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Abstract. Genomic alterations lead to cancer com-
plexity and form a major hurdle for comprehensive
understanding of the molecular mechanisms under-
lying oncogenesis. In this review, we describe recent
advances in studying cancer-associated genes from a
systems biology point of view. The integration of
known cancer genes onto protein and signaling net-
works reveals the characteristics of cancer genes
within networks. This approach shows that cancer
genes often function as network hub proteins which

are involved in many cellular processes and form focal
nodes in information exchange between many signal-
ing pathways. Literature mining allows constructing
gene-gene networks, in which new cancer genes can be
identified. The gene expression profiles of cancer cells
are used for reconstructing gene regulatory networks.
By doing so, genes which are involved in the regu-
lation of cancer progression can be picked up from
these networks, after which their functions can be
further confirmed in the laboratory.

Keywords. Cancer, systems biology, protein network, network biology, signaling network, cancer gene hunting,

reverse engineering.

Introduction

Cancer is an extremely complex, heterogeneous
disease, which displays a degree of complexity at the
physiological, tissue and cellular levels. The interac-
tions between tumors and their microenvironments
reflect the physiological complexity of cancers, which
is the recent focus of cancer research. Bidirectional
interactions between cancer and its microenviron-
ment might promote their growth, survival and the
occurrence of distant metastasis [1]. However, the
molecular mechanisms underlying the interactions
between cancer cells and their microenvironment are
poorly understood. A cancer tissue or a tumor often
contains several distinct pathological cancer subtypes,
which is recognized as cancer tissue complexity. This
tissue complexity is believed to provide functional
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redundancy for tumors to maintain cellular hetero-
geneity, which could lead to tumor recurrence [2—4] as
long as a cancer subtype or a fraction of cancer cells
with metastatic potential survives after anticancer
treatment. One cancer subtype is able to functionally
replace another or even multiple subtypes killed by
medical treatments such as anti-cancer drugs [5, 6].
The functional replacement of cancer subtypes allows
tumor survival, further proliferation and finally tumor
recurrence. It is reasonable to think that each cancer
cell subtype within a tumor might originate through
different cancer-specific developmental mechanisms
and mutations in distinct genes. Therefore, this com-
plexity will require a combination of several drugs or
treatments targeting various cancer cell subtypes
within a tumor. Work in the past few years, has
identified the molecular signatures of various cancer
subtypes in tumors through large-scale gene expres-
sion profiling analyses using microarray technology.
For example, sets of gene expression signatures have
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been identified for breast cancer subtypes [7-9].
Nevertheless, for effective cancer treatment, it is
necessary to identify those oncogenic signaling path-
ways that are the driving force for each of these cancer
cell subtypes. Linking cancer subtypes to oncogenic
signaling pathways and cascades is still hampered by
poor understanding of the oncogenic processes at the
cellular level. The coexistence of several cancer cell
subtypes, which rely on activation of different signal-
ing pathways in one particular tumor, represents the
tissue complexity of cancers, while activation of
multiple pathways that lead to the development of
the same type of cancer represent the cellular
complexity of cancers.

Cancer cells characteristically display uncontrolled
cell growth, and the ability to invade surrounding
tissue and finally to generate metastasis in distant
places of human body. The accumulation of genetic
mutations in part triggers tumor development and
progression. Gene mutation or deregulation also
promotes cell mobility that is highly correlated with
tissue invasion and the formation of distant metastasis.
In cancer, many kinds of gene alterations, such as gene
sequence mutations [10, 11], gene and chromosomal
fragment amplifications, chromosomal translocations
and gene fusions [12-15], gene deletions [16, 17] and
even the mutations and deregulations of noncoding
RNAs, such as microRNAs [18-20], have been
studied and documented extensively. A recent ge-
nome-wide screening of cancer mutation genes re-
vealed that different cancer clinical samples of a same
cancer type contain different sets of mutated genes
which have divergent functions, indicating that the
mutated genes do not belong to same pathway, and
therefore suggesting that a cancer could develop
through multiple genetic routes [21]. Because gene
activity and regulation ultimately define a cancer
phenotype, it is essential to have a comprehensive
understanding of the precise genetic mutations and
consequences of these mutations and genetic alter-
ations. Therefore, it is not surprising that the majority
of research efforts focus on the genomics, functional
genomics and proteomics of cancer cell progression
and metastasis.

