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Abstract. Neural stem cells (NSCs) in the adult
mammalian brain proliferate and continuously pro-
duce new neurons. To date, there has been little
research into the functions of lectins in adult NSCs.
Recently, we reported that a lectin, galectin-1, is

expressed on adult NSCs and promotes their prolif-
eration through its carbohydrate-binding ability. This
evidence raises the possibility that glycans play roles
in the proliferation of adult NSCs.

Keywords: Lectin, galectin, neural stem cell, glycan, subventricular zone astrocyte.

Introduction

Neural stem cells (NSCs) proliferate throughout life and
differentiate into young neurons in the adult mammalian
brain [1–5]. They are the primary progenitor cells of the
neurons that turn over in the olfactory bulbs (OB) and in
the dentate gyrus (DG) of the hippocampus, the principal
regions for olfaction and memory, respectively. Recent
studies have shown the expression of glycans on NSCs and
in their niche [6,7], suggesting that the glycans have
functional significance [8]. To function, glycans interact
with carbohydrate-binding proteins (e.g., lectins) in many
biological settings. However, the function of lectins on
adult NSCs has not been elucidated.
Galectin-1 is a lectin that preferentially binds to the
lactosamine structure in glycans [9 – 11]. Galectin-1 is
expressed by various stem cells, including embryonic,
hematopoietic, and keratinocyte stem cells [12 – 16].
However, whether NSCs express galectin-1 in vivo
and how it might function have been unknown. Here,
we review the recent data on the expression and
function of galectin-1 in adult NSCs.

NSCs in the adult mammalian brain

NSCs reside in two anatomically distinct regions in the
adult mammalian brain: the subventricular zone
(SVZ) of the lateral wall of the lateral ventricles
(Fig. 1) and the subgranular zone of the DG of the
hippocampus. Several types of progenitor cells are
produced in a hierarchical manner from NSCs
(Fig. 1D). NSCs in the SVZ have certain character-
istics of astrocytes, such as GFAP expression [17].
(Hereafter, we refer to these cells as SVZ GFAP-
expressing cells, to distinguish them from astrocytes in
other regions.) NSCs proliferate and produce transit-
amplifying cells (TAs). TAs rapidly proliferate, in-
creasing in number, and differentiate into neuroblasts.
The neuroblasts migrate to the OB, where their final
differentiation into interneurons takes place. Each
progenitor type in the SVZ can be distinguished by its
expression pattern of molecular markers (Fig. 1E) [3,
18]. The NSCs of the DG and their functional
significance for adult neurogenesis are thoroughly
discussed in other reviews [2, 3].
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Figure 1. Galectin-1 is expressed in the neural stem cells (NSCs). (A) Illustration of a sagittal section of adult mouse brain showing the
extent of the lateral ventricle (orange) where the subventricular zone (SVZ) exists. (B) Illustration of a coronal brain section taken at the
rostral-caudal position shown as a black line in (A). The SVZ (brown) is shown as a thin layer between the lateral ventricle and striatum. In
practice, it is easily identified by its cell density, which is higher than that of the striatum. (C) Drawing of a magnified view of the part of the
brain shown boxed in (B). A single layer of ependymal cells (E) lies between the lateral ventricle and the SVZ. This layer is believed to be
permeable, allowing various molecules to enter the SVZ [41]. (D) Hierarchy of adult neurogenesis in the SVZ. NSCs (B) slowly divide to
generate transit-amplifying cells (TAs) (C), which proliferate rapidly and produce neuroblasts (A). Neuroblasts migrate through the rostral
migratory stream [RMS: shown as a red line in (A)] into the olfactory bulbs (OB) where they differentiate into neurons. (E) Marker
expression pattern for each stage of neural cell differentiation in adult neurogenesis. (F) A subset of SVZ cells, indicated by white arrows,
co-express galectin-1 (green) and GFAP (red). Slice thickness, 1 mm. (G) Time schedule for long-term BrdU labeling. BrdU was infused for
14 days, and the mice were killed 10 days later. (H) A long-term BrdU-retaining cell, which is positive for galectin-1. H’,H’’: 3-D
reconstruction images. Slice thickness, 1 mm. Ctx, cortex; CC, corpus callosum; LV, lateral ventricle; DG, dentate gyrus; Crb, cerebellum;
Str, striatum; BV, blood vessel. Scale bars in (F, H): 4 mm. Figures are modified from [8].
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Galectin-1 expression in the adult CNS

Although several reports have shown the expression
of galectin-1 in the CNS (Table 1) [19 – 32], its
expression in NSCs had not been shown until
recently [18] . In the adult mouse SVZ, we found
galectin-1 expression in the GFAP-expressing cells
(Fig. 1F), which were also positive for Nestin [18] , a
marker of neural progenitor cells in the adult brain.
To confirm the expression of galectin-1 in adult
NSCs, we used the BrdU long-labeling method
(Fig. 1 G). BrdU is a thymidine analog that is taken
up by dividing cells in S phase. It is known that adult
NSCs divide more slowly than other progenitors in
the SVZ [33]; therefore, once they take up BrdU,
they can retain it for an extended time (the wash-out
period). In the wash-out period, TAs proliferate and
dilute the incorporated BrdU, and neuroblasts mi-
grate out of the SVZ. Thus, after the wash-out period,
the BrdU-labeled cells (long-term BrdU-retaining
cells) in the SVZ are highly enriched for NSCs [17].
We confirmed the expression of galectin-1 in a subset
of the long-term BrdU-retaining cells (Fig. 1 H) [18].
These results indicate that galectin-1 is expressed in
adult NSCs.

