
Abstract. Nudix hydrolases are found in all classes of
organism and hydrolyse a wide range of organic pyro-
phosphates, including nucleoside di- and triphosphates,
dinucleoside and diphosphoinositol polyphosphates, nu-
cleotide sugars and RNA caps, with varying degrees of
substrate specificity. Some superfamily members, such
as Escherichia coli MutT, have the ability to degrade po-
tentially mutagenic, oxidised nucleotides while others
control the levels of metabolic intermediates and sig-
nalling compounds. In prokaryotes and simple eukaryo
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tes, the number of Nudix genes varies from 0 to over 30,
reflecting the metabolic complexity and adaptability of
the organism. Mammals have around 24 Nudix genes,
several of which encode more than one variant. This re-
view integrates the sizeable recent literature on these pro-
teins with information from global functional genomic
studies to provide some insights into the possible roles of
different superfamily members in cellular metabolism
and homeostasis and to stimulate discussion and further
research into this ubiquitous protein family.
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Introduction

The Nudix superfamily (InterPro IPR000086; Pfam
PF00293) is widespread among eukaryotes, bacteria, ar-
chaea and viruses and consists mainly of pyrophosphohy-
drolases that act upon substrates of general structure nu-
cleoside diphosphate linked to another moiety, X (NDP-
X) to yield NMP plus P-X [1]. Such substrates include
(d)NTPs (both canonical and oxidised derivatives), nu-
cleotide sugars and alcohols, dinucleoside polyphosphates
(NpnN), dinucleotide coenzymes and capped RNAs. How-
ever, phosphohydrolase activity, including activity to-
wards NDPs themselves [2–5], and non-nucleotide sub-
strates such as diphosphoinositol polyphosphates (DIPs)
[6, 7], 5-phosphoribosyl 1-pyrophosphate (PRPP) [8], thi-
amine pyrophosphate (TPP) [9] and dihydroneopterin
triphosphate (DHNTP) [10] have also been described.
Catalysis depends on the conserved 23-amino acid Nudix
motif (Nudix box), Gx5Ex5[UA]xREx2EExGU, where U
is an aliphatic, hydrophobic residue (PROSITE PS00893),
although several interesting examples exist with altered

consensus residues. This sequence is located in a loop-he-
lix-loop structural motif and the Glu residues in the core
of the motif, REx2EE, play an important role in binding
essential divalent cations. In most cases, Mg2+ is likely to
be the most physiologically relevant. Numerous site-di-
rected mutagenesis studies have defined the importance
of individual residues in the Nudix motif for catalysis,
although there is considerable variation in the site of at-
tack on the substrate, in the position of the catalytic base
(usually a Glu, which may be outside the motif) and in
the number of divalent ions involved [11, 12]. Substrate
specificity is determined by side chains and motifs else-
where in the structure, and a number of distinct families
can be defined by these motifs. Together, these form part
of the structural Nudix fold, an a/b/a sandwich shared by
the isopentenyl diphosphate isomerases [13] and the C-
terminal domains of MutY-type DNA glycosylases [14]
that, together with the hydrolases, form a larger Nudix
suprafamily with a common evolutionary origin. Nudix
hydrolases are typically small proteins (16–21 kDa),
larger ones having additional domains with interactive or
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other catalytic functions. Many have alkaline pH optima
and they are strongly inhibited by F–, probably due to the
occupation of the position of the leaving group in the
transition state by an MgF3

– complex [11]. The structures
and mechanisms of Nudix hydrolases have recently been
reviewed in detail [11], so this article will concentrate on
the distribution and functions of these enzymes.
In 1996, Bessman defined the Nudix hydrolases as hav-
ing a ‘housecleaning’ function, ‘cleansing the cell of po-
tentially deleterious endogenous metabolites and modu-
lating the accumulation of intermediates in biochemical
pathways’ [1]. Among the bacteria, there is a linear cor-
relation between the number of Nudix genes and genome
size, and this broadly reflects the environmental adapt-
ability and metabolic complexity of the organism (fig.
1). At one end of the scale, the soil actinomycetes, Strep-
tomyces coelicolor, S. avermitilis and Frankia sp.
EAN1pec with their myriad of pathways for secondary-
metabolite synthesis, have 29–33 Nudix genes; at the
other, most intra- and extracellular parasites and sym-
bionts like the mycoplasmas, Borrelia and Wiggleswor-
thia, whose genomes have become reduced in size by
eliminating unnecessary anabolic pathways, have none.
Of particular note are those organisms with fewer or
more Nudix genes than would be predicted from this
simple relationship. For example, another soil bac-
terium, Acidobacteria-3 sp., with a 10-Mbp genome size

similar to the actinomycetes, has only 7 Nudix genes. In
contrast, the 3.3-Mbp genome of Deinococcus radiodu-
rans encodes 26, the highest number per Mbp of any bac-
terium sequenced so far (fig. 1). The extreme radiation
and desiccation tolerance of this organism have been
cited as reasons for this large number, with the additional
members eliminating the wide range of oxidised or oth-
erwise modified nucleotides that could arise from such
extreme environmental conditions [16, 17]. However, ra-
diation resistance per se does not demand multiple
Nudix genes, as the highly resistant Kineococcus ra-
diotolerans and Rubrobacter xylophilus have 14 and 8,
as would be predicted from their respective genome sizes
of 5.0 and 3.2 Mbp. Furthermore, we have found that the
majority of D. radiodurans Nudix genes (17 out of 19
studied) are strongly induced upon entry into stationary
phase, suggesting a possible involvement in metabolic
reprogramming [J. Cartwright and A. G. McLennan, un-
published data]. Considering that Bacillus halodurans
has 10 Nudix genes, the existence of 26–31 in the closely
related B. cereus, B. anthracis and B. thuringiensis im-
plies that specific gene amplification events occurred af-
ter the evolutionary branching of the latter group from B.
halodurans [18]. A preliminary survey of the activities
of the B. cereus Nudix hydrolases suggests that many of
these may be NDP-sugar hydrolases [19]. The reason re-
mains to be established.
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Figure 1. Relationship between number of Nudix genes and genome size in bacteria. The number of Nudix genes in each of 134 different
bacterial species is taken from the Superfamily (http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/index.html) [15] and Integrated Mi-
crobial Genomes (http://img.jgi.doe.gov) databases and includes related suprafamily sequences such as isopentenyl diphosphate iso-
merases. Only single strains of a particular species are included. Numbered species are: 1, Streptomyces avermitilis MA-4680; 2, Strepto-
myces coelicolor A3(2); 3. Frankia sp. EAN1pec; 4, Bacillus cereus ATCC 14579; 5, Bacillus anthracis Ames; 6, Bacillus thuringiensis
ser. konkukian 97–27; 7, Deinococcus radiodurans R1; 8, Burkholderia xenovarians LB400; 9, Bradyrhizobium japonicum USDA 110; 10,
Burkholderia capacia 383; 11, Acidobacteria-3 sp. Ellin6076; 12, Nostoc punctiforme PCC73102; 13, Bacillus halodurans C-125; 14, Es-
cherichia coli K12. The line of best fit (R2 = 0.51) was calculated using a y intercept of 0.9 Mbp, the mean genome size of bacteria with
no Nudix genes. 



Among eukaryotic microorganisms and fungi, the num-
ber of Nudix genes also increases linearly with genome
size (R2 = 0.75), although per Mbp DNA, there are on av-
erage only about one-fifth of the number found in bacte-
ria. For example, Encephalitozoon cuniculi (2.5 Mbp) has
2, Saccharomyces cerevisiae (12.2 Mbp) has 7 and Dic-
tyostelium discoideum (34 Mbp) has 20. In higher eu-
karyotes, the large amount of non-coding DNA means
there is no relationship to total genome size. Caenorhab-
ditis elegans has 14, Drosophila melanogaster has 20,
mammals have about 24, while Arabidopsis thaliana has
32. Selective amplification or retention after genome du-
plication has led to the expansion of certain Nudix fami-
lies, the members of which may show differences in sub-
cellular location and/or tissue-specific expression, e.g.
A. thaliana has 3 orthologues of the human NUDT2 Ap4A
hydrolase, 6 orthologues of NUDT6 (all of which may be
ADP-ribose pyrophosphohydrolases [20]) and 7 mem-
bers of the DIP phosphohydrolase (DIPP) family. In the
following sections, the Nudix hydrolase complements of
E. coli, S. cerevisiae and human/mouse cells are de-
scribed in detail as they cover the spectrum of activities
probably common to most prokaryotes and eukaryotes. A
Supplementary Table comparing the hydrolases in these
organisms is available at http://www.liv.ac.uk/~agmclen/
nudixrev.html. However, other hydrolases that may be re-
stricted to certain species are also discussed in this re-
view.

