tubulin binding region [99].
Mutations in that region could decrease the capacity
of PP2A to bind to tau, and as a consequence produce
an increase in tau phosphorylation, a feature that has
been observed in some FTDP-17 patients bearing such
mutations [100]. A role for phosphatases in AD has
been suggested following the observation of an
increase in tau phosphorylation in hypothermia in-
duced by reduced glucose metabolism in mice mainly
because PP2A is less active than kinases in that

Tauopathies

condition [101]. Also, hyperphosphorylation of tau
could provoke conformational changes that inhibit
phosphatase function, and it is possible that chaper-
ones like Pin-1 could partially reverse such aberrant
conformations and promote phosphatase activity (for
a review see [102]).

Inhibitors of tau phosphorylation

All these data raise the possibility of designing novel
therapeutic interventions for AD and related tauopa-
thies based on inhibiting tau kinase, especially GSK-3
[103]. Lithium, a widely used drug for affective
disorders, inhibits GSK3 at therapeutically relevant
concentrations [104]. Previous studies have suggested
that lithium may be a useful drug for modulating tau
hyperphosphorylation and neurodegeneration in AD
[105]. First, lithium treatment has been demonstrated
to inhibit tau phosphorylation both in cultured neuro-
nal cells and in vivo in rat brain [106, 107]. Second,
lithium also blocks tau hyperphosphorylation and
inhibits cell death in cultured neurons treated with f3-
amyloid peptide [105]. Third, lithium seems to pro-
vide neuroprotection against a variety of toxic insults
both in cultured neurons and in vivo in several animal
models [108,109]. Finally, some evidence from brain
imaging studies is consistent with the neurotrophic/
neuroprotective effect of chronic lithium treatment in
patients with bipolar mood disorder [110]. In addition,
lithium has been demonstrated to have a beneficial
effect on two FTDP-17 mouse models [111-113] as
well as a mouse model that overexpresses the shorter
human tau isoform [114]. AR-A014418 is a GSK-3
inhibitor [115] which is also able to inhibit tau
phosphorylation in an FTDP-17 transgenic model
[112]. In addition to GSK-3 inhibitors, other mole-
cules have been tested to reduce tau phosphorylation.
Some of these inhibitors are the kinase inhibitor
K252a [116] and the octapeptide NAP [117]. The
mechanism for other tau phosphorylation inhibitors,
such an minocycline, remains to be further analyzed
[118]. Alternatively, there are transduction pathways
which modulate tau phosphorylation through a signal-
ling cascade, like that of wnt [119]. On the other hand,
the peroxisome proliferator-activated receptor-
gamma decreases tau phosphorylation by affecting
the cascade involving PDPK-1/p70S6kinase/mTor
[120]. Also, agonists of alpha 7 nicotinic receptors
decrease tau phosphorylation through the PI3kinase/
PKB/GSK3 pathway [121].

Another way to regulate tau phosphorylation is to
increase the activity of PP2A, the main tau phospha-
tase. The intracellular activity of PP2A is regulated by
two proteins, [1-PP2A and I12-PP2A, and inhibition of
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these proteins could result in an increase of phospha-
tase activity [122].

Does tau phosphorylation have any function?

Itis well known that phosphorylated tau has a reduced
affinity for microtubules and a reduced ability to
promote microtubule assembly [123, 124]. This has
also been proven both in in vitro assays and in
transfected cells with tau phosphorylated by GSK-3
[125]. In good agreement, tau hyperphosphorylation
in transgenic mice overexpressing GSK-3p shows
accumulation of microtubule-unbound tau in hippo-
campal neurons [126, 127]. In addition, tau phosphor-
ylation could affect axonal transport, since tau could
bind to microtubules overlapping the sites used for
kinesin protein motors [128]. Furthermore, tau-in-
duced neurotoxicity in tauopathies has been related to
the association of tau protein with actin, as tau is able
to promote alterations in the actin cytoskeleton [129].
In fact, it has previously been reported that MBD is
also involved in actin binding [130]. However, it is not
yet clear whether tau phosphorylation could result in
the gain of any unknown specific function or if it only
alters the functions for unmodified tau. In this respect,
aberrant intraneuronal protein deposits are acommon
feature for many neurodegenerative diseases, such as
tauopathies. Whether these inclusion bodies are a
common pathogenic mechanism for all of these
diseases [131] or a protection mechanism as recently
proposed for the intracellular aggregates in Hunting-
ton’s disease [132] is still a matter of debate. The fact
that transgenic mice overexpressing GSK-3p show
impaired LTP [133] and cognitive impairment without
the formation of tau filaments [134] argues against tau
aggregates as a key pathogenic agent. In good agree-
ment, it has been shown that cognitive deficits in mice
that conditionally overexpress FTDP-17 human tau
depend on transgene expression but not on tau
filament formation [135]. Thus, these mice recovered
spatial memory when silencing transgene expression
but did not prevent the development of NFT.

