
Abstract. Ribosome biogenesis centres both physically 
and functionally on the activity of the ribosomal RNA 
(rRNA) genes. Ribosome assembly occurs co-transcrip-
tionally on these genes, requires the coordinated expres-
sion and assembly of many hundreds of proteins and is 
finely tuned to cell and organism growth. This review 
presents contemporary understanding of the mode and 

the means of rRNA gene transcription and how growth 
factors, oncogenes and tumour suppressors regulate this 
transcription. It is argued that transcription elongation is a 
key mechanism regulating rRNA gene transcription. This 
unorthodox view provides a logical framework to explain 
the co-transcriptional phase of ribosome biogenesis.

Keywords. Ribosome biogenesis, growth regulation, gene regulation, RNA polymerase I, RPI, transcription, elonga-
tion, transcription-coupled ribosome assembly.

A senior professor once gave some stern advice: ‘Keep 
well clear of muscle and ribosomes,’ he said, ‘they’ve been 
done to death.’ Though this advice was followed assidu-
ously during his postgraduate years, T. M. failed miserably 
as a postdoctoral fellow, becoming fascinated by the prob-
lem of how a few hundred ribosomal RNA (rRNA) genes 
are able to produce 80% of the total cellular RNA. Since 
that time, he has become ever more convinced that under-
standing the role these genes play in regulating cell growth 
is one of the most important challenges facing modern bi-
ology. Yet it is clearly also one of the most neglected chal-
lenges. Here, we attempt to review the knowledge of how, 
and indeed why, the rRNA genes are transcribed and sum-
marise what is known of the mechanisms used to coordi-
nate their output with cell growth.

Why are the rRNA genes important?

The rRNA genes encode the major RNA components 
of the ribosome, the most ancient and most complex 
of all molecular machines. In eukaryotes, the synthetic 
 activity of these genes generates the largest sub-nuclear 
structure, the nucleolus, and it is here that ribosomes 
are assembled. Given the overwhelming emphasis paid 
to protein-coding genes, it is a sobering thought that 
each organism must provide around 10 ribosomes for 
every messenger RNA it synthesizes. Ribosome bio-
genesis – the process of ribosome synthesis – therefore 
oc cupies a very large fraction of the metabolic effort 
of a cell. But does it also control cell growth, prolif-
eration and perhaps differentiation, or is it just another 
‘housekeeping’ function? Several recent studies give 
little  alternative but to consider ribosome biogenesis 
as a defining element in the control of cellular and or-
ganism growth. Here we will review current understand-
ing of the growth-related aspects of rRNA gene regul-
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ation, emphasising their relevance to mammalian sys-
tems.

Assembling ribosomes

The ribosome, the factory of protein synthesis, is probably 
descended from a primitive catalytic RNA. The existence 
in modern organisms of ribozymes and the demonstration 
that peptide bond formation is catalysed predominantly 
by the rRNAs strongly suggest that when proteins finally 
arrived in the primaeval RNA world they were synthe-
sized on an ‘all-RNA’ ribosome [see e.g. refs. 1, 2]. This 
central role in the development of life forms appears to 
have been carried over into modern organisms. In recent 
years we have come to understand that the ability to syn-
thesise ribosomes determines growth and cell division 
rates and we now know that many oncoproteins and tu-
mour suppressor proteins modulate ribosome biogenesis 
[3, 4]. More surprisingly, ribosome biogenesis appears in 
turn to be a regulator of several tumour suppressors, in-
cluding p53 [5, 6].
The mammalian ribosome is a 4-MDa structure made up 
of two-thirds RNA and one-third protein and assembled 
into two distinct units referred to as the large, or 60S, 
and the small, or 40S, subunits. The large 60S subunit 
contains three RNA species, the 28S, 5.8S and 5S rRNAs, 
and ∼49 ribosomal proteins (r-proteins), while the small 
40S subunit contains a single RNA, the 18S rRNA, and 
∼33 r-proteins. However, several hundred other proteins 
have been implicated in the process of ribosome biogene-
sis [7–10]. The 18S, 5.8S and 28S rRNAs are synthesised, 
processed and assembled into ribosomes in the larg-
est sub-nuclear structure, the nucleolus (Fig. 1). These 
three rRNAs are transcribed by a dedicated polymerase, 
RNA polymerase I (RPI, also called PolI), from a set of 
repeated genes, the rRNA genes or rDNA, as part of a 
single precursor, which in mammals is referred to as the 
45 or 47S pre-rRNA (Fig. 2A). The short 5S rRNA is in-
dependently synthesised by RNA polymerase III (RPIII, 
also called PolIII), and since its regulation is beyond the 
scope of this review, the reader is referred to other review 
articles [11]. Initial assembly of the ribosome occurs co-
transcriptionally with 47S pre-rRNA synthesis leading to 
a 90S precursor particle, a process elegantly visualized in 
the ‘Miller spread’ electron micrographs (Fig. 1A, B) [re-
viewed in ref. 12]. Structural studies of the ribosome sug-
gest that this co-transcriptional assembly process is im-
portant in establishing the complex folding of the mature 
rRNAs and in positioning the r-proteins [13]. Hence, this 
co-transcriptional phase of assembly is probably a key 
factor in the fidelity of ribosome biogenesis [14]. Soon 
after its synthesis, the pre-rRNA is cleaved in a number of 
distinct steps, first to yield 40S and 60S subunit precur-
sor complexes and finally the mature ribosomal subunits 

Figure 1. The cytological and low-resolution macromolecular 
structures of the nucleolus and active ribosomal genes. FC, fibrillar 
centre; DFC, dense fibrillar centre; GC, granular centre. (A) Elec-
tron micrograph of a thin section through the nucleus and nucleolus 
of a bovine endothelial cell. (B) A ‘Miller spread’ from a mouse Ltk– 
cell in culture showing closely packed transcribing polymerases. 
(C) Electron micrograph of a thin section through the nucleus and 
nucleolus of a Saccharomyces cerevisiae cell. (D) ‘Miller spread’ 
from an S. cerevisiae cell. A and C kindly provided by Dr N. Gas; B 
by Prof. U. Scheer; D by Dr Y. Osheim and Prof. A. Beyer.
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[reviewed in refs. 15–17]. Not only is ribosome biogen-
esis the most complex undertaking of proliferating cells, 
it is also a major metabolic task. Ribosomes account for 
around 80% of total cellular RNA. In yeast, ribosome bio-
genesis accounts for > 75% of all nuclear transcription, 
∼60% engaged in the production of the rRNAs them-
selves and ∼15% in transcribing the 78 yeast ribosomal 
protein genes [18]. In proliferating mammalian cells, 
around 35% of nuclear transcription is dedicated to the 
production of the rRNAs, while a significant proportion 
of total mRNA gene transcription is required to produce 
the proteins needed for ribosome assembly. Interestingly, 
the rate of genome-wide transcription has been shown to 
be coordinated with ribosome biogenesis. Regardless of 
growth rate, yeast maintains a constant ratio of about 10 
ribosomes per mRNA, though how this is accomplished 
remains a mystery [19].