E. coli Nudix hydrolases

Laboratory strains of E. coli have 13 Nudix hydrolase
genes (table 1). The first to be studied genetically and en-
zymically was the 15-kDa MutT (NudA) protein, hence
the original name of the Nudix family – the MutT family
[1, 21]. The nuclear magnetic resonance (NMR) solution
structures of free and complexed forms of MutT have
been studied extensively [11, 22]. Disruption of mutT
leads to a ~1000-fold rise in spontaneous mutation fre-
quency due to increased AT:CG transversions [23]. This
is consistent with its in vitro enzymic activity. MutT effi-
ciently converts the mutagenic, oxidised nucleotide 8-
OH-dGTP [a product of reactive oxygen species (ROS)
attack on dGTP] to 8-OH-dGMP and PPi, thus preventing
the incorporation of syn-8-OH-dG into DNA opposite dA
[24]. MutT is also active towards the canonical (d)NTPs
[25]; however, its Km for 8-OH dGTP of 0.08-0.52 µM is
some 103–104 times lower than that for dGTP [5, 26]. It
also degrades 8-OH-GTP and so may prevent transcrip-
tional errors as well [27]. The physiological relevance of
8-OH-dGTP as a MutT substrate has been questioned,
since it could not be detected in mutT– strains using an
HPLC assay whose sensitivity was such that mutagenic
levels of this nucleotide should have been observed, sug-
gesting that an alternative mutagenic substrate may exist
[28]. On the other hand, direct introduction of 8-OH-
dGTP into permeabilised mutT– E. coli led to a six-fold

NudA

NudB

NudC

NudD

NudE

NudF

NudG

NudH

YeaB

YmfB

YffH

YfaO

YfcD

MutT

NtpA, YebD, orf17

YjaD, orf257

WcaH, YefC, gmm, orf1.9

YrfE, orf186

RdsA, AspP, AdpP, TrgB, YzzG,
YqiE, orf209

YnjG, orf135

YgdP, orf176

orf153

orf141

orf180

8-OH-(d)GTP, 8-OH-(d)GDP, other (d)NTPs

dATP, dADP, 8-OH-dATP, 8-OH-dADP, other (d)NTPs

NADH, deamino-NADH, Ap2A

GDP-mannose, GDP-glucose

Ap3A, Ap2A, NADH, ADP-ribose

ADP-ribose, ADP-glucose, ADP-mannose

5-Me-dCTP, (d)CTP, 5-OH-(d)CTP, 8-OH-dGTP, 2-OH-dATP

Ap5A, Ap6A, Ap4A

(CoA and derivatives)3

TPP

(NDP-sugars)3

?

?

226

3225

1328

146

619

1113

310

3095

477

567

137

249

639

1 Details of substrate preferences are given in the text.
2 Relative abundance in mRNA prepared from mid-log phase cells grown in minimal medium. Data taken from Corbin et al. [38]. 
3 Predicted substrates.

Table 1. Summary of the Nudix hydrolases of E. coli.

Name Synonyms Known substrates1 Transcript
abundance2
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increase in mutation frequency compared to wild-type
cells, showing that MutT can suppress mutations induced
by 8-OH-dGTP in vivo [29]. This rather low level of in-
duced mutagenesis may be due to the existence of addi-
tional 8-OH-dGTPase activities, such as the RibA GTP
cyclohydrolase II [30]. If another MutT substrate does
exist that fits the specificity of the mutT phenotype, it
could be 8-OH-dGDP which is converted to 8-OH-dGMP
and Pi with a Km of 0.06 µM [5]. 
NudG (orf135) also has pyrophosphohydrolase activity
towards (d)NTPs. According to kcat/Km ratios, the pre-
ferred substrates in vitro are 5-Me-dCTP and 5-OH-CTP,
which are favoured over dCTP and CTP [31–33]. 8-OH-
dGTP and 2-OH-dATP are also hydrolysed but with ef-
ficiencies some 200-fold lower than the cytidine nu-
cleotides [33]. 5-OH-dCTP is reportedly a much poorer
substrate than 5-OH-CTP (4.3%) [32], but this would still
make it significantly better than 8-OH-dGTP or 2-OH-
dATP. A nudG– strain was shown to have an increased
spontaneous and H2O2-induced mutation frequency, due
mainly to GC:AT transitions and GC:TA transversions,
but with few of the AT:CG transversions characteristic of
mutT– strains. This was interpreted in terms of reduced 2-
OH-dATP elimination [34]. However, 5-OH-dCTP readily
causes GC:AT and GC:TA mutations [35] and so must be
considered a relevant, if not the sole, substrate for NudG
in vivo. NudB (NtpA, orf17) is another dNTPase, origi-
nally reported to prefer dATP as a substrate [36]. Recently,
it was shown to hydrolyse both 8-OH-dATP and 8-OH-
dADP, though with efficiencies similar to the unoxidised
nucleotides [4]. Demonstration of a possible antimutator
function will require further genetic analysis. In a recent
genome-wide study, NudB was the only E. coli Nudix hy-
drolase found to be essential for aerobic growth in rich
media (or at least to impart a substantial fitness advan-
tage) [37]. If this is confirmed, it would suggest that NudB
has more than just an antimutator function and may be in-
volved in regulating nucleotide pools for growth. It also
has the highest transcript abundance of any E. coli Nudix
hydrolase, at least 15-fold greater than that of mutT [38].
E. coli YgdP (NudH, orf176) is a 21-kDa NpnN hydro-
lase. It belongs to the family of asymmetrically cleaving
diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) hydro-
lases, first described in eukaryotes, that cleave Ap4A to
ATP + AMP [39, 40]. This is in contrast to the unrelated
symmetrically cleaving Ap4A hydrolases, like E. coli
ApaH, that produce 2 ADPs [40]. The bacterial YgdP-
type enzymes show greater sequence similarity to plant
Ap4A hydrolases than to the animal orthologues [41]. An
exception is Thermus thermophilus Ndx1, which strongly
prefers Ap6A and is more similar to animal Ap4A hydro-
lases and the DIPP family [42]. Ap4A is synthesised by
aminoacyl-tRNA synthetases and other AMP-forming
ligases [43] and may have a number of roles in prokary-
otes, including modulating chaperone and heat shock