Mechanism for pathological tau phosphorylation

Tau protein is aberrantly phosphorylated in tauopa-
thies, and possible mechanism involved in that phos-
phorylation could be different for the different
tauopathies. In the case of FTDP-17, mutations in
the tau gene result in the onset of the disease [35].
Some of those tau mutations, as we have seen before,
alter tau splicing, while others are missense mutations
that occur in or around the MBD, decreasing the
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affinity of mutant tau by microtubules. As a conse-
quence, unbound tau accumulates and is phosphory-
lated. This phenomenon is exacerbated as PP2A
shows a decreased affinity for the mutated tau forms
[100]. For the case of progressive supranuclear palsy,
the generation of compounds such as hydroxynonenal
(HNE) from lipid oxidation, could activate some
stress kinases that could be involved in tau phosphor-
ylation [136, 137].

Tau phosphorylation is also modulated by ApoEe4
isoform, a risk factor associated with the development
of late-onset AD [138, 139]. ApoE through reelin
receptors stimulates phosphatidylinositol 3-kinase
and then protein kinase B/GSK-3f [140, 141]. More
work has been done to analyze the possible mecha-
nism for tau phosphorylation in familial Alzheimer’s
disease (FAD). Three genes have been found to be the
cause of the onset of FAD. The first one that was
described code for APP, the other two for two proteins
known as presenilin-1 (PS-1) and presenilin-2 (PS-2).
One of the functions of PS-1 and PS-2, the other
proteins linked to FAD, is to facilitate the cleavage of
APP, yielding B-amyloid [142, 143]. Additionally, it
was found that aggregates of -amyloid induce tau
phosphorylation [144] and that GSK-3f (Tau kinase I)
is essential for 3-amyloid-induced neurotoxicity [145].
Also, it has been reported that AP mediates tau
hyperphosphorylation by downregulation of PP2A
[146]. These and other studies were the base of the so-
called amyloid hypothesis [147, 148]. This hypothesis
suggest that the origin of AD must be in the
appearance of f-amyloid peptide. 3-Amyloid produc-
tion is facilitated by mutations associated to FAD in
APP or PS (a gain of function). p-Amyloid will
aggregate, those aggregates facilitate tau phosphor-
ylation, and as consequence of that phosphorylation,
tau protein polymerizses into PHF and later on
aggregates into NFT. If that is the case, PS mutations
yielding increasing amounts of $-amyloid peptide will
induce a faster onset of FAD. However, that is not the
case [149], as the amount of (-amyloid generated in
cells transfected with different PS-1 mutations did not
correlate with the starting age of FAD caused by that
mutation. Supporting this view is a PS1 mutation in a
patient with Pick-type tauopathy without extracellu-
lar B-amyloid deposits [150]. Thus, presenilin proteins
could have another function that could be important
for AD onset. One of these functions was described by
Weihl et al. [151] indicating that PS-1 downregulates
PKB. Subsequently, Baki et al. [152] reported that PS-
1 activates PI3K, inhibiting GSK-3 activity and tau
hyperphosphorylation. Therefore, it could be that
some PS-1 mutations will result in a lack of PI3K
activation (loss of function) that will lead to tau
phosphorylation. In short, appear to be two pathways
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from preselinin to induce AD. In one case, a gain of
function will result in the appearance of f-amyloid
and, afterwards, tau phosphorylation by GSK-3;in the
other case, there will be loss of function, but the result
is still tau phosphorylation by GSK-3. Thus, acommon
feature for FAD from PS-1 mutations will be the
appearance of tau phosphorylated by GSK-3. More
recently, it has been reported that PS-1 can control the
leakage of calcium out of the endoplasmic reticulum
[153], and that PS-1 mutations could result in an
increase in cytoplasmic calcium that will activate tau
kinases such as protein kinase C or calmodulin
kinases.