The complexity of cancer is a major obstacle to
comprehensive understanding of the underlying mo-
lecular mechanisms of oncogenesis. No gene is an
island. Even in a single cell, genes work together and
take part in many biological processes which then
determine the cell’s behavior and phenotype. Scien-
tists have struggled for years to figure out how to
handle this biological complexity. Systems biology, or
more specifically network biology, is driven by the
gradual realization that a particular biological func-
tion is not the result of activity encoded by a single
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gene. The goal of systems biology is to combine
molecular information of various types in models to
understand biological systems and their complexity,
and finally to attempt to predict biological function at
the cellular, tissue, organ and even whole-organism
level. Development of genomic technologies such as
high-throughput sequencing, especially DNA, protein
microarrays and mass spectrometry, has made it
possible to describe cells’ biological states in a
quantitative manner, and to simultaneously study
many gene and protein components and then clarify
how these components work together in regulation
and carrying out biological processes. The integration
of these experimental techniques with information
technology provides a powerful approach to address
and dissect the complexity of cancer and other bio-
logical problems at various levels in a systems manner.

Biological understanding of cellular networks

In cells, interdependent interactions of genes and
proteins form complex cellular networks, for example
signaling networks, gene regulatory networks and
metabolic networks. Cellular networks are the basis of
biological complexity. Therefore, the cellular net-
works have thus become the core of systems biology.
Traditionally, network and graph theory is a branch of
mathematics. Here we briefly review and explain
network and graph theory with a focus on biological
insights. Recent developments in high-throughput
techniques in the field of genomics and proteomics
research have generated vast amounts of data;
furthermore, information in the literature is becoming
accessible on the Internet. Extraction of these datasets
and information to generate new cellular networks or
tointegrate into and expand existing cellular networks
makes it attractive to study the structures of these
networks by relating them to biological properties and
insights. What is needed now it to develop systematic
methods for analyzing cellular networks as well as
understanding their properties in a cellular context.

In biology, cellular networks include protein interac-
tion networks which encode the information of
proteins and their physical interactions, signaling
networks which illustrate inter- and intracellular
communication and the information process between
signaling proteins, gene regulatory networks which
describe regulatory relationships between transcrip-
tion factors and/or regulatory RNAs and genes, and
metabolic networks of biochemical reactions between
metabolic substrates and products. Metabolic net-
works are not the focus of this review; however, more
information about metabolic networks can be found in
a recent review [22]. Subcellular networks include



1754 E. Wang, A. Lenferink and M. O’Connor-McCourt

amino acid residue interaction networks in protein
structures, which are assumed to involve a permanent
flow of information between amino acids [23].

Networks can be presented as either directed or
undirected graphs. Protein interaction networks are
modeled as undirected graphs, in which the nodes
represent proteins and the links represent the physical
interactions between the proteins. Directed graphs, on
the other hand, are used to present gene regulatory
and metabolic networks. In gene regulatory networks,
nodes represent transcription factors or genes, while
links represent regulatory relations between tran-
scription factors and the regulated genes or tran-
scription factors. Signaling networks are presented as
graphs containing both directed and undirected links.
In the networks nodes represent proteins, directed
links represent activation or inactivation relationships
between proteins, while undirected links represent
physical interactions between proteins. Compared
with other cellular networks, signaling networks are
far more complex in terms of the relationships
between proteins. For example, nodes may represent
different functional proteins, such as kinases, growth
factors, ligands, receptors, adaptors, scaffolds, tran-
scription factors and so on, which all have different
biochemical functions and are involved in many
different types of biochemical reactions that charac-
terize a specific signal transduction machinery.