protein activity [44, 45] and controlling the timing of cell
division [46]. If allowed to accumulate unchecked, it
could also interfere with a number of ATP-dependent re-
actions [47]. The Nudix Ap4A hydrolases all have a Tyr or
Phe residue 17 amino acids downstream of the catalytic
motif [48] that binds the adenine ring of the substrate dis-
tal to the site of nucleophilic attack [49, 50]. They hy-
drolyse NpnN where n>3, always producing an NTP
product. E. coli YgdP and the orthologues from Salmo-
nella typhimurium [51], Rickettsia prowazekii (InvA)
[52] and Pasteurella multocida (PnhA) [53] prefer Ap5A
over Ap4A in vitro, whereas Ap4A is preferred by the en-
zymes from Bartonella bacilliformis (IalA) [54, 55] and
Helicobacter pylori (NudA) [56]. E. coli K1 YgdP and
B. bacilliformis IalA have both been implicated in the
ability of these pathogens to invade brain microvascular
endothelial cells [57] and erythrocytes [58], respectively,
suggesting that proper regulation of bacterial NpnN is re-
quired for expression of the invasive phenotype. Direct
evidence for this was provided by the demonstration that
deletion of the S. typhimurium ygdP and apaH genes
leads to synergistic increases in bacterial Ap4N levels
while decreasing cellular invasion [51]. Furthermore,
pnhA– mutants of P. multocida are 1000-fold less virulent
in a chick embryo animal model [53]. Disruption of E.
coli ygdP also relieves lethal hybrid jamming, the block-
ing of the general protein secretory pathway caused by
the expression of normally cytoplasmic proteins when
fused to an N-terminal Sec signal sequence. The C-termi-
nal portion folds before export and blocks the transloca-
tion pores [59]. This may further implicate ApnA, and
hence YgdP, in modulating the activity of chaperone pro-
teins. E. coli YgdP also appears to be part of an interac-
tion network involving ribosomal and ribosome-associ-
ated proteins [60] and is strongly up-regulated by 1 µg/ml
Cd2+, a treatment that disrupts ribosomal protein produc-
tion and induces several stress response systems [61].
Since the apaH gene is part of an operon whose genes re-
late to ribosome function and starvation survival, these
observations strengthen the proposed link between ApnA
and nutritional and oxidative stress [62], which may un-
derpin the role of ApnA in bacterial invasion. 
NudF (AspP, TrgB, orf209) is a 47-kDa dimer originally
characterised as an ADP-ribose pyrophosphohydrolase
[48]. Similar, high-Km (50–200 µM) ADP-ribose hydro-
lases have been isolated from a number of other bacteria
and have the common structural feature of a proline
residue 15–16 amino acids downstream of the Nudix mo-
tif [12, 48, 63–65]. NudF is notable in that it displays do-
main swapping, with each active site formed by residues
from both monomers [66, 67]. ADP-ribose is a poten-
tially toxic product of NAD catabolism. In bacteria, most
NAD turnover is due to the activities of DNA ligase and
NAD(H) pyrophosphatase activities, while most NAD
glycohydrolase activities are secreted [68]. However,
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there is evidence for an intracellular NAD glycohydrolase
activity that could generate free ADP-ribose [68, 69].
This reactive nucleotide-sugar is able to non-enzymically
glycate protein N-terminal and lysyl amino groups and
cysteinyl thiols, leading to loss of function [70]. It may
also contribute to tellurite toxicity, since the Rhodobacter
sphaeroides trgB tellurite resistance gene encodes a puta-
tive ADP-ribose hydrolase [48]. Thus, the elimination of
free ADP-ribose is desirable. However, NudF is not spe-
cific for ADP-ribose and hydrolyses ADP-glucose and
ADP-mannose with similar efficiencies [71]. The E. coli
nudF gene is part of the cre regulon and is up-regulated
during growth in minimal media by CreBC, a regulatory
system that responds to changes in carbon supply [71,
72]. A nudF– mutant had very low ADP-glucose hydro-
lase activity compared to wild-type cells, but unaltered
ADP-ribose hydrolase activity. This mutant also had a
higher glycogen content than the wild type even when
grown in minimal glucose medium, while overexpression
of NudF led to a dramatic loss of glycogen [71], suggest-
ing that NudF can regulate glycogenesis downstream of
CreBC via the availability of the precursor ADP-glucose.
Whether E. coli NudF serves the dual role of glycogen
control and ADP-ribose elimination remains to be deter-
mined. In contrast, the enzyme from the archaeon
Methanocaldococcus jannaschii is highly specific for
ADP-ribose and 2'-phospho-ADP-ribose, the NADP
metabolite, and confers increased tellurite resistance
when expressed in E. coli, specifically implicating ADP-
ribose as a causative factor in tellurite toxicity, although
the precise reason is presently unknown [48, 73]. NudE
(orf186) is also active with ADP-ribose but additionally
hydrolyses the structurally related Ap3A, NADH, Ap2A
and FAD [74]. Its function is unclear. An enzyme with
broadly similar specificity is encoded by the nudE.1 gene
of bacteriophage T4 but is not required for normal phage
growth under laboratory conditions [75].
NudD (WcaH, orf1.9), a 37-kDa dimer confined to en-
terobacteria and Vibrio species, is unique among the
Nudix hydrolases in that it hydrolyses GDP-a-D-man-
nose and GDP-a-D-glucose to GDP and the correspond-
ing b-sugar by nucleophilic substitution at the sugar C1
carbon rather than at phosphorus [11, 76, 77]. The core of
the Nudix motif, RLTMAE, lacks two of the usual Mg2+-
binding Glu residues and this, plus a change in position of
the catalytic base due to a six-residue deletion (with a
neutral His preferred to the normal anionic Glu), leads to
the change in mechanism [78]. NudD is located in the E.
coli K12 gene cluster necessary for the production of
colanic acid, an extracellular polysaccharide [79]. The en-
terohaemorrhagic strains O157: H7 and O111 have addi-
tional, related genes, wbdQ [80] and wbdI [81], respec-
tively, with Nudix motifs similar to NudD. These show
63% and 45% identity to NudD and 43% identity to each
other at the protein level. They are located in the gene

clusters for the O-antigen component of the outer mem-
brane lipopolysaccharide that control the synthesis of
GDP-fucose, GDP-colitose and GDP-perosamine, but
the precise roles of the hydrolases are not known.
NudC (YjaD, orf257) is a 60-kDa dimeric NADH pyro-
phosphohydrolase with a 120-fold preference for NADH
over NAD+ [82]. The sequence SQPWPFPQS located ten
residues downstream of the Nudix box is found in this
and all other characterised NADH hydrolases and may
confer pyridine nucleotide specificity [48]. The struc-
turally related NADPH, ADP-ribose and Ap2A are also
substrates. NudC may regulate the intracellular NAD+/
NADH ratio or generate NMNH for some as yet unknown
role [82]. Disruption of Haemophilus influenzae NudC
profoundly reduces the survival of this pathogen in an
animal model [83], so YgdP appears not to be the only
Nudix hydrolase involved in intracellular invasion and
survival.
Another sequence motif, LLTxR[SA]x3Rx3Gx3FPGG
(PROSITE UPF0035), is found upstream of and contigu-
ous with the Nudix box in the uncharacterised E. coli
YeaB protein. As this motif is found in proteins from D.
radiodurans and several eukaryotes that are active to-
wards coenzyme A and its derivatives [84–87], YeaB is
most likely also a CoA pyrophosphohydrolase. A screen
for genes conferring resistance to bacimethrin, a thiamine
analogue, identified ymfB [9]. YmfB (orf153) has TPP
phosphatase activity but may also utilise other substrates
depending on the divalent ion [88]; however, the pheno-
type of the ymfB– mutant implies that TPP is a substrate
in vivo and that YmfB regulates TPP concentration.
The remaining three E. coli enzymes, YffH, YfaO and
YfcD, have yet to be characterised. YffH has significant
sequence similarity to NudF and human NUDT14, a
UDP-glucose/ADP-ribose hydrolase [89], and so may be
an NDP-sugar hydrolase. Genetic evidence suggests that
it could be involved in remodelling extracellular polysac-
charides for biofilm formation. [90]. YfaO appears so far
to be unique to E. coli and the closely related Shigella
flexneri and Salmonella enterica and may therefore have
a role specific to their phylogenetic or environmental
niches. It has an evolutionary retention index (ERI) of
zero, where the ERI has been defined as the fraction of
times a gene occurs in 33 diverse microbial genomes, and
indicates uniqueness (£0.2) or conservation and essen-
tiality (0.4–0.7) [37]. YfcD, with an ERI of 0.03 (like
NudD) is also phylogenetically restricted. It may prove
difficult to find the true substrates for specialised Nudix
hydrolases with low ERI values.

Other prokaryotic Nudix hydrolases

In addition to orthologues of the E. coli enzymes, a num-
ber of Nudix hydrolases have been isolated from other
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prokaryotes with interesting specificities, properties
and functions. A family of enzymes active with 5-
methyl-UTP (ribo-TTP) and UTP has been found in a
range of organisms including Agrobacterium tume-
faciens, Pseudomonas aeruginosa and Caulobacter
crescentus. Activity with CTP is variable but purine nu-
cleotides are poor substrates [91]. Two sequence motifs,
L[VL]VRK and AANE, appear to define this family. In
Corynebacterium sp., this enzyme is encoded on hori-
zontally acquired plasmids or transposons and tran-
scribed with transition metal ion transporters of the
Nramp family [92]. The Bacillus subtilis YtkD protein
catalyses the sequential conversion of (d)NTP sub-
strates to (d)NMP via (d)NDP, unlike all other Nudix
(d)NTPases, which produce (d)NMP and PPi [3]. The
ylgG gene of Lactococcus lactis is part of the folate syn-
thesis operon and YlgG specifically removes PPi from
the folate intermediate DHNTP with a Km of 2 µM. In-
activation of ylgG caused accumulation of DHNTP and
a three-fold reduction in intracellular folate [10]. Cell
viability was, however, retained due to non-specific
phosphatases degrading DHNTP via the diphosphate. A
17-kDa DHNTP hydrolase with no NTPase activity has
been isolated from E. coli, but not identified [93]. The
E. coli Nudix hydrolase closest in sequence to YlgG is
the 17.9-kDa YmfB TPPase with a BLAST E-value of
0.003 over 54 amino acids, but any identity between the
two must be confirmed experimentally.
The ACT protein of Bacillus methanolicus is particularly
interesting. It is required for activation of the NAD+-
dependent alcohol dehydrogenase, MDH [94]. Although
it is an efficient ADP-ribose hydrolase in vitro, ACT
hydrolyses MDH-bound NAD(H) in vivo, yielding
NMN(H) and AMP. This alters the reaction mechanism
of MDH to cofactor independence, increasing methanol
turnover by 40-fold. This system provides feedback con-
trol and may help prevent accumulation of toxic form-
aldehyde [94]. The pif gene of the Streptomyces ambofa-
ciens conjugative plasmid pSAM2 encodes a Nudix hy-
drolase, orf131, that helps maintain the plasmid in a
prophage state under non-conjugal conditions [95].
Orf131 is almost identical to a hydrolase encoded in the
S. coelicolor genome (SC6A9.30c) but its role in main-
taining conjugal immunity between cells harbouring the
plasmid is unknown. The pur7 gene of Streptomyces al-
boniger is part of the puromycin biosynthetic cluster and
specifically hydrolyses 3'-amino-3'-dATP, a pathway in-
termediate and a potent RNA polymerase inhibitor. This
may prevent accumulation of this toxic nucleotide [96].
In large-scale substrate screens of enzymes from D. ra-
diodurans and B. cereus, several activities towards UDP-
sugars have been detected. The short motifs, GE and
NGD, either side of the Nudix box may define a UDP-
sugar family [17, 19]. Finally, a CDP-choline hydrolase is
also present in B. cereus [19].