Synthesis of the rRNA precursor is the central focus of 
ribosome biogenesis. The nucleolus forms in the nucleus 
wherever the rRNA genes are transcribed [20]. Thus, the 
existence of the cellular ribosome factory is the conse-
quence of rRNA gene activity. Consistent with this, the 
nucleolus shows a distinct sub-structure, the so-called 
fibrillar centres and associated dense fibrillar centres, 
which are the centres of pre-rRNA synthesis and co-tran-
scriptional assembly, and the outer granular centres, the 
area where the large and small ribosomal subunits are 
independently matured (Fig. 1) [21–25]. The 5S rRNA 
is transcribed independently of the 18S, 5.8S and 28S 
rRNAs and is imported into the nucleolus, as are the r-
proteins. The only known exception among eukaryotes 
is Saccharomyces cerevisiae, in which the 5S genes are 
linked to the rRNA genes and hence must necessarily 
be transcribed in the nucleolus (Fig. 2A). In mammals, 
however, transcription of the unlinked 5S and even tRNA 

Figure 2. (A) Organisation of the rRNA genes in mammals, amphibia and yeast. (B) Organisation of the inter-genic spacer (IGS) in rat/
mouse [221, 222] [36, 37, 60, 61], Xenopus laevis, Drosophila melanogaster and S. cerevisiae [reviewed in refs. 60, 61; reviews also avail-
able on request from the author]. Termination sites in S. cerevisae are taken from Van der Sande et al. [62], but some questions remain as 
to the functions of these sites in vivo [see e.g. refs. 223, 224].



32       T. Moss et al. Ribosomal RNA Genes

genes occurs at the nucleolar periphery [26]. During the 
co-transcriptional phase of ribosome assembly, the rRNA 
is subjected to extensive, sequence specific modifica-
tion. In vertebrates, around 115 residues of the rRNAs 
are 2′-O-methylated and about 95 uridines are converted 
to pseudo-uridine [27]. These modifications, which also 
occur on tRNAs and the 5S rRNAs, are dependent on 
several hundred complementary small nucleolar RNAs 
(snoRNAs) [27–30]. As can be seen, assembly and matu-
ration of the ribosome subunits is a complex process and 
will not be discussed further here; the reader is referred to 
several specialised reviews [16, 17, 31]. For the purposes 
of the present review, it suffices to say that the transcrip-
tional activity of the rRNA genes concentrates all these 
functions in the nucleolus.

The mode of rRNA gene transcription.

In trying to understand the mechanisms that underlie 
rRNA gene transcription and its regulation, we have 
generally made the assumption that, irrespective of the 
eukaryotic system studied, ribosome biogenesis and its 
regulation will be fundamentally the same. Given the pri-
maeval origins of the ribosome and its conservation both 
structurally and functionally, this seems the most reason-
able starting point, at least until solid evidence exists to 
the contrary. Thus, it is our contention that one should 
seek out the parallels between higher and lower eukary-
otes rather than emphasise their apparent differences. As 
will be seen below, it could be argued from present in-
complete knowledge that the promotion of rRNA gene 
transcription in yeast is quite different from that in mam-
mals. But, I would suggest that this apparent difference 
is more than likely due to our present incomplete state 
of knowledge of the mammalian system rather than to a 
fundamental difference in molecular mechanism. When 
the existence of active promoters within the intergenic 
spacer of the rRNA genes was first demonstrated [32], 
this was seen as a peculiarity of the amphibian Xenopus. 
However, within a few months, Drosophila species were 
found to have such promoters [33–35], and a few years 
later mammals also underwent a rapid evolution [36–38]. 
Thus, until our knowledge of different systems is suffi-
cient to demonstrate a clear lack of mechanistic conserva-
tion, it may be more profitable to seek out the commonal-
ities rather than to stress the apparent differences. In this 
vein, let us first consider the fundamental mechanisms of 
rRNA gene transcription.
The 200 to 300 ribosomal genes per haploid mammalian 
genome exist as direct repeats at the secondary constric-
tions of acrocentric chromosomes, five in humans [39] 
and probably five in mouse [40]. Each of these sites has 
the potential to form a nucleolus and is hence referred 
to as a nucleolar organiser or nor, a term that predates 

knowledge of the genes these sites encompass [41, 42]. 
Each rRNA gene repeat is made up of an intergenic spacer 
(IGS), originally referred to as the non-transcribed spacer 
(NTS), but now known to be partly transcribed into non-
coding, non-structural RNA. Early studies revealed that 
the DNA sequences surrounding the site coding the pre-
rRNA 5′ terminus, and now known to promote its tran-
scription, were also found repeated one or more times 
within the IGS (Fig. 2B) [32, 43–45]. These ‘spacer pro-
moters’ were shown to direct transcription of the IGS and 
to be required for efficient pre-rRNA synthesis, though 
they could not direct this synthesis themselves [32, 46]. 
The ability of the spacer promoters to enhance pre-rRNA 
transcription was shown to require the adjacent short re-
peated sequences referred to as enhancers [32, 47, 48]. 
However, we showed that these sequences do not func-
tion to increase overall transcription but rather to greatly 
increase the likelihood of transcription from the linked 
gene [32, 48], and in this sense they are functionally simi-
lar to the so-called yeast enhancer [49, 50]. Later work 
has demonstrated the veracity of these findings [51–53]. 
Several explanations for IGS transcription have been sug-
gested. The spacer promoters could represent a means 
of trapping polymerase and supplying it to the 45S pre-
rRNA promoter [32, 54]. Alternatively, spacer transcrip-
tion could represent a mechanism for activating or main-
taining the active state of a gene, perhaps by maintaining 
chromatin of the IGS in some as yet undefined ‘open’ 
state or, as recently shown in yeast, for regulating recom-
bination of the rRNA genes [55]. Most recently, it has 
been suggested that spacer transcription is required for 
rDNA silencing [56], a subject treated in depth elsewhere 
[4, 57]. Such a silencing function for the IGS transcripts 
is presently difficult to reconcile with the copious data 
showing an in cis positive selector function for the spacer 
promoters. However, it is consistent with the role of mi-
cro-RNAs in centromere silencing [58, 59] and almost 
certainly provides an important link in the complex chain 
of events leading to rRNA gene silencing.
In most systems, though perhaps not all, IGS transcrip-
tion is terminated immediately preceding the true pre-
rRNA promoter (Fig. 2B) [32, 60, 61]. A similar termina-
tion site also occurs in yeast, despite the apparent absence 
of any IGS transcription directed towards it [62]. These 
promoter-proximal terminators have been ascribed the 
functions of (i) preventing promoter occlusion, that is the 
inactivation of the promoter by displacement of essential 
factors [63] or (ii) recycling polymerase molecules deliv-
ered there by the spacer promoters or by ‘read-through’ 
from the upstream gene [64, 65]. More recently, the pro-
moter proximal terminator in mammals has been sug-
gested to mediate gene silencing [57], though again this 
is difficult to reconcile with the transcription enhancing 
functions of the terminator.
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The means of rRNA gene transcription