On the other hand, in old people with old neurons,
activation of NMDA receptors could activate ERK/
MAPK-activated protein kinases that modify tau
protein. Also, upon NMDA receptor activation,
there is activation of the protease calpain, which
degrades tau into a 17-kDa peptide, and a N-terminal
peptide that could be toxic to the cell [154, 155].
Finally, changes in the pathways involving wnt [156] or
insulin [101] could result in abnormal tau phosphor-
ylation. Tau undergoes reversible hyperphosphoryla-
tion when a mouse is starved for 2 days [157] or forced
to swim in cold water [158]. Since starvation and
swimming in cold water result in the elevation of
corticosterone levels in rodents [159], it has been
suggested that tau phosphorylation could be a con-
sequence of a neuronal stress reaction Also, changes
in hibernation [160] could modify the level of tau
phosphorylation. On the other hand, learning reduces
tau phosphorylation [161].

Aggregation

A main feature of the different tauopathies is the
presence of aberrant tau aggregates, a characteristic
that could be reproduced in vitro [1]. Purified tau
protein can form fibrillar polymers resembling the
PHF found in the brain of AD patients [14, 162-165].
It has been shown that a high concentration of protein
is needed for tau to polymerize [162], suggesting that
other compounds could be necessary to facilitate tau
assembly. The sulfoglycosaminoglycans (sGAGs),
which are present along with tau in NFT, were some
of the first molecules tested. It was found that sGAGs
facilitate tau polymerization in vitro [166, 167]. Free
fatty acids may also facilitate tau aggregation [165]. It
is noteworthy that lipid peroxidation occurs in AD,
and a compound such as arachidonic acid could be
fragmented to yield toxic products like HNE; it has
been shown that HNE facilitates tau assembly [168,
169]. Finally, some quinones could also induce tau
polymerization in fibrillar form [170, 171].
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Analysis of the minimal region of tau protein involved
in self-aggregation indicates that the residues com-
prising the third tubulin binding repeat in the tau
molecule are needed for self-assembly [167]. More-
over, a hexapeptide comprising residues 306—311 in
tau molecule has been suggested to be the minimal
region involved in tau polymerization [172].

Although the number of mRNAs of tau isoforms,
including exon 10, seems to be significantly increased
in AD-affected areas [42], aggregation of tau in AD
does not depend on tau isoforms [173]. Rather,
particular phosphorylation profiles may regulate the
aggregation of tau into PHF. Thus, the role of
phosphorylation in the self-assembly of tau is a
fundamental question in the study of AD and other
tauopathies. It has been suggested that phosphoryla-
tion of some specific tau sites may be a prerequisite for
its assembly [174, 175]. Some of these sites occur,
indeed, in the PHF core-forming MBD domain. GSK-
3f3 is one of the best candidate enzymes for generating
the hyperphosphorylated tau that is characteristic of
PHFs (for a review, see [176]). However, in vitro
experiments to test the effect of phosphorylation on
tau self-assembly have shown varied results, presum-
ably reflecting slight differences in experimental
conditions. In some experiments phosphorylated tau
displays a decreased propensity to aggregate [177],
whereas in other conditions the aggregation propen-
sity increases [168]. Thus, discrepancy in the results
can be due to differences in tau protein concentration
or in the status of tau phosphorylation. In fact,
phosphorylation of some regions can probably inhibit
aggregation, while phosphorylation of other regions
can induce tau polymerization. Compounds such as
HNE [168] and several quinones [170] catalyze the
formation of fibrillar aggregates of phosphorylated
tau peptides but fail to have an observable effect if the
peptides are in a non-phosphorylated form. Another
fundamental question refers to the molecular struc-
ture of tau protein in the PHF particle. The current
view is that pathological protein aggregation must
involve formation of 3-sheet structure giving rise to
the typical amyloid fibrils [178]. The discovery of a-
helix structure in ex vivo PHFs [179] indicates that
PHFs are not a typical case of amyloidosis. The role of
a-helix structure in PHF formation is also supported
by recent work showing that the region implicated in
forming the core of PHFs (i.e., MBD domain)
becomes very a-helix upon addition of the helix-
promoting agent TFE [180, 181]. The fact that
phosphorylation of tau occurs in sites of the same
region thatisinvolved in forming the core of PHFs has
led to suggestion that phosphorylation controls as-
sembly. However, no mechanistic model of the inter-
play between phosphorylation and assembly has been
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proposed for full-length tau. This issue has been
addressed using a peptide corresponding to tau region
317-335 as the simplest model system. Results
revealed a higher helical propensity of region 317—
335 upon phosphorylation [182].