Nudix domains have also been observed in multidomain
proteins. Proteins that are structurally separate in some or-
ganisms but which have become fused in others are likely
to participate in the same biochemical pathway and have
been termed Rosetta stone proteins [97]. Thus, the func-
tion of one domain may be inferred if the function of the
other is known. For example, the C-terminal Nudix do-
main of the slr0787 protein from Synechocystis sp. has
ADP-ribose hydrolase activity while the N-terminal do-
main is an NMN adenylyltransferase [98], suggesting a
pivotal role for this protein and, therefore, for ADP-ribose
hydrolases, in NAD+ metabolism. The existence of a
Nudix domain fused to a putative dihydroneopterin al-
dolase in Parachlamydia sp. strengthens the argument that
DHNTP is a Nudix substrate in vivo [10]. YzdG from
Paenibacillus thiaminolyticus has a haloacid dehalo-
genase (HAD) domain with pyridoxal phosphatase activ-
ity, and a Nudix domain that hydrolyses NDP-sugars
and CDP-alcohols [99]; the connection here is not obvi-
ous. The D. radiodurans DR0603 protein has cytosine/
deoxycytidylate deaminase and SAM-dependent meth-
yltransferase domains on either side of a Nudix domain,
while the DR0329 and DR0004 UDP-sugar hydrolases are
unique in that each has two fused Nudix domains [16, 17],
both of which in DR0004 have the characteristic GE and
NGD motifs, but only one of which in DR0329 has these
sequences. Other proteins are listed in the FusionDB data-
base (http://igs-server.cnrs-mrs.fr/FusionDB/main.html)
in which Nudix domains are fused to predicted phos-
phopantetheine adenylyltransferase, thiamine monophos-
phate synthase, glycerol-3-phosphate cytidylyltransferase
and S-adenosylhomocysteinyl hydrolase domains. No
doubt others exist.

Nudix hydrolases of S. cerevisiae

A study of eukaryotes reveals Nudix hydrolases with new
specificities, diverse subcellular locations and tissue-spe-
cific expression appropriate to their roles in eukaryotic
metabolism. S. cerevisiae has six Nudix hydrolases, two
of which are located in peroxisomes. Npy1p (YGL067w)
is an NADH hydrolase with a preference for NAD(P)H
over NAD(P)+, similar to E. coli YjaD [100, 101]. GFP-
fusion and immunofluorescence experiments have lo-
cated it exclusively in peroxisomes [101]. It has a C-ter-
minal PTS1 tripeptide peroxisomal-targeting signal,
deletion of which abolishes specific targeting [S. R. Ab-
delRaheim and A. G. McLennan, unpublished data].
Pcd1p (YLR151c) is a CoA hydrolase with a UFP0035
motif and hydrolyses CoA, CoA esters and derivatives,
with a preference in vitro for oxidised CoA disulphide
(CoASSCoA) [84]. Its experimentally established perox-
isomal location may be due to a putative N-terminal
PTS2 signal embedded within a predicted mitochondrial-
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targeting sequence, the latter providing a limited degree
of mitochondrial localisation. Given the location of
Npy1p and Pcd1p in peroxisomes, the sole site of fatty
acid b-oxidation in yeast, they may both participate in the
maintenance and/or protection of nucleotide cofactor
pools required for this process. The peroxisomal mem-
brane is impermeable to NAD(P)(H) and CoA and so the
only way to remove these molecules from this organelle,
should the need arise, would be to degrade them to
smaller, freely permeable products [101, 102]. This might
be an aspect of normal cofactor regulation or it could be
a means of eliminating non-functional, damaged nu-
cleotides produced in the oxidising environment of the
peroxisomal lumen, particularly under conditions of
stress, when ROS production may increase. Unfortu-
nately, no altered phenotype for NPY1 and PCD1 deletion
mutants has yet been found [84, 100, 101]. Somewhat
surprisingly, Pcd1p was recently reported also to hydrol-
yse 8-OH-dGTP and 2-OH-dATP, but not the non-oxi-
dised dNTPs, and to suppress AT:CG transversions in a
mutT– strain of E. coli. A PCD1 deletion mutant had a
moderate mutator phenotype [103]. It is not clear why
such an antimutator activity would be required in peroxi-
somes, which lack DNA, so this may indicate an affinity
for ring-oxidised nucleotides; such derivatives of CoA
have not been tested. However, elimination of oxidised
dNTPs could be a relevant activity of mitochondrial
Pcd1p.
Ddp1p (YOR163w) is a member of the DIPP family with
activity towards highly phosphorylated (di)nucleotides
such as Ap6A, Ap5A, p5A and p4A but also towards the
DIPs diphosphoinositol pentakisphosphate (PP-InsP5)
and bisdiphosphoinositol tetrakisphosphate ([PP]2-InsP4)
[7, 104]. The Km values for PP-InsP5 and Ap6A are 0.03
and 56 µM, respectively, suggesting that DIPs may be
more relevant substrates in vivo. A similar enzyme, Aps1,
has been found in Schizosaccharomyces pombe, and dis-
ruption of the aps1 gene led to increases in DIPs, but not
Ap5A [105]. The DIPs have been implicated in the regu-
lation of endocytic trafficking [106], telomere length and
apoptosis [107, 108], polyphosphate accumulation [109],
responses to hyperosmotic and thermal stress [110, 111]
and in non-enzymic protein phosphorylation [112]. A di-
rect involvement of Ddp1p in vesicle trafficking is sup-
ported by its reported interaction with Yif1p, an integral
membrane protein required for the fusion of endoplasmic
reticulum (ER)-derived COPII transport vesicles with the
Golgi [113], but its overall role in regulating the levels of
DIPs and the possible interplay between these and
pnA/ApnA have not been adequately studied. p4A and p5A
accumulate in S. cerevisiae during sporulation [114],
while DIPs have been shown to accumulate in spores of
D. discoideum [115], so Ddp1p-type enzymes could have
a role in degrading both classes of compound during
spore germination.