A specialised set of proteins has evolved uniquely to 
transcribe the rRNA genes. With rare exceptions [66], 
the α-amanitin-resistant DNA-dependent RNA RPI is 
dedicated solely to the transcription of the rRNA genes, 
synthesising both the non-coding spacer transcripts and 
the productive pre-rRNA transcripts. In yeast, RPI is an 
enzyme of 14 subunits, half of which are shared with one 
or both of the other two eukaryotic RNA polymerases, 
RPII and RPIII (Table I). In vertebrates and yeasts, the 
RPI promoter is a sequence of 140–160 bp encompass-
ing at least the first four nucleotides downstream of the 
mapped pre-rRNA initiation site (Fig. 3). The very poor 
sequence conservation of RPI promoters is consistent 
with the extreme species specificity of the RPI transcrip-
tion system and the rapid evolution of the rRNA gene 

spacer. Despite this, functional studies have shown that 
most RPI promoters contain two distinct sequence ele-
ments, a core promoter (Core) sequence and an upstream 
promoter element (UPE or UE), originally called the up-
stream control sequence (UCE) in humans. The spacing 
of these promoter elements is crucial to in vivo function, 
but often the Core promoter element is sufficient to spec-
ify correct transcription initiation in vitro (Fig. 3). Short 
promoter sequences, similar in length to these Core pro-
moters appear to be the norm in plants and some single-
cell organisms (Fig. 3) [67–69].
There is general agreement that the formation of an RPI 
pre-initiation complex requires the TATA box-binding 
protein (TBP) and a group of RPI-specific TBP-associ-
ated factors (TAF  Is) that form one or two complexes able 
to recognize the promoter (Table 2). But here the similari-
ties appear to end. In human and mouse, formation of the 

Figure 3. Structure of RPI promoters. Promoter sequences are shown aligned to the mapped initiation site (+1) with some small adjust-
ments of alignment to emphasise the limited homologies. Mapped functional sequence elements are shown in blue and the regions dem-
onstrated by footprinting or crosslinking to be physically contacted by the TBPI complex (SL-1, TIF-IB), by UBF or by TBP are indicated 
graphically. [The data for human (Hs) were taken from refs. 74, 80, 225–228, for mouse (Mm) from refs. 229, 230, for rat (Rn) from 
refs. 231–233, for Xenopus laevis (Xl) from refs. 81, 234–238, for Drosophila melanogaster (Dm) from ref. 239; the Drosophila virilis 
(Dv) promoter sequence was deduced from comparisons of repetitive IGS sequences in ref. 35; the data for Acanthamoeba castallanii (Ac) 
was taken from refs. 118, 119, 240, for Arabidopsis thaliana (At) from ref. 241, for Saccharomyces cerevisiae (Sc) from refs. 101, 242 and 
for Schizosaccharomyces pombe from ref. 69.]
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pre-initiation complex requires SL1 [for selectivity factor 
1, referred to in mouse as transcription initiation factor 
IB (TIF-IB)], which has been shown to contain TBP and 
three TBP-associated factors, TAFI48, 63 and 94 (Ta-
ble 2). A second non-specific DNA-binding protein, up-
stream binding factor (UBF), has been shown to enhance 
RPI transcription and will be discussed in greater detail 

below. On the other hand, in the yeast S. cerevisiae, two 
factors are required for pre-initiation complex formation, 
the upstream activating factor (UAF) and the core factor 
(CF). The isolation of factors from Schizosaccharomyces 
pombe has suggested that parallels exist between the CF 
components of the yeast and those of mammals (Table 2) 
[69]. However, these parallels still remain tentative and 
no mammalian equivalents to the yeast UAF are known.

Initiation complex formation

The mechanisms of initiation of RPI transcription have 
been studied in yeast, Acanthamoeba castellani, human, 
rat and mouse. In each case, reconstruction of the pre-
initiation and initiation complexes has been studied in 
solution using cell-free extracts and purified factors. A 
summary of the known interactions of the various factors 
with their cognate promoters is given in Figure 3.

1. Mammals
The earliest data came from studies of the human and 
mouse factors and established a paradigm that is only 

Table 2. List of yeast core factor (CF) and upstream activating fac-
tor (UAF) and mammalian SL1 (TIF-IB) subunits and their possible 
correspondences.

Yeast CF Yeast UAF Yeast null 
mutant

Mammalian SL1
(TIF-IB)

Rrn6p >?
(102 kDa)

lethal TAFI110/95
 (95/92 kDa)

Rrn7p
(60 kDa)

lethal TAFI63/68
(68 kDa)

Rrn11p
(59 kDa)

lethal TAFI48
(53 kDa)

TBP = >  < = TBP lethal TBP
Rrn5p viable
Rrn9p viable
Rrn10p viable
UAF30 viable
H3
H4

In the cases of the TAFIs, the original protein names are indicated 
for human and mouse, respectively, followed by the calculated mo-
lecular weight(s) rounded to the nearest kDa. See text for the origins 
of the data.

Figure 4. Assembly of the pre-initiation complex and the initiation 
cycle in mammals. DNA is shown in red and promoter elements in 
yellow and chequered yellow. The possibility of further SL1 sub-
units (?) and the possible implication of TFIIH are indicated. Prob-
able correlations between SL1 subunits and yeast CF subunits is 
indicated by colouring (compare with Fig. 6).

Table 1. List of RPI subunits and associated factors in yeast and 
mammals.

Yeast RPI 
subunits and 
associated 
proteins

Yeast gene Yeast null 
mutant

Human
and
mouse

A190 RPA190 lethal RPA194
A135 RPA135 lethal RPA135
A49 RPA49 conditional PAF53/PAF51?
N/I PAF49/Ase-1/CAST
A43 RPA43 lethal RPA43 = TWISTNB
AC40 RPC40 lethal RPA40
A34.5 RPA34 viable not identified
ABC27 RPB5 lethal RPB25
ABC23 RPB6 lethal RPB14.4/RPB6
AC19 RPC19 lethal RPA16
ABC14.5 RPB8 lethal RPB17
A14 RPA14 viable not identified
A12.2 RPA12 conditional RPA12
ABC10α RPC10 lethal RPB10α
ABC10β RPB10 lethal RPB10β
Rrn3p RRN3 lethal Rrn3(TIF-IA)