In the past few years, significant progress has been
made in the identification and interpretation of the
structural properties of cellular networks. This infor-
mation has shed light on how such properties might
reflect the biological meaning and behavior of cellular
networks [24, 25]. Although each type of the cellular
network has its own properties, they all share some
common structural properties. Cellular networks and
other real-world networks, such as a public trans-
portation network, exhibit a global structure property
that is defined as ‘scale-free’. In a scale-free network, a
small group of nodes act as highly connected hubs
(high degree), whereas most nodes have only a few
links (low degree). For example, a map describing the
air transportation in the United States is a network, in
which only a few big airports (hubs) in big cities such
as Boston, New York, Chicago and Los Angeles have
many air routes (links) to other airports, while many
small airports have just a few air routes to big airports
nearby. This common structural feature encodes a
special property of these networks: they are robust but
also very vulnerable to failure and attack [25]. In a
scale-free network, random removal of a substantial
fraction of the low-degree nodes will cause little
damage to the network’s connectivity; however,
targeted removal of the high-degree hub nodes will
easily disconnect and destroy the network completely,
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as illustrated by the air transportation map. Disabling
big airports (hubs) will wreak havoc in many ways,
while damaging a few small airports will have little or
no effect on overall air transportation.

In regulatory networks, hub genes are global tran-
scription factors. They may govern a large number of
genes in response to internal and external signals. To
fit their multiple biological functions, the hub’s
expression will have to display dynamic features.
Analysis of the yeast gene regulatory network, in
which the gene expression profiles of many different
cellular conditions were integrated, shows that the
hub transcription factors do control a large spectrum
of biological processes [26]. We have integrated
genome-wide messenger RNA (mRNA) decay data
onto the Escherichia coli gene regulatory network and
revealed that the transcription factors whose mRNAs
have fast decay rates are significantly enriched in hub
genes, suggesting that the expression of the hub genes
in gene regulatory networks are indeed highly dy-
namic. This dynamic behavior facilitates a rapid
response of the network to external stimuli [27]. A
similar result was obtained in a recent study, in which
mRNA decay data mapped onto a yeast protein
interaction network showed that the hub proteins in
protein interaction networks also display fast mRNA
decay rates [28]. In protein interaction networks, hub
proteins are involved in a large number of interac-
tions, meaning that these proteins will take part in
many biological processes and therefore would have
higher dynamics in expression. Furthermore, hub
proteins may be more important for an organism’s
survival and have a much broader effect on a system
than non-hub proteins. A series of reports confirm this
notion [24, 29-32]. These reports also suggest that
hub proteins have central positions in cellular net-
works and are more essential for the organism’s
survival than other proteins. Therefore, the structure,
or in other words, the topology, of cellular networks
not only sheds light on complex cellular mechanisms
and processes but also gives insight into evolutionary
aspects of the proteins involved. By examining protein
evolution and protein interaction networks, Saeed and
Deane found that hub proteins are ‘old’ proteins
which have evolved more slowly than other proteins
[33]. Biologically, this makes perfect sense, in that hub
proteins are involved in many biological processes and
are subject to selection pressure and constraints. Hub
proteins in signaling networks are the focal nodes that
are shared by many signaling pathways. That is, hub
proteins have become information exchanging and
processing centers. Alterations to these hub proteins
may therefore globally affect the well-being of living
cells. A recent RNA interference (RNAI) screen of
worms supports this hypothesis. Lehner et al. system-
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atically mapped the genetic interactions of Caeno-
rhabditis elegans genes involved in signaling pathways
and revealed a network of 350 interactions [34]. They
then tested 65,000 pairwise gene interactions and
found that a few genes interact with an unexpectedly
large number of signaling pathways. These hub genes
were identified as chromatin-modifying proteins,
which are conserved across animals where they
display core genetic buffering properties.