For a Nudix hydrolase, Dcp2p (Psu1p) is an unusually
large (109 kDa) protein. The N-terminal one-third con-
tains a typical Nudix fold flanked by two regions, Box A
and Box B, that are conserved in most Dcp2 proteins
from other organisms [116]. The large C-terminal region
is rich in Q, N, P and S, a feature commonly found in tran-
scriptional regulators, and contains regions that can func-
tion as nuclear receptor interaction domains and au-
tonomous transcriptional activation domains. Thus,
Dcp2p has been proposed to have a role in ligand-depen-
dent transactivation by nuclear receptors [117]. However,
the Nudix domain functions as the catalytic part of the es-
sential Dcp1p/Dcp2p mRNA decapping complex, gener-
ating m7GDP and 5'-phosphorylated RNA [118, 119].
Mn2+ and longer mRNA substrates are preferred [119].
Dcp2p interacts with several other proteins involved in
mRNA decapping and 5'Æ3' degradation [118, 120] and
has been localised to cytoplasmic P bodies, a proposed
site for mRNA decapping and decay [121]. The C-termi-
nal region of S. cerevisiae Dcp2p is not required for de-
capping and is poorly conserved, even in other yeasts; for
example, the N-terminal region is 84% identical to the
corresponding sequence of Candida glabrata Dcp2p but
their C-terminal portions share only 22% identity. There-
fore, the C-terminal region may simply be a large inter-
action scaffold with, at least in S. cerevisiae, the ability
to recruit transcription factors in addition to mRNA
turnover factors.
Of the remaining two yeast Nudix hydrolases, Ysa1p
(YBR111c) is an NDP-sugar hydrolase with similarities
to E. coli NudF. Cytotoxic free ADP-ribose has been pro-
posed to be an important substrate [48] and null mutants
of YSA1 exhibit a reduced growth rate [122], but its func-
tion has not been firmly established. Finally, the unchar-
acterised YJR142w, with a Lys replacing the usual Arg in
the core of the Nudix motif, is similar to the N-terminal
half of the S. pombe TNR3 thiamine pyrophosphokinase
(TPK). The C-terminal half of this enzyme is similar to
the S. cerevisiae THI80 TPK [123]. The implication of the
S. pombe Rosetta protein TNR3 is that the substrate of
YJR142w (and the N-terminal half of TNR3) is likely to
be TPP or possibly thiamine triphosphate [124], but this
remains to be proved. A. thaliana has two similar genes
but a likely orthologue appears to be absent from mam-
mals. Conversely, mammals have a specific, unrelated
thiamine triphosphatase that is absent from other organ-
isms [124].

Human and mouse Nudix hydrolases

The human genome has 24 Nudix hydrolase genes and at
least 5 pseudogenes (table 2). Most of the human NUDT
gene products or their mouse Nudt orthologues have been
characterised to some extent. NUDT1 (MTH1) is func-
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tionally similar to E. coli MutT but with a broader sub-
strate range: it can hydrolyse 8-OH-(d)GTP, 8-OH-
(d)ATP and 2-OH-(d)ATP [125–129]. Substrate selectiv-
ity has been examined by site-directed mutagenesis, and
mutants constructed that selectively lack either 8-OH-
dGTPase or 2-OH-dATPase activity [130]. Multiple tran-
scriptional and translational initiation sites are present in
both the human and mouse genes, and four isoforms of
26, 22, 21 and 18 kDa have been detected in human cells
[131–133]. Both p26 and p18 have potential mitochon-
drial-targeting signals and the leader sequence of p26 tar-
gets GFP to mitochondria [133]. p26 is only formed in in-
dividuals with the GC allele of a GT/GC polymorphism
that is part of an initiation codon at the start of exon 2c
[132]. Although most MTH1 activity is nucleo-cytoplas-
mic, mitochondrial MTH1 has been detected [134] and
its level appears to be increased in the substantia nigra
neurones of Parkinson’s disease patients, something that
may be related to the role of mitochondrial respiratory
failure and oxidative stress in the aetiology of this disease
[135]. Mth1 knockout mice show an increased rate of
spontaneous tumorigenesis and fibroblasts from these
mice have a markedly increased sensitivity to H2O2, with
treated cells showing pyknotic nuclei, degenerate mito-
chondria and an increase in 8-OH-dG in the DNA of both
compartments [136, 137]. These changes are prevented
by expression of recombinant wild-type human MTH1 in
the null cells but are only partially suppressed using mu-
tant MTH1 forms that are defective in either the 8-OH-
dGTPase or 2-OH-dATPase activities, which would
suggest that oxidised dG and dA lesions arising from OH-
dNTPs are both important contributors to cell dysfunc-
tion [137]. This is confirmed by the finding that overex-
pression of MTH1 in embryonic fibroblasts derived from
mismatch-repair-defective msh2–/– mice restores their
high spontaneous mutation rate to normal [138]. An in-
crease in MTH1 expression has been observed in renal
[139], brain [140], lung [141] and several other tumours
and this is consistent with the concept that cancer cells
suffer from persistent oxidative stress. Interestingly, a
polymorphic variant of MTH1 (V83M) has been associ-
ated with an increased frequency of stomach cancer and
correlates with p53 mutation [142]. The M83 allele is
closely linked to the exon 2c GC allele and the M83 form
is more heat labile than V83 [132]. Hence, polymorphic
variation in MTH1 may contribute to cancer predisposi-
tion, at least in the stomach.
A second 8-OH-dGTPase, NUDT15 (MTH2), has been
cloned from mouse and human cells [143, 144]. It is less
selective for oxidised nucleotides than MTH1, with
mouse Mth2 having Km values of 32 and 75 µM for 8-OH-
dGTP and dGTP, respectively. However, it did signifi-
cantly reduce the spontaneous mutation frequency when
expressed in mutT– E. coli [143]. Its presence may explain
the limited (two-fold) increase in spontaneous mutation

frequency observed in mth1–/– cells derived from mth1
null mice [136]. A complicating issue is that AtNUDT1
from A. thaliana, which is 40% identical to NUDT15, hy-
drolyses the structurally related DHNTP in addition to
dGTP and 8-OH-dGTP and so has been proposed to be
involved in tetrahydrobiopterin (BH4) and folate synthe-
sis [10]. Thus, NUDT15 may also be required for the con-
version of DHNTP to BH4 in mammals. Unlike humans,
the mouse appears to have three apparently functional
Nudt15 genes (a, b and c) on different chromosomes, al-
though most known expressed sequence tags (ESTs) arise
from the Chr14 gene. Whether substrate utilisation in the
mouse has been subfunctionalised among these species is
not known. Another antimutator candidate is NUDT5.
This protein was originally characterised as an ADP-
sugar hydrolase similar to yeast YSA1 with activity to-
wards a number of ADP-sugars including ADP-ribose
[145, 146], and probably corresponds to the high-Km AD-
PRibase-II isolated from human and rat tissues [147–
149]. However, it also hydrolyses 8-OH-dGDP to 8-OH-
dGMP and Pi with a Km of 0.77 µM and completely sup-
presses the increased mutation rate when expressed in an
E. coli mutT– strain [150]. Since dNDPs are potent in-
hibitors of MTH1 [126, 151], NUDT5 could act in con-
cert with MTH1 (and possibly NUDT15) in antimutage-
nesis. MTH1 and NUDT5 (but not NUDT15) may also
prevent transcriptional errors and mistranslation by elim-
inating 8-OH-GTP and 8-OH-GDP [144]. Whether there
is any meaningful physiological interaction between the
hydrolysis of oxidised (d)NDPs and NDP-sugars remains
to be established. NUDT5 interacts with the testis-spe-
cific small heat shock protein HSPB9 [152], and its tran-
scription is regulated during neuronal differentiation
[153, 154] and by HNF4a in hepatocytes and pancreatic
islets [155]. It can also be down-regulated by tumour
necrosis factor-a (TNF-a) [156] and is a candidate gene
for the thymus hypoplasia/aplasia and heart defects asso-
ciated with partial monosomy 10p [157]. Further study is
needed to assess the significance of these observations in
terms of the substrate specificity of this hydrolase. 
The classical, eukaryotic asymmetrically cleaving Ap4A
hydrolase, examples of which have been isolated from
many animals and plants [39, 40], is encoded by the hu-
man NUDT2 (APAH1) gene. It hydrolyses ApnA (n≥4),
always producing ATP as a product [158, 159]. Because
of its greater abundance, the principal substrate of
NUDT2 in vivo is assumed to be Ap4A [47], although the
enzyme from the brine shrimp Artemia – possibly the
first Nudix hydrolase ever to be isolated – is believed to
degrade the large Gp4G purine store that is virtually
unique to this organism [160, 161]. In eukaryotes, Ap4A
has been implicated in the control of DNA replication and
repair [reviewed in ref. 47], regulation of ATP-sensitive
K+ channels [162, 163], initiation of apoptosis [164],
modulation of Fhit tumour suppressor protein activity in
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conjunction with Ap3A [165], and activation of gene ex-
pression [166]. In some cells (e.g. platelets, chromaffin
cells, myocytes), it is also present with other NpnN in spe-
cialised granules from which it is exocytosed to act as an
extracellular messenger [167, 168]. As in prokaryotes,
the level of nucleo-cytoplasmic Ap4A is increased by var-
ious forms of cellular stress and, since high levels may be
toxic, this needs to be controlled. A major fraction of the
Nudix Ap4A hydrolase in tomato [169] and Drosophila
cells [L. Winward, A. G. McLennan and S. T. Safrany, un-
published data] is located in the nucleus, suggesting that
nuclear functions are of major importance. However, like
E. coli YgdP, the C. elegans NUDT2 orthologue, Ndx-4,
also appears to be ribosome associated [170]. The human
NUDT2 promoter binds the transcription factors HNF4a
and HNF6 in pancreatic islets and HNF4a in hepatocytes
[155] and may also bind one of the FOXO family of in-
sulin-regulated transcription factors [171]. HNF4a and
HNF6 are master regulators of hepatocyte and islet tran-
scription; specific regulation of NUDT2 in the pancreas
may be relevant to the fine control of Ap4A levels re-
quired in response to glucose in this tissue [172]. NUDT2
is down-regulated in serum-deprived and contact-inhib-
ited T98G glioblastoma cells by transcription factor E2F4
in combination with the retinoblastoma family protein
p130 [173]. Ap4A is generally found at much higher lev-
els in proliferating compared to resting cells, so down-
regulation of its hydrolase during quiescence may appear
counter-intuitive. However, if resting cells are not gener-
ating Ap4A, then reducing hydrolase activity may ensure
the preservation of a required minimum level of Ap4A.
NUDT2 is up-regulated by interferon in liver [174] and by
hypoxia in cardiomyocytes [175]. The latter may explain
the reduction observed in intracellular Ap4A to 2% of the
aerobic level when Ehrlich ascites cells were subjected to
2 h of anaerobiosis [176].
The NUDT3, 4, 10 and 11 genes all encode members of
the DIPP family and hydrolyse both DIPs and ApnA. Mu-
tagenesis of active-site residues in NUDT3 (DIPP1) has
shown that the same site is responsible for hydrolysis of
both classes of substrate [177]. The NUDT4 gene encodes
two variants, DIPP2a and DIPP2b, that differ by only a
single amino acid. DIPP2b has an additional glutamine
(Q86) that arises through intron boundary skidding and
which reduces the kcat with PP-InsP5 five-fold [178, 179].
NUDT10 (DIPP3a, hAps2) and NUDT11 (DIPP3b,
hAps1) also differ by only a single amino acid (P89R) but
are encoded by separate, adjacent genes on the human X
chromosome. Unlike the other DIPPs, which are widely
though not uniformly expressed, human NUDT10 and
NUDT11 were reported to be expressed preferentially in
testis, and to a lesser extent in brain [180]. Another study
showed strong expression of NUDT10 in brain, liver and
testis and kidney, and NUDT11 in brain, pancreas and
testis [181]. Mouse Nudt10 and 11 are also encoded by