A, B and C refer to the three RNA polymerase forms RPI, RPII, and 
RPIII, e.g. in yeast ‘ABC’ indicates a common subunit. In mam-
mals, the shared subunits were named after the polymerase with 
which they were first associated. The data are mainly taken from 
Carles and Riva [219] combined with searches of the BioBase Pro-
teome Library and the recent identification of PAF49 [220].
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now being questioned. Essentially, this paradigm is de-
scribed in the cartoons depicting the steps of human ini-
tiation complex assembly in Figure 4 [see refs. 4, 70–73 
for reviews]. The non-specific DNA-binding HMG1-box 
protein UBF was shown to bind the upstream and/or core 
promoter regions, creating a situation propitious for the 
SL1 complex to bind and form a ‘stable’ pre-initiation 
complex [74]. This complex is able to recruit RPI and, 
in the presence of nucleotide triphosphates, initiate tran-
scription. How UBF is able to aid in RPI initiation remains 
somewhat of a mystery. If this is truly its function, several 
observations suggest how it might occur. The C-terminal 
domain of UBF is made up almost exclusively of blocks 
of aspartic and glutamic acid residues, each terminating in 
blocks of serine residues (Fig. 5A). This domain can bind 
and recruit SL1, binding being enhanced by phosphory-

lation of the serine motifs, probably by casein kinase II 
[75–78]. However, early studies also suggested that UBF 
could more weakly enhance initiation complex assembly 
even in the absence of this C-terminal domain [79, 80]. 
When it was discovered that the N-terminal half of UBF 
(core UBF) could form the ‘enhancesome’, a nucleopro-
tein structure that somewhat resembles the nucleosome 
(Fig. 5B), the finding immediately led to a speculative 
explanation for the cooperativity between UBF and SL1 
and the bimodal organisation of RPI promoters [81–84]. 
It was suggested that by binding two regions of the pro-
moter, UBF would juxtapose key promoter sequences and 
thus present the SL1-binding sites on the same surface of 
a DNA superhelix (Fig. 5B). These interpretations were 
based on the original observations in the human cell-free 
system showing that UBF was required for SL1 recruit-

Figure 5. (A) The domain structure of mammalian UBF. Each HMG box is indicated by the homologous fold of HMG-D [243] and in-
ter-box peptides as arrows of approximately correct length. The acidic residues of the C-terminal tail are indicated by a wavy line and 
the approximate positions of the blocks of serine residues are in yellow. (B) Low-resolution structure of the enhancesome. Left, the low-
resolution structure of a single enhancesome as determined by electron spectroscopic imaging [83, 84, 186]; right, possible folding of the 
RPI promoter by two adjacent enhancesomes induced by UBF binding. Promoter sequences are indicated as in Figure 4. Only the Core 
UBF region is shown in B and inter-HMG1 box linkers are shown generically. UBF is in blue and DNA in red, and * indicates sites of 
phosphorylation by ERK.
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ment and RPI promotion. However, it is clear that UBF is 
not essential for promotion in the mouse and rat cell-free 
systems and, indeed, it is often difficult to find conditions 
under which it has any positive effect at all on RPI tran-
scription initiation. In vitro, UBF has been found vari-
ously to activate RPI transcription at pre-initiation [79, 
80] or promoter release [73, 85], to relieve H1 repression 
[86] or simply to be unnecessary [87]. These conflicting 
observations may be the result of the polarised basic-
acidic nature of UBF, allowing it to compete non-specifi-
cally for inhibitory DNA-binding activities in in vitro as-
says. But they may also be related to the low DNA-bind-
ing constant of UBF combined with its ability to interact 
non-specifically with almost all DNA sequences [81, 83, 
88]. Most recently, it has been argued that human SL1 
is able to functionally bind the promoter in the absence 
of UBF, something already known for rodent SL1, and 
that UBF binding is dependent on SL1 rather than the 
converse [89]. However, given the rapid off-rate of UBF 
[90, 91], it may be difficult to determine the true order of 
binding of these factors to the DNA. SL1 binds to both 
the promoter DNA and to UBF. SL1 would then naturally 
reduce the off-rate of UBF by its cooperative interaction 
with both components of the UBF-DNA complex. Hence, 
we do not believe that the data to date provide definitive 
information on the order of promoter association of UBF 
and SL1, and may, rather, reflect the changes in DNA-
protein complex stabilities. The observation that UBF is 
not restricted to the RPI promoter but is also found to 
bind throughout the rDNA, further complicates the issue 
of whether or not UBF has a specific function in tran-
scription initiation [92]. Rather, UBF appears to form a 
nucleolar or rRNA gene chromatin and this may regulate 
multiple aspects of transcription, including rRNA gene 
accessibility, much as nuclear histone chromatin does for 
the rest of the genome. Clearly, this rRNA gene chroma-
tin is able to recruit SL1 and RPI regardless of the under-
lying DNA [93–95]. Consistent with the role of UBF in 
the formation of an rRNA gene chromatin, the most re-
cent data show that growth factor-dependent remodelling 
of this chromatin controls rRNA synthesis by regulating 
RPI elongation [96] (see below).

2. Yeast
RPI initiation complex formation in yeast is in broad 
terms similar to that in mammals. However, the number 
of factors directly involved appears to be significantly 
greater, suggesting that much may still need to be learnt 
about the mammalian situation. The steps of in vitro as-
sembly of a yeast initiation complex in yeast are shown in 
the cartoons of Figure 6 [20, 97]. After establishment of 
the UAF-UE complex, TBP is either already present or is 
recruited along with the CF [98–100]. Efficient promo-
tion requires the UAF complex, though low-level specific 

transcription initiation in vitro does not require this com-
plex, nor does it require TBP or the UE of the promoter 
[99, 101, 102]. This is reminiscent of the mammalian, 
plant and single-cell organism data, where in general 
only a core promoter and a single TBP complex are abso-
lutely required in vitro (Fig. 3). A significant increase in 
the TBP concentration in the absence of functional UAF 
enhances RPI transcription from the yeast core promoter 
in vitro, but in vivo, over-expression of TBP is unable to 
rescue the loss of UAF [103, 104]. UAF subunits are not 
strictly required for yeast survival. However, viability 
then depends on polymerase switching, a phenomenon 
in which yeast uses RPII to produce functional levels of 
rRNA and which requires an increase in rDNA copy num-
ber [105]. Thus, UAF is in fact essential for the functional 
synthesis of rRNA by RPI.
Once the yeast pre-initiation complex has been assem-
bled, recruitment of the polymerase permits transcription 

Figure 6. Cartoon of the assembly of a pre-initiation complex and 
the initiation cycle in the yeast S. cerevisae, based on Nomura [20] 
and Aprikian et al. [97]. DNA is shown in red and promoter ele-
ments in yellow. Colouring of the different factors indicates prob-
able equivalence with the mammalian factors shown in Figure 4.
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initiation and the complex is released into the elongation 
phase (Fig. 6). The CF complex may be disrupted and 
reformed at each new round of initiation [97], though 
it is unclear whether or not this occurs in vivo and it is 
certainly not obligatory for re-initiation [106]. HmoIp, a 
UBF-like protein, is not essential for yeast viability, but 
its loss induces a slow-growth phenotype and is lethal in 
combination with inactivation of non-essential RPI sub-
units [107]. Recent work has shown that like UBF, Hmo1p 
is found bound throughout the rDNA and hence may also 
define an rDNA chromatin [108]. However, Hmo1p may 
also be required for r-protein gene transcription [108].

