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Abstract. Vertebrate and invertebrate nervous tissue is
derived from early embryonic ectoderm, which also gives
rise to epidermal derivatives such as skin. Proneural basic
helix-loop-helix (bHLH) transcription factors are the key
players in the formation of peripheral nervous system
(PNS) and central nervous system (CNS) from naïve
ectoderm to differentiated postmitotic neurons. The com-
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parative approach and the use of a wide range of animal
models have led to increasingly comprehensive investi-
gations of this issue in the last decade. This review will
focus on current studies of neural development in verte-
brate and invertebrate PNS and on understanding how the
bHLH domain structure encodes multiple functions 
required for neural specification.
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Introduction

Epitheliogenesis
Both the adult skin and nervous system develop from the
ectoderm on the surface of the post-gastrulation embryo.
Although basic helix-loop-helix (bHLH) proteins are
more widely known for their roles in nervous system 
development, recent evidence shows they also play im-
portant roles in epidermal development. The epidermis is
constantly renewed, with a fine equilibrium between pro-
liferation and differentiation. Skin is a dynamic structure
with proliferation in the basal layer in contact with a base-
ment membrane. As cells enter terminal differentiation,
they cease proliferation, lose contact with the basement
membrane and migrate upwards. On top of spinous layers
and granular layers, terminal differentiation results in the
assembly of the protective stratum corneum. A key feature
of this protective outer layer is that it is continually shed
and replenished by underlying keratinocytes to maintain
the barrier. The stem cells necessary for maintenance 
of this cycling structure are located in the basal stratum 
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of the epidermis and in specialized compartments of 
skin appendages (reviewed in [1–3]). Skin appendages
develop from embryonic skin resulting from sequential
epithelial-mesenchymal interactions and contribute to
epidermal repair and regeneration (reviewed in [4]). 
Accumulating evidence suggests that stem cells from
each location have the potential to interconvert between
lineages [5–8]. 
Despite intensive effort, little is known about the precise
steps and regulators that lead to mature epidermal cells.
Among the transcription factors and signalling pathways
that are important in controlling stem cell fate [9–13],
recent studies have shown that a few bHLH proteins may
play a role in epithelial cell differentiation and cell lineage
induction [14, 15]. For example, Sosic and colleagues
have shown that like twist in Drosophila, Twist-1 and
Twist-2/Dermo-1-in vertebrate are induced by a cytokine
signalling pathway and regulate other genes. Twist-2/
Dermo-1-null mice or Twist-1 and -2 heterozygous alleles
show elevated expression of proinflammatory cytokines,
resulting in perinatal death from cachexia. They further
reveal that Twist represses kB-dependent transcription
by inhibiting p65 trans-activation [14]. More recently,
cDermo-1 has been shown to express in developing 
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Figure 1. Proneural proteins regulate neural commitment via Notch signalling-mediated ‘lateral inhibition’ and a regulatory cascade. (A)
In the Drosophila PNS, proneural proteins are first expressed in competent neuroectoderm. A higher expression level of proneural genes
in potential progenitor cells activates Notch/Delta-mediated lateral inhibition, resulting in the selection of progenitors. A regulatory cascade
is activated in NPCs followed by proneural protein downregulation, resulting in neuronal differentiation. Different proneural proteins
cooperate with co-factors and give rise to distinct types of neurons. External sensory neurons are derived from single AS expressing NPC.
Internal sensory neurons are derived from Ato-expressing NPC clusters, where secondary NPCs are recruited by the Atonal-induced EGF
signalling pathway. (B) Proneural bHLH proteins induce the Notch ligand Delta. The Notch intracellular domain induces the expression of
downstream targets E(spl)/Hes, which in turn repress the expression of proneural genes in neighbouring cell. This process is called ‘lateral
inhibition’. Accumulation of proneural proteins in the potential NPCs is set up by upregulation of Sens/MyT1, Hes6 and Coe2, which
inhibit E(spl)/Hes expression and upregulate proneural protein and Delta. High levels of proneural proteins in the NPCs initiate a program
resulting in neuronal differentiation and cell fate commitment.
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dermis. Overexpression in those cells induces the devel-
opmental program leading to skin appendage formation.
Results from misexpression of cDermo-1 in different
places indicate that cDermo-1 may initiate feather induc-
tion in a local skin identity manner [15]. 

Neurogenesis
The molecular mechanisms underlying vertebrate and
invertebrate neurogenesis – the process by which cells in
the ectoderm adopt a neural fate and cells within the neu-
roectoderm become neurons – are remarkably similar. In
vertebrates ectodermal cells give rise to epidermal prog-
enitors on the ventral side and neural progenitors on the
dorsal side of the gastrulating embryo. Embryonic ecto-
derm can be induced to form neural tissue in the presence
of a source of inducing signals secreted by the dorsal
mesoderm [16, 17]. Several factors, such as Noggin,
Chordin and Follistatin, which inhibit bone morphogenetic
proteins (BMPs), are required for this process of neural
induction [18]. In addition, more recent findings in chick
and mouse demonstrate that the Wnt, fibroblast growth
factor and insulin-like growth factor families also play an
essential role in neural induction [19–22]. As a result,
ectodermal cells segregate into the surface ectoderm,
neural crest and neural tube [23]. In Drosophila, short
gastrulation (sog), an orthologue of Chordin, blocks the
activity of Decapentaplegic (Dpp), a homologue of BMP4,
and defines the domain of the ectoderm that will become
the neuroectoderm [24]. 
Similarities have also been seen in the mechanisms
whereby neuroectodermal cells are selected to become
neurons. Genetic studies in Drosophila and vertebrate
models have provided evidence that a subset of the bHLH
transcription factors – the so called proneural proteins –
act cell autonomously to initiate development and dif-
ferentiation of neural lineages (reviewed in [25–27]). In
addition, the antagonistic relationship between these pro-
neural proteins and the cell-cell communication process
mediated by the Notch signalling pathway, called lateral
inhibition, plays an essential role in preventing certain
cells from becoming neurons [28–31]. It has been well
documented that the bHLH transcription factors activate
the Delta-Notch (Dl-N) signalling system by activating
Delta. Proneural gene expression in the signal-receiving
cells is repressed by activated Notch, resulting in the 
selection of the signal-sending cell as the neural or neu-
ronal precursor cell (NPC) (reviewed in [25, 32–36]).
The high level of proneural proteins in the selected
NPCs initiates a regulatory cascade to define the distinct
neural lineages. Figure 1A summarize these sequential
steps in Drosophila.