Cellular networks are complex systems in which a
gene does not independently perform a single task.
Instead, individual genes, which collaborate to carry
out some specific biological function can be grouped.
We call such a gene group a functional module. This
assumption leads to the idea that a complex network
can be broken up into many small but functional
modules or units, which can then be studied to
determine their structural properties and functional
behaviors. Once we understand the functions, proper-
ties and regulatory/interactive behaviors of these
modules, we can then use these functional modules
to rebuild subnetworks and even whole networks and
study their properties and functions. Network motifs
are examples of such functional modules. These are
statistically significant recurring structural patterns or
small subgraphs or subnetworks that are found more
often in a real network than would be expected by
chance [35]. These motifs are known in biology as
gene regulatory loops. These motifs can self-organize
or form a networks by sharing nodes between various
motifs [27]. Network motifs have been studied in
detail in gene regulatory networks. Three major motifs
are found in gene regulatory networks: single input
module (SIM), bi-fan and feedforward loop (FFL)
(Fig. 1). One design principle of these motifs is that the
transcription factors whose mRNAs have fast decay
rates are significantly enriched, suggesting that motif
structures encode regulatory behavior: network mo-
tifs are able to rapidly respond to internal and external
stimuli and decrease internal cell noise [27]. Network
motifs have been shown to have distinct regulatory
functions and are robust in that they are resistant to
internal noise. Both theoretical and experimental
studies have shown that network motifs have distinct
regulatory functions and particular kinetic properties
that determine the temporal program of gene expres-
sion [36]. Therefore, the frequencies and types of
network motifs cells use reveal the regulatory strat-
egies that are selected in different cellular conditions
[27, 37, 38]. For example, FFLs are buffers that
respond only to persistent input signals [39], which
makes them wellsuited for responding to endogenous
conditions, while the motifs whose key regulatory
transcripts have a fast mRNA decay rate are prefer-
entially used for responding to extraneous conditions
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[27]. In signaling networks, network motifs such as
switches [40], gates [41], and positive or negative
feedback loops provide specific regulatory capacities
in decoding signal strength, processing information
and controlling noise [42, 43].

TF TF1 TF1 TF2
TF2
G1 G4 o
G2 G3 G1 G1 G2
a b c

Figure 1. Network motifs in gene regulatory networks. Nodes
represent genes and lines represent gene regulatory relations. (a)
Single input module (SIM): a transcription factor (TF) regulates a
group of genes (G1, G2, G3 and G4). (b) Feedforward loop (FFL):
a transcription factor (TF1) regulates the second transcription
factor (TF2); both TF1 and TF2 regulate a target gene (G1). (¢) Bi-
fan: both transcription factors, TF1 and TF2, regulate both target
genes (G1 and G2).

Distinct network motifs could form large aggregated
structures, called network themes, that perform spe-
cific functions by forming collaborations among a
large number of motifs [44]. In this case, network
themes can be regarded as communities of function-
ally related nodes. A large protein complex in protein
interaction networks is one of the examples of such a
network community.

Integrative network analysis of cancer-associated
genes

High-throughput gene expression profiling often
leads to identification of hundreds or sometimes
even thousands of modulated genes for a given
phenotype. However, the extraction and interpreta-
tion of biological insights of the differentially ex-
pressed genes in these high-throughput datasets are
challenging, and limited by difficulties in recognizing
gene-gene relations and associations within a huge
amount of data. Although it is possible to classify
identified genes into different functional groups using
gene ontology (GO) [45], the in-depth relationships
between genes in different functional categories can
still not be easily illustrated. A particular phenotype is
the result of collaborations of a group of genes, which
do not necessarily belong to the same functional
category. Therefore, integration of microarray-gener-
ated gene lists into cellular networks could help in
analyzing and interpreting the biological significance
of the genes in a network and their gene-interdepend-
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ent context. This notion provides a structured network
knowledge-based approach to analyze genome-wide
gene expression profiles in the context of known
functional interrelationships among genes, proteins
and phenotypes.