3. Protozoa
In vitro RPI promotion in cell-free extracts from A. castel-
lanii resembles basal in vitro transcription in rodent and 
yeast extracts. A single TBP complex, TIF-IB, is required 
for in vitro RPI transcription from a short, core-like, 
promoter (Fig. 3). TIF-IB is purified as a five-subunit 
complex that includes TBP and its high-affinity bind-
ing within the promoter region has been mapped by both 
footprinting and protein-DNA crosslinking (Fig. 3). The 
data from Acanthamoeba is probably the best in terms of 
the details of the early steps in initiation [109–117]. The 
system has shown that the exact site of RPI initiation is 
determined by the positioning of the TBP complex and 
is relatively sequence insensitive [110]. Acanthamoeba 
TBP was shown to contact the DNA at around –45 bp, 
and RPI in the pre-initiation complexes sits across the 
initiation site, protecting the DNA from the downstream 
edge of the TBP complex to around +20 (Fig. 3) [118, 
119].

Transcription initiation and the transition to 
elongation

There is general agreement that unlike RPII, but like 
bacterial polymerases, RPI initiation does not require tri-
phosphate hydrolysis. This was initially demonstrated in 
cell-free rat extracts [120], but has also been shown in 
the mouse and Acanthamoeba systems [121, 122]. Initia-
tion in yeast and mammals requires the RPI-associated 
factor Rrn3. Rrn3p was initially identified in yeast as an 
essential factor for RPI transcription (Fig. 6) [123]. It was 
shown to associate with a fraction of the RPI, and to be 
essential for functional recruitment of the polymerase to 
the pre-initiation complex [101, 124]. Though RPI can be 
recruited to the yeast promoter in the absence of Rrn3p, 
initiation does not occur [97]. Rrn3p is normally found 
associated with a small fraction of RPI, and in yeast this 
association requires RPI phosphorylation [125]. Rrn3p is 
also phosphorylated, but in yeast this does not appear to 
be required for initiation [125]. Soon after the polymerase 

initiates transcription, it releases Rrn3p, somewhat in the 
vein of the release of bacterial σ factor and the RPII fac-
tor TFIIF [124, 126]. This release is not obligatory for 
normal elongation, as fusion of Rrn3p to the RPI subunit 
A43 has no effect on viability or growth rate in yeast but 
does prevent normal down-regulation of RPI transcrip-
tion [106]. In this context, it is worth noting that σ factor 
is often maintained throughout elongation of the bacterial 
rRNA genes, its stochastic release being only necessary to 
allow a more rapid reprogramming of transcription levels 
[127, 128]. This said, dephosphorylation of RPI by Fcp1p 
does appear to enhance the early phase of RPI elongation 
in vitro [129]. The mammalian Rrn3 homologue was first 
identified in human [130], where it has been shown to 
be required for RPI recruitment [131, 132]. Recycling of 
mammalian Rrn3 (TIF-IA) requires a post-translational 
modification that is lost during initiation [133] and in 
contrast to yeast Rrn3p, phosphorylation does indeed ap-
pear to play a role in its activity [134].
Depending on the promoter context, bacterial RNA poly-
merases and eukaryotic RPII may pass through a phase 
called promoter escape, during which the polymerase re-
peatedly aborts synthesis and re-initiates, producing many 
short transcripts of 10–20 bases. Eventually, the poly-
merase escapes the influence of the promoter and makes 
the transition to a highly processive elongation phase [see 
e.g. ref. 135]. Despite the potential importance of pro-
moter escape as a means of regulating transcription, little 
is known about RPI in this respect, and no published data 
on abortive initiation exist. Studies have inferred from the 
measurement of in vitro transcription kinetics that RPI 
passes through a rate-limiting post-initiation step, con-
sistent with promoter escape [85, 136]. However, while 
studying the transition of RPI from initiation to elonga-
tion, we were unable to detect the production of abortive 
transcripts, despite a highly sensitive single-round initia-
tion assay [ref. 96 and unpublished data]. These findings 
are consistent with the data for the rRNA gene promot-
ers of Escherichia coli, which do not generate abortive 
transcripts and are not limited by promoter escape [137]. 
Thus, if promoter release of RPI is rate limiting, the un-
derlying enzymatic mechanism must be distinctly differ-
ent from that of either E. coli RNA polymerase or RPII. 
Clearly, the role of promoter escape in RPI initiation war-
rants more detailed investigation.
Once RPI has made the transition from initiation to pro-
cessive elongation it may encounter various impediments 
to continued rRNA synthesis, such as chromatin. As men-
tioned above, UBF is a major component of the rRNA 
gene chromatin. Surprisingly, we found that rather than 
aiding RPI elongation, in its unmodified state, UBF very 
effectively blocks elongation. Hence, UBF is a potential 
modulator of RPI elongation and, as will be seen below, 
this property is growth regulated. These data may also 
help to explain the very varied properties that have been 
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attributed to UBF in the past. Given the complexities of 
RPII elongation that have been revealed over the last few 
years [see e.g. ref. 138], it is highly likely that yet more 
regulators of RPI elongation will be discovered.

In vivo regulation of rRNA gene expression

Without new ribosomes, a cell cannot make protein and 
hence cannot grow and proliferate. Thus, an increased 
rate of ribosome biogenesis is a fundamental factor in hy-
pertrophic disease. But is ribosome biogenesis a control-
ling factor or simply a housekeeping function? The most 
probable answer is: a bit of both. The inability to make 
ribosomes quickly enough will, without doubt, limit cell 
growth and slow proliferation [3, 19, 139, 140]. The many 
signalling pathways, tumour suppressors and oncogenes 
that impinge on mammalian ribosome biogenesis would 
suggest that it is the cell and its environment that con-
trol ribosome biogenesis (see Fig. 7). However, the rate 
at which ribosomes are made in turn determines whether 
a cell will enter S phase and commit to cell growth and 
division [3, 140]. Thus, we must consider ribosome bio-
genesis as one component of a communication network 
controlling growth and proliferation.
In bacteria, growth is associated with a high level of ri-
bosome synthesis, while severe nutrient deprivation is 
associated with a rapid shutdown of this synthesis. In 
eubacteria, the shutdown is known as the ‘stringent re-
sponse’ and is related to the production of (p)ppGpp by 
the idling ribosome [137, 141]. The key elements in this 
form of growth regulation were shown to be the proximal 
promoters of the rRNA genes. These rRNA gene promot-
ers are regulated by nutrient availability while the weaker 
distal promoters and the r-protein gene promoters are not. 
R-protein expression is believed to be kept in check by 
an autoregulatory loop, free r-protein levels negatively 
regulating their corresponding genes. Thus, in bacteria, 
ribosome biogenesis appears to be regulated at the level 
of rRNA synthesis, this in turn regulating r-protein con-