A number of mouse transgenic models have been
developed in recent years with the objective of
reproducing aspects of tau pathology as found in AD
and in tauopathies. Mice have been generated that
overexpress the genomic sequence of human tau
containing the coding sequence, intronic regions and
the regulatory regions of the gene [183]. Human tau is
distributed in neurites and at synapses but is absent
from cell bodies, and no neuropathological lesions
were reported in mice up to 8 months of age. However,
overexpression of human tau in mice in the absence of
mouse tau results in an aberrant tau aggregation [184].
A pretangle tau pathology has been reported in mice
overexpressing the shortest human tau isoforms (151,
152). An analogous accumulation of hyperphosphory-
lated tau in a somatodendritic compartmentalization
in hippocampal neurons has also been observed in a
mouse transgenic model overexpressing the tau-
phosphorylating enzyme GSK3, with the conditional
expression of the transgene after the development of
the CNS [126].

Transgenic mice containing the FTDP-17 mutated
P301L have been characterized [185], as well as one
containing the P301S mutation [186]. In the latter,
abundant tau filaments within a PHF structure were
observed. Curiously, in the transgenic mouse express-
ing the tau P301L mutation, tau filaments were only
observed in old female mice but not in their male
counterparts. This could be due to a decrease in the
amount of tau in male mice [187]. Filaments were also
found in transgenic mice expressing the mutation
R406W in human tau [188], a mutation that decreases
the phosphorylation of tau at the site recognized by
Ab PHF-1 [189]. Finally, it has been shown that
filaments form in transgenic mice expressing mutant
(V337M) human tau [190]. Another approach consists
in generating transgenic mice with several FTDP-17
mutations (G272V, P301L and R406W, [68]). Ultra-
structural analysis of these mutant tau mice revealed
pre-filaments of tau as well as an increased numbers of
lysosomes displaying aberrant morphology similar to
those found in AD [68]. Filaments similar in width to
those found in tauopathies were found after crossing
that mouse model with transgenic mice overexpress-
ing the enzyme GSK-3f [113].

On the other hand, expression of other mutation
proteins like PS-1 could favour the formation of tau
inclusions in mice [191]. Finally, aggregation of tau has
been also induced in cell models [169, 192, 193] and in
organotypic hippocampal slices [194].
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Tau toxicity

The development of tau pathology associated with
AD has been described by Braak and Braak [195] by
following the development of neurofibrillary lesions
at different stages of the disease. In the hippocampus,
an inverse relation has been found between the
number of extracellular NFTs and the number of
surviving neurons [196-199]. It suggests that neurons
that degenerate have previously developed tau ag-
gregates. Also, it has been reported that the severity of
dementia correlates with deposition of NFT in AD
[200]. On the other hand, it has been suggested that
neurons bearing neurofibrillary lesions could survive
for a long period of time [201], and comparison with
other neurodegenerative disorders, like Huntington
disease [132], indicates that tau aggregates could
protect against neurodegeneration by sequestering
toxic (phospho ?) monomeric tau molecules that could
be present in a high amount inside a cell in patho-
logical conditions. It has also been suggested, using a
transgenic mouse model [135], that memory deficits
could be unrelated to the formation of tau polymers,
although more recently the discussion of those experi-
ments suggested that hyperphosphorylated, aggregat-
ed tau intermediates could be the ones that cause
neurodegeneration [202]. In this way, the implication
of different types of protein aggregates in neuro-
degeneration has been extensively discussed [200]. A
possibility of the existence of neurotoxic tau inter-
mediate aggregates in human tauopathies is based on
the fact that patients with FTDP-17 show extensive
neurodegeneration with a high level of tau phosphor-
ylation but with a low number of tangles [203]. In any
case, even if the formation of tau aggregates has a
protective function for the neurons, that function is
not working well, as described by Braak and Braak
[195], and subsequently by Delacourte et al. [204],
indicating a correlation between progression of tau
pathology and progression of the disease. This idea is
supported by experiments indicating that neural loss
and neurofibrillary tangle number increase in parallel
with progression of the disease [205]. Similar results
have been reported in other neurological disorders
such as brain encephalopathies, where formation of
aberrant polymers is related to the onset of neuro-
degeneration [206].