Motivated by this concept, Wachi et al. investigated
differentially expressed genes in squamous cell lung
cancer which were identified by projecting microarray
gene expression profiling onto a human protein
interaction network [46]. The data for the network
construction were taken from the online predicted
human interaction database, (OPHID) [47], which
contains 16,034 known human protein interactions
obtained from various public protein interaction
databases, and 23,889 additional protein interactions
that were predicted. They mapped the 360 upregu-
lated and 270 downregulated genes that were identi-
fied in the lung cancer microarray experiment onto the
protein interaction network. Further network analysis
revealed that the upregulated genes in this dataset are
well connected, whereas the suppressed genes and
randomly selected genes are less so. They also showed
a high degree of centrality in these differentially
upregulated genes, but not for the genes that are
suppressed. These results imply that the upregulated,
but not downregulated genes in this experiment are
enriched in hub proteins, which are associated with
essential functions in protein interaction networks
[29]. Cancer cells are characterized by uncontrolled
growth, which could suggest that the induced genes in
cancer cells, compared with normal cells, are more
essential for survival and proliferation. The work
described here reveals the characteristics of cancer-
associated genes in a network context and supports
the notion that integrative network analysis of large
datasets obtained from gene expression profiling
helps to understand the function of biological systems.
The characteristics of cancer-associated genes uncov-
ered in this study were confirmed by a recent analysis
of a human protein interaction network integrated
with literature-mined cancer genes. Johsson and Bates
[48] used mutated cancer genes collected from the
literature [49] and attempted to uncover their intrinsic
properties in a human protein interaction network
which was constructed from the entire human genome
using an orthology-based method [50]. In total, 346
genes encoding 509 protein isoforms were mapped
onto the network. This analysis showed that cancer
proteins have on average twice as many interaction
partners as other proteins in the network, which
implies the evolutionary aspects of cancer genes.
Accumulating evidence shows a positive correlation
between the evolution of proteins and their number of
interactions within a given network [31, 51, 52]. With
this consideration in mind, the authors concluded that
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proteins whose mutation results in a detrimental
change of function that leads to cancer may generally
be more conserved than other proteins. Alternatively,
as they have more interaction partners, cancer pro-
teins, may be involved in significantly more biological
processes and play a central role in the protein
network. To further explore this direction, Johsson
and Bates also investigated the relationships between
these cancer genes and network communities, which
represents a distinct biological process, meaning that if
a protein is a member of multiple network commun-
ities, it takes part in more biological processes. The
results of this analysis show that the identified cancer
proteins are indeed involved in more network com-
munities than other proteins in the network, suggest-
ing their more prominent centrality and participation
in the formation of the proteome network backbone.
Taking it one step further, the authors also analyzed
the domain compositions of these cancer proteins.
Cancer proteins display a high ratio of highly promis-
cuous domains in terms of the number of different
proteins with which they interact, indicating that they
play central roles in many biological processes and
that mutations in these proteins could lead to a higher
cancer incidence. Moreover, the domains most fre-
quently found in the cancer protein population have
functionalities that particularly focus on DNA regu-
lation and repairing, such as Zinc-finger, PHD-finger,
BRCT and Paired-box domains, which all happen to
be transcription factors.

These findings provide biological insight into the
global protein interaction network properties of
cancer proteins and uncover one of the most striking
properties of cancer proteins in that cancer-associated
proteins are network hubs, which play central roles in
biological systems and take part in many biological
processes. Taken together, each hub cancer protein
may reflect a specific domain of a cellular function,
which suggests that mutations of an individual or a few
hub proteins together may lead to oncogenesis or
cancer progression. However, these studies provide
little insight into the oncogenic mechanisms simply
because protein interaction networks have limited
information compared with signaling networks in
which protein regulatory (activation and blocking)
information is encoded. Therefore, integration of
cancer genes into existing and established signaling
networks would enable further insight into the onco-
genic process and cancer progression.

Cells use sophisticated communication between pro-
teins to perform a series of tasks such as growth and
maintenance, cell survival, apoptosis and develop-
ment. Signaling pathways are crucial to maintain
cellular homeostasis and determine cell behavior.
Therefore, alterations in the expression of genes and
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their regulators will be reflected in these cellular
signaling pathways, and in turn lead to tumor develop-
ment and/or the promotion of cell migration and
metastasis. Indeed, mutations in genes that encode
signaling proteins are commonly observed in many
types of cancers [53].