centrations and hence their synthesis rates by driving ri-
bosome assembly [142–144].
In eukaryotes the situation seems to be more complex, 
both r-protein and rRNA genes being growth regulated. 
For example, yeast mRNA and r-protein levels are both 
directly regulated in response to nutrient availability 
[145] and even in the absence of rRNA synthesis, HeLa 
cells continue to make r-proteins [146]. Thus, we must 
assume that the mechanisms coordinating ribosome bio-
genesis do not simply rely on rRNA levels controlling 
r-protein synthesis via an autoregulatory loop as oc-
curs in bacteria. However, a very recent study in yeast 
in which the factor Rrn3p was fused to the A43 subunit 
of RPI (Table 1, Fig. 6) demonstrated clearly that ex-
pression of the r-protein genes depends on the level of 
rRNA synthesis [106]. Thus, as in bacteria, transcription 
of the yeast rRNA genes appears to determine r-protein 
expression levels. The regulation of ribosome biogenesis 
in eukaryotes, then, probably involves specific signalling 
and feedback networks to coordinate r-protein and rRNA 
synthesis precisely. At least some of these signals may 
rely on detecting functional 60S ribosome subunit levels, 
since inhibition of large subunit nuclear export leads to 
a coordinate down-regulation of rRNA and r-protein syn-
thesis [147]. Strangely, this is not the case for the small 
ribosomal subunit.
Despite the differences between pro- and eukaryotes, a 
stringent-like response has not only been identified in 
eukaryotic micro-organisms such as yeast [148], but also 
much more recently in mammalian cells [149]. In the late 
1960s, ribosome production in mammalian cell cultures 
was shown to be down-regulated in conditions of amino 
acid starvation [150, 151], and a few years later this effect 
was shown to be due at least in part to a down-regulation 
of rRNA gene transcription [152]. Glucocorticoid was 
also shown to down-regulate the mammalian rRNA genes, 
as was the global arrest of translation by cycloheximide 
[153–156] and serum withdrawal [157]. Encystment of 
Acanthamoeba was shown to cause a complete shutdown 
of rRNA transcription but also of all other nuclear tran-
scription [158]. However, the responses of mammalian 

Figure 7. Summary of the regulatory targets of growth signalling, oncogenes and tumour suppressors within the RPI transcription ma-
chinery.
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cells to nutrient withdrawal, hormones and drugs were 
generally considered to be slow; for example, a 16-h treat-
ment was used to observe repression of transcription with 
glucocorticoid [155], and cycloheximide required 2 h to 
reach maximal effect [153], though histidine withdrawal 
gave a relatively rapid response, transcriptional activity 
dropping by 50% in 60 min [152, 159]. Not until much 
later did studies of the response of mammalian cells to 
growth factor and MAP kinase activation reveal an im-
mediate effect on rRNA gene transcription in vivo [149]. 
Indeed, these studies showed that a reversible response to 
growth factor (EGF) stimulation or direct MAP-kinase 
(ERK) activation occurred within 10 min, identifying a 
stringent-like response in mammals. Subsequent studies 
have confirmed these observations and extended them 
to include serum, fibroblast growth factor (FGF), insu-
lin and insulin-like growth factor (IGF) responses [134, 
160, 161]. However, before considering the mechanisms 
underlying these regulatory responses, we should first 
consider the potential cellular responses leading to rRNA 
gene regulation.

Growth response or stress response?

To come to terms with various, often conflicting data it 
may be necessary to consider at least two distinct rRNA 
gene regulatory modes. The first is a true growth regula-
tion, in which rRNA synthesis and ribosome biogenesis 
are modulated to meet specific growth rate requirements. 
The second is a ‘stress’ response, in which the cell estab-
lishes a protective mode as an antecedent to the resump-
tion of growth or to cell death. UV or other DNA damage 
and possibly cycloheximide or long-term withdrawal of 
nutrients may result in a stress response in which most 
if not all ribosome biogenesis is shut down. On the other 
hand, a short-term reduction in nutrients, changes in 
growth factors, or cell differentiation would be expected 
to lead to the adaptation of ribosome biogenesis to the 
new growth conditions, more akin to letting the engine 
‘tick over’ rather than stalling it. Unfortunately, it is not 
always possible to determine which experiments fall into 
which of these categories, and this should be borne in 
mind when attempting to reconcile conflicting data.

Mechanisms of growth regulation

Unlike protein-coding genes, only four distinct possi-
bilities exist to regulate the rRNA genes: gene activation, 
productive transcription initiation, transcription elonga-
tion and rRNA degradation. Since the last of these does 
not appear to be a significant factor, it will not be con-
sidered further.

1. rRNA gene activation
Since the ribosomal genes are present in several hundred 
copies and only a proportion appear to be transcribed, 
modulating the number of actively transcribed genes 
could in principle regulate rRNA synthesis. Growth of 
yeast into stationary phase leads to a reduction in the 
numbers of active ribosomal genes [162, 163]. However, 
growth stimulation of mammalian cell cultures does not 
detectably change the active gene number, despite a sev-
eral-fold increase in rRNA synthesis rates [164]. This 
said, we have recently found that artificial changes in the 
heterochromatic state of the rRNA genes can lead to an 
increase in the active gene number in mammalian cells, 
though this does not induce a corresponding increase in 
transcription [T. Gagnon-Kugler and T. Moss unpublished 
data]. Furthermore, the number of active rRNA genes has 
not to our knowledge been determined under conditions 
of stress in mammals. Hence, though gene activation does 
not explain the rapid growth factor-mediated regulation 
of rRNA synthesis in mammalian cells in culture, its im-
portance in vivo cannot be excluded.