NFT seems to be a very stable structure. Thus,
different treatments revert soluble hyperphos-
phorylated tau, but do not change back already
formed NFTs (Fig. 2). That has been observed after
administration of GSK-3 inhibitors [207] and by
active and passive immunization against f$-amyloid
[208]. The same has been reported in transgenic
mice overexpressing FTDP-17 tau in a conditional
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model, and after turning out the system with
doxicycline [135].

Reversion No reversion

< P-Tau =»Aggregates

Figure 2. The development of tau pathology is characterized by an
increase in phospho-tau and by the presence of NFT. Here is shown
tau pathology in a transgenic mouse overexpressing GSK-33 and
FTDP-17 tau [127, 207]. Transgenic tau accumulates in the
somatodendritic compartment, but only in old mice the number
of phospho-tau-positive neurons increase (center panel). Immu-
nohistochemistry carried out with T14 antibody, which recognizes
only human transgenic tau (left panel), and immunoflorescence
carried out with the phospho-tau antibody AT8 (center panels) is
shown for double transgenic mice. The right panel shows Thiazin
Red-positive neurons (NFT-like structures) that were found in
hippocampal pyramidal neurons only at the age of 18 months. It is
still possible to partially reverse tau pathology in advanced stages
of the disease. Thus, when lithium (a GSK-3 inhibitor) is
administered to these mice, phosphorylated tau decreases, al-
though tau aggregated in NFT-like structures does not revert to its
previous state [207]. NFT seems to be a very stable structure. Thus,
other different treatments (see text) revert soluble hyperphos-
phorylated tau, but do not change back already formed tau
aggregates [135, 208].

FTDP-17
Synthesis | Tau Altered tau isoforms
Missene mutations
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sy \ /
PS-1/2 y' Cytosolic
APP Unbound tau =p | Degradation
APOE4 kinases T
—
Oxidative ‘
stress Tau
Nligomers!aggtegates
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Figure 3. A model for neuronal dysfunction in tauopathies.
Transduction pathways altered in familial Alzheimer's disease
(APP and PS-1) induces tau phosphorylation. Furthermore, risk
factors associated with the development of late onset of Alzheim-
er's disease such as the isoform ApoEe4 as well as pathological
conditions as oxidative stress are also associated with tau phos-
phorylation. Phosphorylated tau has less affinity for microtubules
and accumulates in the somatodendritic compartment. In FTDP-
17, tau mutations as well as those that alter tau isoforms decrease
the affinity of mutated tau by the microtubules. Unbinding of tau
from the microtubules may result in its hyperphosphorylation and,
subsequently, in its assembly into polymers like PHFs. Phosphory-
lated tau can be assembled in the presence of compounds such as
hydroxynonenal (HNE), a molecule that results from oxidation of
fatty acids. Although these tau aggregates could protect neurons
against toxic hyperphosphorylated microaggregates, after a period
of survival neuronal death could occur. Furthermore, tau aggre-
gates can inhibit the proteasome.

Tauopathies

Summary

A relationship between the expression, structure,
phosphorylation, aggregation, and toxicity of tau is
not yet clear. Pathologies in which tau is implicated
could initially be the result of the presence of hyper-
phosphorylated tau in the somatodendritic compart-
ment. As we have analyzed, most of the transduction
pathways altered in FAD disease (APP and PS-1)
induce tau phosphorylation. Furthermore, risk factors
associated with the development of late onset of
Alzheimer*s disease, such as H1 tau haplotype and the
isoform ApoEe4, are also associated with tau phos-
phorylation. Furthermore, pathological conditions
associated with tauopathies such as oxidative stress
and alterations in glucose metabolism also induce tau
phosphorylation. That hyperphosphorylation could
be maintained if phosphatases like PP2A were not
functioning properly. Hhyperphosphorylated tau
could then be assembled into PHFs, in the presence
of other compounds that might facilitate polymer-
ization (Fig. 3). Although these tau aggregates could
protect neurons against toxic hyperphosphorylated
microaggregates, after a period of survival [209]
neuronal death could occur, followed by cell lysis
that would liberate tau into the extracellular space
where it could induce death [210]. Finally, the devel-
opment of possible therapies against tau pathology
will be commented in an additional review in this issue
of CMLS.
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