Specific signaling pathways deploy many different
proteins; however, pathways often ‘talk’ each other.
This so-called ‘cross-talk’ between pathways has been
systematically investigated in a recent study, and an
unexpectedly high number of cross-talk events among
signaling pathways were discovered [54]. These re-
sults indicate that signaling pathways form a complex
network to process information. Structural analysis of
a literature-mined human cellular signaling network
containing ~500 proteins showed that signaling path-
ways are intertwined in order to manage the numerous
cell behavior outputs [S5]. This work provides a
framework for our understanding of how signaling
information is processed in cells. Furthermore, anal-
ysis of interactions between microRNAs and the same
signaling network reveals the principles of microRNA
regulation of the network [56]. Together, these
approaches suggest that an integrative analysis of
signaling networks with cancer proteins would high-
light the characteristics of cancer proteins within these
networks.

Errors in signal transduction can lead to altered
development and incorrect behavioral decisions,
which could result in uncontrolled cell growth or
even cancer. The relationships of signaling proteins
are thought to be critical in determining cell behavior.
Therefore, mapping of cancer genes on the nodes of a
signaling network could in general, lead us to which
mechanisms support the continued survival and pro-
liferation of cancer cells. We manually curated human
cellular signaling pathways and merged these curated
data into another literature-mined human cellular
signaling network mentioned previously [55]. As a
result, the new network contains ~1.100 signaling
proteins. Next the cancer proteins obtained from
NCBI's Online Mendelian Inheritance in Man
(OMIM) database [57] were mapped onto the net-
work. Nearly 90 cancer proteins were mapped onto
the network [58]. Not surprisingly, cancer proteins are
enriched in hub proteins in the signaling network. As
mentioned, cancer genes often become mutated,
which could result in the activation of particular
focal signaling nodes that play important roles in the
information exchange between many individual sig-
naling pathways. Indeed, several cancer proteins form
the focal nodes in signaling networks and therefore
play important roles in cancer development.

The cellular signal information flow initiates from the
extracellular space, e.g. a ligand binds to a cellular
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membrane receptor to generate the signal that is then
transmitted by intracellular signaling components in
the cytosol to the signaling components within the
nucleus. This process of signal transduction is sensitive
in terms of mutated genes, which result in altered
signaling and therefore tumorigenesis, and increase
cell mobility and invasion. We found that cancer
proteins are enriched in the downstream section of
signaling networks, the realm of the transcription
factors [58]. Along with this discovery, we also found
that cancer proteins are hardly represented in certain
network motifs, such as bi-fan (Fig. 1), which is a
structure with regulatory redundancy and also one of
the most abundant network motifs in the central
region of the human signaling network. These results
lead us to believe that the central region of a signaling
network provides a genetic buffer for cells in that it
may prevent cancer development, which is in agree-
ment with the robustness of networks [59]. The fact
that cancer proteins are enriched in the downstream
region suggests that proteins in this region are crucial
for determining specific cell behavior. Our work
provides insights into the signaling networks invoked
in cancer development and progression.

The systems-level approach taken in this work, i.e.
combining information on how proteins interact with
each other and how transmitted signals are processed,
with information on known cancer genes and gene
expression in cancer cells, is a particularly appealing
approach to gain an understanding of complex bio-
logical processes, such as cancer development and
metastasis. Network analyses using comprehensive
knowledge of biology provide a framework for
structuring existing knowledge regarding cancer biol-
ogy and help to identify proteins and/or significant
functional modules and the underlying mechanisms of
the oncogenic process.

Hunting new cancer-related genes using cellular
networks

Protein interaction networks have been used to hunt
new cancer-associated genes. Jonsson et al. have been
motivated to find genes involved in metastasis by
integrating cancer cell microarray expression data
onto a rat protein interaction network which was
constructed by transferring protein-protein interac-
tion information from other species using the protein
homology concept [50]. The network was evaluated
by confidence scores based on homology to proteins
that have been experimentally observed to interact.
Metastasis is a key event that is usually associated with
a poor prognosis in cancer patients. Metastasizing
cancer cells have special properties, in that they can
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display features such as increased motility and inva-
siveness.