2. Regulating initiation of rRNA transcription
Situations in which RPI transcription is very strongly 
repressed, for example long-term serum withdrawal, 
cycloheximide treatment and encystment of Acantham-
oeba, have been used as the basis for attempts to identify 
mechanisms of rRNA gene regulation. Factors from ac-
tive and inactive cells have been isolated and their abili-
ties to support specific RPI transcription initiation in vi-
tro investigated. Such studies led to the identification of 
active and inactive RPI fractions. These fractions of poly-
merase are equally capable of DNA-templated nucleotide 
polymerisation, but only one form retains the capacity to 
specifically initiate transcription from the RPI promoter 
[156, 165]. The ability to initiate transcription was associ-
ated with polymerase phosphorylation [124, 165] and/or 
with soluble factors TIF-IA, TIFIC or factor C [156, 157, 
166–169]. More recent data show that TIF-IA and prob-
ably factor C correspond to the yeast and human Rrn3 
(Figs. 4, 6) [131], but that TIFIC may be a distinct ac-
tivity [133]. Later work demonstrated that mammalian 
Rrn3 (TIF-IA) phosphorylation changes with cell treat-
ment and correlates with in vivo rRNA gene transcrip-
tion levels [133, 134]. Phosphorylation of mammalian 
Rrn3 at several sites has been demonstrated to be due to 
a combination of RSK and ERK activities, and mutation 
of these sites in mouse Rrn3 suppresses transcription in 
transfected mouse and human cells (Fig. 7) [134]. Mouse 
Rrn3 was also shown to be regulated via the mTOR nutri-
ent-sensing pathway and most recently via Jun N-terminal 
kinase (JNK) during a true stress response [170, 171]. A 
model emerged from these data of rRNA gene regulation 
 occurring exclusively at the level of transcription initia-
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tion via activation and inactivation of Rrn3/TIF-IA [71]. 
This model is consistent with stationary phase regulation 
and TOR inhibition in yeast [163], however, as will be 
seen below, it is not consistent with our knowledge of 
growth regulation in mammalian systems.
Despite intense study of RPI and Rrn3, the first molecu-
lar pathway from growth signalling to rRNA gene tran-
scription actually came from a study of UBF [149]. Re-
sponse to stimulation of human and mouse cells by EGF 
and by direct activation of the Raf-MEK-ERK pathway 
was shown to require phosphorylation of UBF. The two 
N-terminal HMG boxes of UBF display on their DNA-
binding surfaces consensus ERK phosphorylation sites. 
Phosphorylation of these sites was shown to be required 
for stimulation of rRNA gene transcription. Recent data 
have shown that this phosphorylation regulates RPI elon-
gation rates (see below). UBF has been implicated in 
the largest number of rRNA gene regulatory responses 
(Fig. 7), and it is even a direct target of the FGF2 growth 
factor [172, 173].
SL1 function (Figs. 4, 6), is regulated by PCAF acetyla-
tion of its TAF I68 subunit [174]. SL1 is also inactivated 
by CDK1 phosphorylation [175]. Furthermore, the SL1 
complex is disrupted in cells overexpressing the phospha-
tase PTEN [176]. At first sight, this would suggest that 
gene activation should be regulated, leading to a change 
in the number of active rRNA genes. However, as we have 
seen, this does not usually occur [164]. Rather, the data 
suggest that the level of active SL1 does not define the 
number of active genes. Such an interpretation is consis-
tent with observations in yeast showing that CF, the SL1 
homologue, is released at each new round of initiation 
and hence forms part of a catalytic cycle [97]. It may, 
then, be wrong to consider the formation of an SL1-pro-
moter complex as a gene activation step, and it should 
rather be perceived of as a catalytic event much like 
initiation itself. The observation of ‘holo-polymerase’ 
complexes that include SL1 further supports this conten-
tion [177–181]. We may then find that mammalian SL1 
performs a growth-regulated function that is unrelated to 
rRNA gene activation.

3. Regulating the rRNA transcription elongation rate
Despite the emphasis that until recently was placed on ini-
tiation as a means of regulating rRNA gene transcription, 
several early studies suggested that the capacity of RPI to 
initiate does not explain growth regulation in vivo [154, 
182–184]. Most telling, however, are the Miller spread 
observations of tightly packed transcription complexes 
along the coding regions of the rRNA genes (Fig. 1). The 
dense packing of polymerases that these pictures reveal 
clearly excludes any large increase in polymerase load-
ing. Yet, similar observations of tight polymerase packing 
have been made in animal cells exhibiting a wide range 

of rRNA synthesis rates [see ref. 60 for a discussion], 
suggesting that in vivo elongation must be regulated. A 
notable exception to this occurs in yeast, where the sta-
tionary phase shutdown of transcription correlates with a 
reduction in the density of transcribing polymerases [162, 
163, 185]. However, even in this extreme case of regula-
tion, yeast makes an attempt to maintain a high density of 
transcription by also reducing the number of active rRNA 
gene repeats.
The obvious inconsistency between mammalian models 
that invoke regulation solely at the level of initiation [see 
e.g. ref. 71], and the observations of near saturating levels 
of transcription complexes in Miller spreads, led us to 
ask whether changes in the RPI loading do in fact oc-
cur during growth factor induction of the rRNA genes 
[96, 164]. What we found was fully consistent with the 
electron microscope data. Using both nuclear run-on and 
ChIP approaches, we established that growth factor and 
MAP kinase activation of rRNA synthesis in human and 
mouse cells does not correlate with a significant increase 
in the total number of RPI transcription complexes re-
quired by models of regulation at initiation. The obvious 
explanation was that RPI transcription elongation rates 
were also modulated. This we demonstrated to be the case 
in vivo by directly measuring RPI elongation under dif-
ferent conditions of growth stimulation [96].
To achieve near constant RPI loadings over a wide range 
of rRNA synthesis rates, either (i) elongation and initia-
tion must be coordinately regulated or (ii) elongation must 
limit the rate of initiation of new transcripts. The latter 
would appear much the simpler explanation mechanisti-
cally, since limiting elongation rates would naturally limit 
initiation. Several observations suggested that regulation 
of elongation was dominant over initiation [96]. More 
recent work has also shown that the capacity of nuclear 
extracts to specifically initiate RPI transcription in vitro 
does not change when cells are stimulated by growth fac-
tor (Fig. 8A). Thus, fivefold or greater changes in rRNA 
synthesis can occur in the absence of changes in the com-
petence of SL1, RPI and Rrn3 to initiate new transcripts. 
We have further shown that the growth rates of human 
colon cancer cells are also quantitatively explained by 
changes in the RPI elongation rate [T. Gagnon-Kugler, 
unpublished data], suggesting that regulation of elonga-
tion is a general phenomenon in mammalian cells.
How is RPI elongation regulated? As mentioned above, 
some years ago we demonstrated that the ability of UBF 
to enhanced RPI transcription in vivo depends on a revers-
ible phosphorylation of its two N-terminal HMG1 boxes 
by ERK1/2, and this phosphorylation was necessary for 
EGF to stimulate rRNA gene transcription (Fig. 5A) 
[149]. Each of the three most N-terminal HMG boxes of 
UBF is able to bend DNA and a dimer of UBF induces a 
360o loop in the DNA template [83, 84, 186]. The result-
ing enhancesome structure resembles the nucleosome of 
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chromatin in protein-DNA composition but contains only 
a single loop of DNA (Fig. 5B). We showed that ERK 
phosphorylation of UBF remodels the enhancesome and 
in this way determines the rate of elongation of the RPI 
transcription complexes through nucleolar chromatin 
(Fig. 8B) [96, 187]. This reaction is probably mediated 
by a direct interaction between ERK and the HMG boxes 
it phosphorylates [149].
The demonstration that the RPI elongation rate is a key 
growth regulator of rRNA synthesis also suggests a 
means to coordinate this synthesis with pre-ribosome as-
sembly. During the co-transcriptional phase of pre-ribo-
some assembly, processing factors and r-proteins must be 
assembled in the correct order on the nascent rRNA. A 
feedback mechanism allowing the regulation of RPI elon-
gation dependent on correct ribonucleoprotein (RNP) 
assembly could provide an important means of ‘proof-
reading’ pre-ribosome assembly. Indeed, recent studies 
of the processome, the earliest visible co-transcriptional 
RNP structure, suggest that its assembly on the pre-rRNA 
regulates the rate of rRNA synthesis in yeast [188].