adjacent genes, indicating that the causative gene dupli-
cation took place prior to the primate-rodent split. Re-
markably, they are identical to each other, so no sequence
divergence between the two enzymes has occurred since
then [182]. Mouse Nudt10 is expressed in testis, liver and
kidney while Nudt11 is mainly restricted to brain, and
this differential expression may explain why both have
been retained [182]. In general, the DIPPs have substan-
tially lower Km values for DIPs (0.004–0.088 µM) than
for ApnAs (5.9–43 µM), giving the DIPs a perceived
favoured substrate status. However, possible physiologi-
cal switches in substrate preference and utilisation de-
pendent upon divalent ion (e.g. Mg2+ or Mn2+) or redox
conditions (e.g. presence or absence of DTT in vitro) can-
not be excluded [181, 182]. The existence of multiple,
differentially expressed DIPP isoforms in mammals com-
pared to yeast, C. elegans and D. melanogaster (each of
which has one) has been proposed to provide tight regu-
lation of the response times of the molecular-switching
activities in which the DIPs are involved [179] but, as in
the case of yeast, whether and how the alternative di-
adenosine substrates impact on these activities remain
to be determined. A more direct role for Nudt3 in sig-
nalling has also been discovered. Overexpression of
mouse Nudt3 negatively regulates signalling through the
ERK1/2 MAP kinase pathway even if an active-site mu-
tant is used, implying that substrate-bound Nudt3 blocks
the ERK1/2 pathway by interacting with one of the com-
ponents [183]. Hydrolysis of the substrate would then re-
lieve the inhibition. This is reminiscent of the activation
of Ras by GTP binding [184] and of the Fhit tumour sup-
pressor protein by Ap3A binding [185]. Since heat shock
and osmotic stress increase [PP]2-InsP4 by up to 25-fold
in animal cells via ERK1/2 and p38a/b pathways [111,
186], substrate-bound Nudt3 may be part of a feedback
loop that controls DIP accumulation. Finally, all of the
DIPPs as well as NUDT2 and other enzymes capable of
hydrolysing ApnAs are able to convert PRPP to the gly-
colytic activator ribose1,5-bisphosphate and Pi in vitro
[8] but the physiological significance of this is unknown.
NUDT6 (GFG) is encoded by an mRNA derived from
antisense transcription of the 3'-untranslated region of the
basic fibroblast growth factor (FGF-2) gene [187]. The
full-length 35-kDa protein predominates, with low levels
of 28- and 17-kDa isoforms [188], the last one appearing
in a glutathionylated form in oxidatively stressed lym-
phocytes [189]. It has a putative mitochondrial-targeting
signal and has also been reported in the nucleus but has
not been fully characterised. A. thaliana encodes 6 simi-
lar proteins, and several of these have been cloned and
shown to have activity with ADP-ribose and NADH [20],
so mammalian NUDT6 may have similar abilities. Both
the sense and antisense FGF-2 RNAs are co-ordinately
expressed and translated and so, like FGF-2, NUDT6
may have a role in modulating proliferation in response
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to growth signals through sense-antisense RNA interac-
tions and, independently of FGF, via the protein itself
[188, 190, 191]. Like NUDT2, the NUDT6 gene is down-
regulated by E2F4 and p130 in growth-inhibited cells
[173].
Mouse Nudt7 is a peroxisomal CoA pyrophosphohydro-
lase with a UFP0035 motif like yeast Pcd1p but with a C-
terminal PTS1. Nudt7 and the corresponding C. elegans
Ndx-8 hydrolyse CoA and CoA esters but, unlike Pcd1p,
do not have a preference for oxidised CoA [85, 86]. Ex-
pression of Nudt7 was highest in liver, intermediate in
lung and kidney, and lowest in brain and heart, and ex-
pression of human NUDT7 showed a similar pattern [85].
Mouse liver Nudt7 is strongly up-regulated by thyroid
hormone via a TRb receptor [192] and down-regulated in
response to starvation, a condition where most enzymes
involved in fatty acid b-oxidation are up-regulated [193].
This may prevent depletion of the peroxisomal pool of
CoA under conditions of increased fat catabolism. It is
also down-regulated in the liver of senescence-acceler-
ated mice [194] and in mice overexpressing a mutated hu-
man keratin 18 [195], both conditions associated with in-
creased oxidative stress and liver damage. The 23-kDa
putative mouse Nudt8 is 44% identical to Nudt7 over the
N-terminal 140 amino acids and also has the UPF0035
motif, suggesting activity with CoA. Human NUDT8
is very similar to mouse Nudt8 but the sequence reported
in GenBank (NM_181843) lacks the C-terminal 70
amino acids due, apparently, to loss of exon 4. However,
there are numerous EST clones with exon 4 present, so al-
ternative splice forms may exist. Both mouse and human
NUDT8 have potential mitochondrial- and membrane-
targeting signals and the related Drosophila CG11095
protein has been experimentally verified as mitochondr-
ial but with some evidence of additional nuclear localisa-
tion [S. AbdelRaheim and A. G. McLennan, unpublished
data]. A mitochondrial location for a CoA hydrolase
would not be surprising but both the activity and location
of mammalian NUDT8 need to be confirmed.
NUDT19 (RP2) is yet another potential, but uncharac-
terised, CoA hydrolase in which the beginning of the
Nudix motif just downstream of the UPF0035 motif is in-
terrupted by a 45-amino-acid sequence that itself has
some similarities to the UPF0035 sequence. It has a con-
served C-terminal PTS1 as well as a strongly predicted
mitochondrial-targeting sequence and is coregulated with
known mitochondrial genes in mice [196], so it may have
a dual location. RP2 was originally reported as a major
testosterone-inducible protein in kidney and liver of Mus
musculus. RP2 mRNAs were also detected but unin-
ducible in several other tissues [197, 198]. Since andro-
gen inducibility was absent in two other mouse species
[199, 200], it is not clear how widespread this is and,
therefore, whether human NUDT19 is androgen-regu-
lated.