It was hypothesized that subnetworks of protein
interactions may govern metastasis. Jonsson et al.
used a dataset containing up- and downregulated
genes that was obtained from a cancer microarray
study, and constructed subnetworks around proteins
which were then evaluated using cluster analysis to
define network communities that reflect small protein
interaction units that are involved in the metastastic
process [50]. As a result, they identified 37 protein
communities of highly interconnected proteins, most
of which have been associated with cancer and
metastasis.

Gene networks have been constructed by merging
various data sources, which were then used to find or
prioritize cancer and other disease genes. In this
context, gene-gene networks are presented using
undirected graphs, in which the nodes represent
genes and the links represent relations between
genes. The relations of the genes can be physical
protein interactions, gene regulatory relations, gene
associations and so on. Franke et al. constructed such a
human gene-gene network using databases of known
interactions, gene ontology (GO), microarray co-
expressions and yeast two-hybrid data [60]. They
then integrated this network with already known
genetic information on diseases (i.e. genetic loci for a
particular human disease). The authors reasoned that
the cancer genes from each locus are likely to be
involved in one same molecular pathway and bio-
logical process. To prove their concept, they showed
that the genes prominent in any one disease were
closer to each other in the network than would be
expected by chance, which suggests that these genes
are involved in the disease and therefore tend to have
more functional interactions or associations. To assess
the predictive power of this method, the authors tested
it by picking disease genes using the network. Four out
of 10 breast cancer genes were ranked at the top of the
gene list, which is 4 times higher than a breast cancer
gene that would be picked by chance. When they
integrated more interaction data into the network and
adjusted the network topology, the ranking of these
disease genes improved considerably, and included 9
of the 10 genes. These results indicate that the use of a
network significantly improves the chance of finding
the correct cancer genes.

In the past few years, a series of studies focused on
constructing gene-gene networks using data from
literature and other sources. One notion behind this
is that nearly 80 % of biological information and data
is coded in natural language in technical reports,
websites, research publications and other text docu-
ments [61]. To facilitate the extraction of these data,
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methods have been developed for the automatic
extraction of interaction and pathway information
from the scientific literature [62—66]. Furthermore,
the extracted relations between genes have been used
to construct gene-gene networks, and several software
packages and related datasets have been developed.
PubGene [67] is an example of such a tool. It contains
a database and analysis software for constructing
gene-gene networks by identifying relationships be-
tween genes based on their statistical co-occurrence in
the abstracts of scientific papers. Information Hyper-
linked over Proteins (iHop) [68] is another example.
In this case, one can use gene names to retrieve gene-
gene relations from PubMed abstracts that match a
specified gene/protein name. iHop also provides
automatic extraction gene-gene relations for software
developers and bioinformatics scientists.

In contrast to most text-mining methods that use the
abstracts of research papers, Natarajan et al. tried to
use full-length scientific articles to extract gene-gene
relations [69], and also fused the extracted gene
interactions to structured data and knowledge bases
such as Ingenuity Pathway Analysis, UniProt [70],
InterPro [71], NCBI Entrez and GO. A human gene-
gene network was constructed using theses data
sources. The authors then mapped the differentially
expressed genes identified from microarrays, which
profiled the gene expression in glioblastoma as a
response to S1P in vitro. Further analysis led to
identification of a cascading event that is triggered by
S1P, and which leads to the transactivation of MMP-9
via neuregulin-1, vascular endothelial growth factor
and the urokinase-type plasminogen activator. This
suggests that the interaction network has the poten-
tial to shed new light on our understanding of the
cancer-related process. Therefore, automated extrac-
tion of information from the biological literature,
together with combining and integrating biological
data from laboratory experiments, provides an ef-
fective approach to biological knowledge discovery.

Reverse engineering of gene regulatory networks
from microarray data

Reverse engineering of biological networks is a
process of elucidating the structure of gene regulation
relationships by reasoning backwards from the obser-
vations of gene expression values. In recent years, a
substantial effort has been made to reconstruct gene
regulatory networks using microarray profiles. Here
we describe two related efforts which combined
computational and experimental approaches.