Galectin-1 promotes the proliferation of adult NSCs

The neurosphere assay (Fig. 2A) is a method to study
the characteristics of neural progenitor cells in vitro
[34, 35]. In the neurosphere assay, dissociated tissue
containing neural progenitor cells is cultured in
serum-free medium supplemented with defined
growth factors. The medium formulation allows

neural progenitors, which could include NSCs and
TAs [36], to proliferate and form spherical cell
aggregates, called neurospheres. Cells in the neuro-
spheres can differentiate into neurons and glial cells.
This makes it possible to study the two basic character-
istics of neural progenitor cells (e.g. , proliferation and
differentiation) in vitro.
To study the function of galectin-1 in adult neural
progenitor cells in vitro, we infused recombinant
galectin-1 (rGalectin-1) into the lateral ventricle, so
that rGalectin-1 could reach the SVZ (Fig. 2A). The
SVZ was subsequently dissected and cultured to form
neurospheres. We found that the number of neuro-
spheres formed from the SVZ of the rGalectin-1-
infused brain was increased compared with that of the
saline-infused control brain (Fig. 2B). The percentag-
es of neurons that differentiated from the neuro-
spheres of the rGalectin-1- or saline-infused brains
were not significantly different [18]. These results
suggest that the rGalectin-1 infusion increased the
number of NSCs and TAs in the SVZ.
To confirm this result in vivo, we infused BrdU along
with rGalectin-1, and the number of long-term BrdU-
retaining cells was counted. As expected, the number
was significantly higher in the rGalectin-1-infused
brains than in the saline-infused control brains [18].
We also studied the markers expressed in the SVZ
cells after infusion. We confirmed that the cell
population that fulfills the criteria for NSCs and TAs
was significantly increased after the rGalectin-1
infusion (Fig. 2C) [18]. In addition, we found no
significant difference in the number of apoptotic cells
after the infusion [18]. Moreover, galectin-1-knockout
mice showed a reduction in the number of NSCs
(Fig. 2D) and TAs [18]. Together, these results

Table 1. The galectin-1 expression and functions in the nervous system as reported in the literature (Ox, the functions of oxidized galectin-
1; R, the functions of reduced galectin-1; DRG, dorsal root ganglion)

Locus Subtype Embryo Postnatal Adult Ref. Function Ref.

Spinal cord Sensory neurons in DRG + + + [19 –23]

(Brain stem) Motor neurons + + + [19 –23] Neurite growth in injury (Ox) [30, 37]

Schwan cells + [24, 25] Migration after injury (Ox) [24, 30]

Red nucleus complex + [22]

Cerebellum Neurons + + [26]

Glial cells + + [26] Differentiation (R) [32]

Forebrain Neurons + + [27]

SVZ astrocytes + [18] Proliferation (R) [18]

Olfactory bulb Sensory neurons + + + [28] Neurite growth and/or pathfinding (R) [31]

Mitral cells + + [28]

2nd order projection neurons + [28]

Interneurons + [28]

Non neuronal cells + [29]
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indicate that Gelectin-1 promotes the proliferation of
adult NSCs.

The carbohydrate-biding ability of galectin-1 is
required for its activity in the SVZ

Galectin-1 loses its carbohydrate-binding activity
under oxidative conditions [9], but it gains other
functions in the form of oxidized galectin-1, such as its
involvement in functional recovery after peripheral
nerve injury [37]. A mutant form of galectin-1, CS-
galectin-1, in which the formation of disulfide bonds is
prevented by substituting serines for cysteine residues,
retains its carbohydrate-binding activity under oxida-
tive conditions [38]. The infusion of CS-galectin-1, but
not of oxidized-galectin-1, resulted in an increased
number of long-term BrdU-retaining cells [18], sug-
gesting that the carbohydrate-binding ability of ga-
lectin-1 is required to promote adult NSC prolifer-
ation.

Expression and function of glycan in NSCs

Our study suggests that the glycan expressed on NSCs
functions in the proliferation of NSCs through its
interactions with galectin-1. NSCs express a glycan
structure, LeX antigen [6, 39]. LeX antigen is produced
by the transference of fucose to lactosamine [39]. This
addition of fucose significantly decreases the affinity
of galectin-1 for lactosamine [10]. Future studies
should reveal whether this fucosylation controls
galectin-1 binding to NSCs, thereby regulating NSC
proliferation.

Concluding remarks

To date, mechanisms that regulate endogenous adult
NSCs have been extensively studied, with particular
interest in their therapeutic potential [2, 40]. How-
ever, the functional significance of the interactions
between the endogenous lectins and glycans ex-
pressed on adult NSCs has not been clarified. This
study will contribute to our understanding of the
importance of galectin-glycan interactions on adult
NSCs, and to establishing novel approaches for
treating human disease.
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