In eukaryotes, major sources of ADP-ribose are (i)
poly(ADP-ribose) degradation by nuclear and mitochon-
drial glycohydrolases (though not in yeast) [201, 202], (ii)
the dephosphorylation of ADP-ribose 1''-phosphate, a
product of NAD+-dependent tRNA splicing [203], (iii)
cell surface and mitochondrial NAD glycohydrolases
(ADP-ribosyl cyclases) [204, 205] and (iv) the deacetyla-
tion of O-acetyl-ADP-ribose, a product of the Sir2 family
of NAD+-dependent histone deacetylases [206]. Of these,
the rapid turnover of nuclear poly(ADP-ribose) synthe-
sised in response to cellular stress could lead to a very
large increase in free ADP-ribose, the intracellular con-
centration of which has been estimated at 44–73 µM in
mouse and human T cells [207] but at only 0.5 µM in anu-
cleate human erythrocytes [208]. Higher eukaryotes have
a highly specific ADP-ribose hydrolase, NUDT9, that
may be responsible for ADP-ribose elimination. The
NUDT9 gene gives rise to two transcripts, NUDT9a and
NUDT9b, the former of which encodes a 39-kDa
monomeric, mitochondrial ADP-ribose hydrolase with a
marked specificity for ADP-ribose and IDP-ribose [196,
209, 210]. Even O-acetyl-ADP-ribose is a poor substrate
[206]. This enzyme corresponds to the low-Km ADPRib-
ase-m from rat liver [147]. The specific, low-Km, cyto-
plasmic ADPRibase-I [147, 149] may be the product of
the minor NUDT9b transcript, which lacks the mitochon-
drial signal, or it may arise from processing of NUDT9a
[210]. Although the Km of NUDT9 for ADP-ribose has
been reported as 100 µM [210, 211], 180 µM [209] and 33
µM [206], we have re-examined this under conditions
identical to those used to determine the kinetic parameters
for ADPRibase-I and ADPRibase-m and now find a value
of 0.3-0.5 µM, identical to that of human placental ADP-
ribase I [A. Carloto, M. J. Costas, J. C. Cameselle, A. G.
McLennan and J. M. Ribeiro, unpublished data]. The rea-
son for the discrepancy is not clear but it does confirm the
identity between NUDT9 and the low-Km ADPRibases.
NUDT9 has been shown by yeast two-hybrid analysis and
pull-down assays to interact with C17orf25, a predicted
mitochondrial protein with two glyoxalase domains
[212]. This interaction may involve the N-terminal do-
main of NUDT9 that is not required for enzyme activity
[210]. Glyoxalases catalyse the detoxification of methyl-
glyoxal, a toxic 2-oxoaldehyde derived mainly from gly-
colytic triosephosphates that glycates proteins, nucleic
acids and nucleotides and causes oxidative stress and
apoptosis [213]. Depletion of NAD+ by stress-activated
poly(ADP-ribose) polymerase (PARP) should lead to the
accumulation of triosephosphates and, hence, methylgly-
oxal, concomitant with the increase in free ADP-ribose.
Therefore, NUDT9 and C17orf215 may form a complex
designed to prevent the formation of advanced glycation
end products in mitochondria following cellular stress.
Recently, an important signalling function for intracellular
ADP-ribose has been observed. The TRPM2 (LTRPC2,
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NUDT9L1) cation channel found in monocytes, brain
and other tissues responds to oxidative and nitrosative
stress with a sustained rise in intracellular Ca2+ leading to
cell death. It has an intracellular C-terminal domain
(NUDT9H) related to NUDT9 but with an altered Nudix
core (RILRQE) that substantially reduces its hydrolytic
activity. This channel is gated specifically by ADP-ribose
[211, 214–216]. Hydrolysis of ADP-ribose is not required
for gating [217] and mutating the Nudix motif of
NUDT9H to make it more similar to NUDT9 abolishes
gating, indicating that prolonged binding is required
[218]. Slow hydrolysis then closes the channel. Activa-
tion of TRPM2 may involve stress-induced production
and release of ADP-ribose from mitochondria, as overex-
pression of mitochondrial NUDT9 suppresses H2O2- and
MNNG-induced TRPM2 gating [217]. Experiments with
PARP inhibitors suggest that PARP-related NAD glyco-
hydrolase activities could give rise to this ADP-ribose
[217, 219, 220]. ADP-ribose also inhibits ATP-sensitive
K+ channels in myocytes [221] and may have further reg-
ulatory roles through its interaction with macro domains,
structural modules found in a wide variety of proteins that
bind ADP-ribose and its derivatives with high affinity
[203, 222, 223].
The 52-kDa human NUDT12 protein is 59% identical to
E. coli YjaD over a 60-amino-acid region encompassing
the Nudix motif and, like Yjad, hydrolyses NADH and
NADPH with 20-fold greater efficiency than NAD+

[224]. Like yeast Npy1, it has a C-terminal PTS1, and
GFP-NUDT12 fusions were found to locate to peroxi-
somes and larger, unidentified structures. Deletion of the
PTS1 specifically abolished the peroxisomal localisation
[224]. The Nudix motif is close to the C terminus and the
reason for and function of the large N-terminal domain
that contains a single ankyrin repeat sequence is un-
known. The related Nudt13 protein (mouse) is a mito-
chondrial enzyme that also preferentially hydrolyses
NAD(P)H of the substrates tested, although unusual div-
alent ion conditions were required to show this (2 mM
Mn2+ or 50 mM Mg2+) suggesting that other substrates
may exist [S. AbdelRaheim and A. G. McLennan, unpub-
lished data]. In Nudt13, the PROSITE PS01295 motif is
located upstream of the Nudix motif. This motif is found
in 4-diphosphocytidyl-2C-methyl-D-erythritol synthase
(e.g. E. coli IspD), a key enzyme of the non-mevalonate
isoprenoid pathway, and is involved in substrate binding
[225]. Structurally, the product of this enzyme, CDP-
methylerythritol, is a typical Nudix substrate. Although
this pathway is not found in mammalian cells, the IspD
motif is found in other mammalian proteins and could be
involved in binding the substrate(s) of Nudt13. NUDT13
transcripts lacking the exon encoding the Nudix and IspD
motifs exist in several animal species, suggesting that the
N-terminal domain of this protein may have a function on
its own. As with yeast Pcd1p and Npy1p, the roles of