The role of oncogenes and tumour suppressors

Tumour suppressors Rb and p53 have been implicated in 
limiting rRNA synthesis and affect the interaction between 
UBF and SL1 (Fig. 7) [189–192]. The acetyltransferase 
CBP has been shown to enhance rRNA gene transcrip-
tion by competing for the Rb-binding site on UBF. CBP 
binding to HMG boxes 1 and 2 causes UBF acetylation, 
while Rb displaces CBP from its binding site and recruits 
HDAC1 to catalyse the deacetylation of UBF. A tantaliz-
ing correlation exists between this Rb-CBP competition 
and ERK phosphorylation of UBF. All three proteins bind 
to the same or adjacent sites on UBF [149, 193]. Further-
more, CBP is known to be bound and activated by ERK 
[194, 195]. Thus, ERK and CBP may act cooperatively in 
growth factor activation of the rRNA genes by targeting 
the same site on UBF. In support of this, we have shown 
that activation of the rRNA genes with the histone deacet-
ylase (HDAC) inhibitor trichostatin A (TSA) depends on 
a functional ERK signalling pathway [164, 193]. UBF has 
also been reported to be acetylated by p300, PCAF and 
the isolated Tip60 acetyltransferase subunit [196, 197]. 
However, the functional significance of UBF acetylation 
is still poorly understood.
The ARF tumour suppressor was shown to regulate rRNA 
processing independently of p53 by catalysing the degra-
dation of B23/nucleophosmin, a key protein in ribosome 
assembly [198–200]. However, it has also been shown 
to inhibit rRNA synthesis by an unknown mechanism 
[199].
Most recently, c-Myc was shown to enhance ribosome 
biogenesis, though the mechanism for its action is still 

Figure 8. (A) The rapid changes of in vivo rRNA synthesis rates 
upon growth factor stimulation are not reflected in a change in 
the competence of RPI to initiate. Upper panel, RPI-specific in 
vitro transcription in nuclear extracts from NIH3T3 cells treated 
for 30 min with the MEK inhibitor PD98059 (PD) or with EGF 
[96, 149]. Exactly equal but increasing amounts of nuclear proteins 
were used in otherwise identical in vitro transcription reactions per-
formed in parallel. Cntrl, in vitro transcription of the RPI template 
by a highly active nuclear extract from mouse L1210 cells. Lower 
panel, parallel measurement of in vivo 45S rRNA transcription rates 
determined in a 30-min [3H]-uridine pulse labelling [96, 149]. (B) 
Regulation of RPI elongation by nucleolar chromatin remodelling. 
The rRNA genes are shown folded into a series of enhancesomes 
by the binding of consecutive UBF dimers. Only the Core of UBF 
consisting of the dimerisation domains and HMG boxes 1–3 are 
indicated (Fig. 5). ERK interaction with the first two HMG boxes 
and their subsequent phosphorylation leads to an unfolding of the 
enhancesome, permitting passage of the RPI elongation complex. 
The interaction of CBP with the same region of UBF may lead to a 
cooperative effect on transcription and may also be required in vivo. 
Rb is able to compete for CBP and perhaps ERK binding and hence 
would inhibit elongation. As in Figures 4 and 5, UBF is shown in 
dark blue and the DNA in red.
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far from clear [201–204]. A search for c-Myc and N-Myc 
gene targets has consistently identified many genes that 
are implicated directly in ribosome biogenesis, including 
many r-protein genes and processing factors such as B23/
nucleophosmin as well as genes that are indirectly impli-
cated via cell cycle switches such as p27cip, CDK4 and 
cyclin D2 [205–214]. Since it is evident that a coupling 
exists between r-protein and rRNA synthesis, it was not 
surprising to find that c-Myc levels modulated rRNA syn-
thesis. The first study to demonstrate this directly showed 
that in a human B cell line, rRNA processing was more 
efficient when c-Myc expression was induced [215]. 
However, this study detected no change in rRNA synthe-
sis rates. A second study investigated c-Myc/MAD func-
tion in mouse granulocytes and found that these proteins 
had reciprocal effects on rRNA synthesis rates [204]. It 
was argued that this was due to direct regulation of the 
UBF gene, enhanced UBF levels having previously been 
shown to drive rRNA synthesis [216–218]. Consistent 
with these data, a more recent study in Drosophila dem-
onstrated that c-Myc drives rRNA synthesis indirectly by 
activating the genes encoding the RPI machinery and the 
great majority of genes required for ribosome assembly 
[201]. However, two further studies have shown that c-
Myc and its co-factor TRRAP can also be found in the 
nucleolus and are able to interact directly with the rRNA 
genes [202, 203]. In one study, it was argued that nucleo-
lar localisation and rRNA gene interaction of c-Myc was 
enhanced by inhibition of its proteasomal degradation, 
while in the other study, proteasome inhibition was not 
found to be a factor. In contrast, both studies showed that 
when c-Myc levels were manipulated by small interfering 
RNA and inducible expression, these levels correlated 
positively with rRNA gene activity and with the level of 
histone H3 and H4 acetylation on these genes. However, 
the mechanism of direct regulation of the rRNA genes by 
c-Myc remains a mystery, even more so since nucleolar 
c-Myc levels appear to be exceedingly low.
It should be noted that a common factor of many onco-
genes and tumour suppressors is that they do not spe-
cifically target the promoter of the rRNA gene. Rather, 
they act through proteins such as UBF or directly interact 
with DNA sites spread widely throughout the genes. This 
suggests that they could be important for controlling the 
rate of transcription elongation or even pre-ribosome as-
sembly.

In summary

In the last few years, several reappraisals of the basic 
parameters of rRNA gene regulation have succeeded in 
pinpointing the levels at which regulation can and does 
occur. We can be certain that rRNA gene transcription 
is co-regulated with growth and, as we should expect, 

changes in rRNA synthesis precede detectable changes in 
growth rate. To increase the rate of ribosome biogenesis, 
it is necessary to up-regulate the production of several 
hundred proteins in addition to the rRNAs. Who is driv-
ing whom – rRNA or r-protein expression – and the role 
they play in growth regulation are still open questions. In 
contrast to prokaryotes, the answer for eukaryotes may 
be that neither rRNA nor r-protein is dominant and that a 
complex feedback network exists to coordinate their syn-
thesis. Clearly, isolated mechanisms of controlling rRNA 
initiation rates via RPI activity cannot explain this coor-
dination, though they likely play their part. Regulation at 
the level of transcription elongation provides a more sat-
isfactory explanation since it allows for feedback mecha-
nisms that could coordinate rRNA synthesis with pre-ri-
bosome assembly. The challenge now is to find ways of 
identifying and piecing together the components of the 
network regulating ribosome biogenesis.
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