Basso et al. developed a statistical algorithm using
mutual information for more accurately reasoning
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Figure 2. A gene regulatory network inferred from the time course gene expression profiles of the BRI-JMO1 cell line. Nodes represent

genes, and lines represent gene regulatory relations.

networks in which pairwise gene-gene interactions are
described [72]. The algorithm was named the Algo-
rithm for the Reconstruction of Accurate Cellular
Networks (ARACNE). To test ARACE, the authors
used a huge number of gene expression profiles (336
samples) of human B-cells at different stages covering
normal to cancer cells to construct a network. A
subnetwork was used for validation using GO and
chip-on-chip experiments. The results are encourag-
ing in that 90% specificity was obtained for ARA-
CNE. However, note that the test did not include the
predictions with lowest mutual information scores.
Nevertheless, this approach shows that with enough
gene expression data, reasonable gene networks can
be retrieved by developing proper algorithms.

Another example of reverse engineering applied to
cancer research was carried out using a dataset that
was generated in our own laboratory. We constructed
a gene regulatory network using time course micro-
array profiles from a mouse epithelial breast cell line
(BRI-JMO1), which was isolated from mammary
tumors in transgenic mice. These cells undergo an

epithelial to mesenchymal transition (EMT) when
they are treated with TGF-f (transforming growth
factor ) [73]. To identify the transcriptional changes
underlying this EMT, we exposed the BRI-JMO1 cell
line to TGF-f for seven time intervals (0.5-24 h),
and interrogated the transcriptome using comple-
mentary DNA (cDNA) microarrays. Based on the
microarray profiles and the Markov chain-based
network construction method [74], we constructed a
gene regulatory network that contains nearly 50
genes and three layers of regulations, in which the
regulatory relations are either direct or indirect
(Lenferink et al., unpublished data, Fig. 2). Known
biological information was used to validate the
network. Interestingly, in the top layer of the net-
work, all the annotated genes are either transcription
factors or signaling proteins which are known to be
regulatory proteins. Most known genes in the bottom
layer of the network are involved in cancer processes,
which suggests that the network may be right.
Notably, clusterin, one of the genes that are upregu-
lated in the middle and late time points shows many
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regulatory links to other genes in the network.
During the EMT process, clustrerin is secreted by
BRI-JMO1 cells. Interestingly, when applying anti-
clusterin antibodies to TGF-p-treated BRI-JMO1
cells, we were able to block TGF-B-induced EMT.
This result strongly implies that the secreted form of
clusterin plays a pivotal role in TGF-p-induced EMT
and therefore TGF-f’s tumor-promoting effects on
the BRI-JMO1 cell line. Currently, reverse engineer-
ing of gene regulatory networks using microarray
data is mainly hampered by limited microarray
experiments we could perform for a given sample.
Reverse engineering methods provide only some
hints to biologists, although they could narrow down
the gene list of interest. Substantial lab experiments
should be followed to further validate genes of
interest from the inferred gene regulatory networks.

Outlook

The analysis of the cancer phenomenon using a
systems-level approach is still in its infancy. New and
emerging technologies need to be developed and
validated. These technologies include single-cell
signal mapping, which will be very helpful in obtain-
ing the full picture of signaling dynamics occurring in
different cancer cells and during various stages of
cancer development. These techniques will be espe-
cially useful for understanding the biology of tumors,
which consist of notoriously heterogeneous cancer
cell populations. Information about relations be-
tween genes and/or proteins is still limited, but will be
alleviated once new high-throughput datasets be-
come available. These new datasets, whether gener-
ated experimentally or by literature mining, will no
doubt provide information on new interactions
between genes. Current efforts are ongoing to curate
high-quality signaling data from the literature [75,
76].

Overall, the systems biology output will bring unpre-
cedented amounts of molecular information and
large-scale datasets to medicine in the form of DNA
sequences and quantative information on messenger
RNS, proteins, and metabolites. An important part of
systems biology is to take all of these measurements in
consideration to construct models to describe what is
going on in a cell, a tissue, an organ or even an
organism. A systems-level understanding of the
underlying mechanisms causing cancer in an individ-
ual cancer patient will allow science to become more
focused and will contribute significantly to the clinical
application of personalized medicine.
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