NUDT7, 8, 12, 13 and 19 may be the regulation of natural
and/or the elimination of oxidized forms of NAD(P)H
and CoA cofactors from peroxisomes, mitochondria and,
possibly, the cytoplasm as well. 
NUDT14 is an NDP-sugar hydrolase with a preference in
vitro for UDP-glucose and ADP-ribose. A Lys replaces
the usual Arg in the core of the Nudix motif. Given that
the Km for UDP-glucose of 0.6 mM is within the physio-
logical range for this metabolite, while the Km for ADP-
ribose (1.7 mM) is far higher than the usual micromolar
concentrations of this compound, NUDT14 has been pro-
posed to be linked to the control of glycogen metabolism,
like NudF in E. coli, and may also regulate the supply of
UDP-glucose for glycoprotein and glycolipid synthesis
[89]. It has been reported to interact with the N-terminal
domains of the A-Raf and C-Raf protein kinases [226],
suggesting that it may modulate Raf/Ras-mediated re-
sponses to extracellular signals in a nucleotide-dependent
manner. The C. elegans 125-kDa Mdf-1/Mad-1 protein
has a central region similar to NUDT14 but with the Arg
in REx2EE replaced by another Glu, a change that is
likely to reduce the catalytic power of the motif. Mdf-1 is
an essential component of the mitotic spindle checkpoint
[227] but the Nudix domain is not found in Mdf-1 homo-
logues, so its role in C. elegans is unclear. Curiously, the
D. melanogaster CG31063 protein has a duplicated
Nudix domain similar to that of C. elegans Mdf-1 but has
no microtubule-binding HOOK domain. The NUDT14
family is clearly one that requires further investigation.
hDcp2 (NUDT20) and NUDT16 are two RNA-decapping
enzymes. The 48-kDa hDcp2 is similar to yeast Dcp2p
but with a much shorter C-terminal domain that lacks the
sequences associated with transcriptional activation in
Dcp2p. Like Dcp2p, it prefers Mn2+ and can only decap
intact mRNA; free cap structures such as m7Gp3G are not
substrates and methylated substrates are also preferred
[116, 228, 229]. Since uncapped RNA can competitively
inhibit decapping of capped mRNA, RNA binding seems
to be an essential prerequisite for cap recognition. Exper-
iments with truncated forms of hDcp2 suggest that the C-
terminal end of the Nudix fold plus the adjacent Box B
motif are necessary for RNA binding [229]. The interac-
tion and colocalisation of hDcp2 with proteins involved
in 5'Æ3' mRNA decay and nonsense-mediated decay
(NMD) and the inhibition of NMD by siRNA-mediated
down-regulation of hDcp2 show the involvement of this
Nudix hydrolase in both these processes [230, 231].
NUDT16 is the human orthologue of the Xenopus laevis
nucleolar X29 protein that binds and decaps the U8
snoRNA, releasing m7GDP. The hypermethylated m227G
cap present on U8 in vivo is also removed and other small
RNAs may also be substrates [232]. Thus, NUDT16 may
be involved in regulating ribosome biogenesis by altering
the stability of U8 and other guide RNAs. It has also been
shown to interact with a nuclear protein phosphatase,
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possibly in a complex with snRNP components [233].
NUDT16 is 58% identical to syndesmos (NUDT16L1), a
myristylated protein that binds specifically to the cyto-
plasmic domain of the focal adhesion receptor syndecan-
4 to promote actin stress fibre formation and cell spread-
ing [234, 235]. Syndesmos lacks all three glutamates in
the core of the Nudix motif and so may have very limited,
if any, hydrolytic activity; however, the RNA- or cap-
binding properties of NUDT16 may be preserved in syn-
desmos. Recently, RNA and RNA-binding proteins have
been shown to be involved in the early stages of cell
spreading and to colocalize with known focal adhesion
markers [236] including paxillin, which interacts with
syndesmos [235], and so the ability to bind capped RNA
may be important for the function of syndesmos. Mouse
has an additional gene, Nudt16L2, which is adjacent to
Nudt16 on Chr9 and closer in sequence to Nudt16 than to
Nudt16L1. Its expression is confined largely to testis.
Poxviruses encode two related Nudix hydrolases in their
genomes with similarities to Dcp2 proteins, while several
other double-stranded DNA animal viruses have one. The
Vaccinia D10 Nudix gene was shown to inhibit cap-de-
pendent (but not cap-independent) translation when over-
expressed in mammalian cells, suggesting a role in cap
metabolism [237]. When the African Swine Fever Virus
g5R protein, which has strong sequence similarity to S.
pombe Dcp2p in the region of the Nudix motif, was as-
sayed in vitro, little activity with methylated cap ana-
logues was found. Some activity with non-methylated cap
analogues such as Gp4G as well as (d)GTP, p4A and p5A
was found but the best substrate was PP-InsP5 which, al-
though hydrolysed slowly, had a Km of 1.2 µM [238]. PP-
InsP5 was also shown to be depleted in cells during virus
infection, and so a role for the ER-localised g5R protein
in membrane trafficking during virus assembly was pro-
posed. However, given that Nudix decapping enzymes re-
quire an intact RNA, a role for g5R and other viral Nudix
hydrolases in mRNA cap inactivation cannot yet be dis-
counted. The possibility that DIPs could be involved in
modulating decapping would be intriguing.
A further Nudix protein involved in RNA metabolism is
NUDT21 (CPSF5), the 25-kDa subunit of cleavage factor
(CF) Im. CF Im is a nuclear heterotrimer that cleaves pre-
mRNAs at the 3' end prior to polyadenylation. The 25-
kDa subunit binds to RNA and interacts with poly(A)
polymerase and nuclear poly(A)-binding protein [239].
As in E. coli NudD and human NUDT9H, the core Nudix
motif sequence in CF Im25 (RLMTEI) lacks two of
the three usual Glu residues but the protein could still
bind and hydrolyse a substrate. What this substrate and
its role might be remain to be determined. Finally, noth-
ing is yet known about the three remaining human
Nudix hydrolases, NUDT17 (NP_001012776), NUDT18
(NP_079091) and NUDT22 (NP_115720), although the
Xenopus laevis NUDT22 orthologue, P17F11, is believed

to play an important role in specification of the head or-
ganiser and neural induction during development [240].

Conclusions

The above survey of Nudix hydrolases confirms that their
functions include the originally proposed housecleaning
roles of eliminating toxic metabolites and controlling the
availability of pathway intermediates [1]. In particular,
combating the consequences of oxidative stress appears
to be a recurring theme in the activity and regulation of
several hydrolases. However, activities such as RNA pro-
cessing, Ca2+ channel gating, activation of alcohol dehy-
drogenase and regulation of ERK signalling show that the
Nudix fold and motif have been adapted for the binding
and hydrolysis of a wide range of nucleoside and other
pyrophosphates for a much greater diversity of purposes
and so an overall role for the Nudix family cannot easily
be defined. Certainly, housecleaning is not exclusive to
the Nudix family: ITPases of the Maf/HAM1 family can
hydrolyse potentially mutagenic dITP [241], cap-scav-
enging enzymes of the HIT family remove residual cap
structures [242], homotrimeric dUTPases prevent incor-
poration of dUMP into DNA and consequent glycosy-
lase-mediated strand breaks [243], while another super-
family of all-a NTP pyrophosphohydrolases contains
dimeric dUTPases and MazG proteins, the latter possibly
including 2-OH-(d)ATP among their substrates [244].
Thus, the Nudix hydrolases are just one of many families
that have evolved a chemistry suited to the hydrolysis of
phosphate esters, with an architecture that accepts pri-
marily, though not exclusively, sugar pyrophosphates, and
with roles that are many and varied.
Nevertheless, if a core function can be defined, it is perti-
nent to ask what activities are expressed by organisms that
possess only a single Nudix gene, as this may indicate the
least dispensable and perhaps most primordial role. The
only experimentally verified solitary bacterial Nudix hy-
drolase is the ApnA hydrolase from R. prowazekii [52].
Related sequences are found in the endosymbionts Wol-
bachia pipientis, Candidatus blochmannia floridanus and
Chlamydia spp., suggesting that intracellular survival may
depend on such an activity. However, the single hydrolase
in Buchnera aphidicola is much more similar to E. coli
MutT, while Wigglesworthia glossinidia has none and the
insect-borne phytopathogen Phytoplasma asteris (Onion
yellows strain) encodes an enzyme with the GE and NGD
motifs characteristic of a UDP-sugar hydrolase [19]. Thus,
while endocellular life may benefit from the fine control
of ApnA, the Nudix complement of a small genome is
clearly tailored to the specific needs of the organism. The
free-living marine bacterium Prochlorococcus marinus
ssp. pastoris has a probable ADP-ribose hydrolase and
such an activity predominates among archaea with single

Cell. Mol. Life Sci. Vol. 63, 2006 Review Article 135



Nudix genes. The thermophilic M. jannaschii has a veri-
fied, highly specific ADP-ribose hydrolase [73], and re-
lated sequences are present in the hyperthermophiles
Methanopyrus kandleri, Archaeoglobus fulgidus and Py-
rococcus sp. and also the mesophilic Methanococcus
maripaludis. It is tempting to speculate that this specific
need has arisen because, like most eukaryotes, archaea
have a PARP and, therefore, the potential to generate sig-
nificant free ADP-ribose [245]. 
The promiscuous behaviour of many Nudix hydrolases
with respect to substrate specificity has made it very diffi-
cult to determine the true functions of individual family
members. Much has been inferred from in vitro assays that
are by their very nature limited by the availability of sub-
strates to test. The existence of hydrolases that appear to be
active towards oxidised (d)NTPs in addition to other, unre-
lated substrates and which can complement mutT– strains
(e.g. NUDT5, Pcd1p) is especially curious. Even NUDT6
and NUDT3, which has no 8-oxo-dGTPase activity, can
partially complement MutT deficiency [183, 187]. How-
ever, the suppression of mutation in mutT– E. coli by over-
expression of other hydrolases needs to be viewed with
caution as in some cases this might simply enhance the re-
moval of competitor nucleotides that inhibit the activity of
other, endogenous antimutator hydrolases. Nevertheless,
hydrolysis of oxidised (d)NTPs might represent a residual
ability that has been retained by chance or design after du-
plication and subfunctionalisation of ancestral, low-speci-
ficity hydrolases. Where subcellular compartmentalisation
exists, the relevant substrates and roles could even differ
depending on the location, e.g. S. cerevisiae Pcd1p. In fu-
ture, the determination of the relevant substrates and true
functions of individual Nudix hydrolases will depend
largely on genetic studies combined with metabolome
analysis, particularly when the discrimination and sensitiv-
ity of the latter methodology is improved. In addition,
structural determination combined with the modelling of
compounds into binding sites should help to predict poten-
tial substrates that may not be easily available to test.
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