The bHLH proneural proteins 
The bHLH proteins form a particularly large and com-
plex superfamily. They have been shown to be involved in
haematopoiesis [37], neurogenesis [38], cardiac muscle
development [39], mesodermal cell determination [40],
dermal cell differentiation [41] and skeletal development
[42], among other processes. Neural bHLH proteins are
the subset of this superfamily involved in neurogenesis
(reviewed in [33]). 
The defining feature of bHLH proteins is the presence of a
basic helix-loop-helix domain. It comprises two a-helices
separated by a variable loop. The first 8–13 amino acids
of helix1 are highly basic and are required for DNA bind-
ing. Biochemical and structural studies have shown that
the HLH domain mediates protein homo- or heterodimer-
ization, while the basic region in the first helix makes
contact with DNA in a sequence-specific manner. Differ-
ent classes of neural bHLH proteins act either as positive
or as negative regulators of transcription [31, 43, 44]. 
The concept of a ‘proneural’ gene was first defined in
Drosophila and refers to genes that are responsible for
endowing naïve ectodermal cells with neural fate
[45–47]. Null mutants of these genes lose neural structure
and convert NPCs to epidermal cells. There is strong
evidence to suggest that, in vivo, proneural bHLH proteins
form heterodimers with the widely expressed bHLH E
proteins [called Daughterless (Da) in Drosophila]. These
heterodimers bind to variations on a common hexamer
CANNTG, or E-box [43, 44, 48–50], and regulate the
transcription of target genes [44, 51]. 
Two proneural bHLH protein families have been identified
so far (table 1): Achaete-Scute (AS) family and Atonal
(Ato)-related protein family. They can be further divided
into subgroups (reviewed in [33, 52]). Both families are
found in vertebrates and invertebrates. Four genes in
Drosophila, namely achaete (ac), scute (sc), lethal of scute
(lsc) and asense (ase) belong to the as family [53, 54].
Their vertebrate homologues are called achaete-scute
homologue (Ash). There are four genes which belong to
the Ato-related family in Drosophila, named atonal (ato),
target of poxn (tap), absent MD neurons and olfactory
sensilla (amos), and cousin of atonal (cato) [55–59].
Vertebrate homologues of ato are called Ath and neuro-
genin (Ngn). Two other subgroups of ato-related genes in

Table 1. Proneural proteins in Drosophila and vertebrates.

Proneural Drosophila Vertebrates
protein family

Ato Ato, Amos, Cato Math1, Math5
Tap Ngn1, Ngn2

NeuroD, Math2
Oligo

AS Ac, Sc, LSc, Ase Ash1, Ash2
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vertebrates are the NeuroD and Olig groups. They are
more distinct from other Drosophila ato family proteins,
but are characterized as ato family members owing to the
presence of family-specific residues in their bHLH
domain [33, 60]. The expression patterns of vertebrate
and invertebrate proneural proteins in embryo are sum-
marized in table 2. 

Proneural bHLH proteins in Drosophila PNS 
neurogenesis 

Function of proneural proteins
In the Drosophila PNS, different proneural genes are
initially expressed in different groups of ectodermal
cells, called proneural clusters, defined by patterning
genes. The cells in these clusters have the potential to 
develop into NPCs [61]. The expression of proneural
genes is necessary and sufficient to promote the genera-
tion of NPCs. 
Developmental analysis of loss-of-function (LOF) muta-
tions in the as complex locus revealed that the ac and sc
genes are required for the formation of external sensory
organs of the adult fly, which include mechanosensory and
chemosensory bristles [62, 63]. Gain-of-function (GOF)
analysis shows that ac and sc are also sufficient for exter-
nal sensory organ NPC specification [47, 64–67].
The proneural gene ato is involved in the selection of
precursors of chordotonal organs (internal stretch recep-
tors), the auditory organ (or Johnston’s organ), a subset of
olfactory sense organs and the founder photoreceptor
cells, or R8 [57, 68, 69]. The ato-related gene amos is the
proneural gene for a subtype of multidendritic neuron and

most olfactory sensilla [55, 70]. Since there is no tap
mutant available, its physiological function is not known.
Expression studies suggest that tap is involved in neuro-
genesis as well, and further studies will help elucidate its
role in Drosophila neural development. 

The regulatory cascade 
The expression of proneural genes in NPCs is downregu-
lated before they divide. The ability of proneural genes to
promote neural lineage development relies on the induc-
tion of downstream regulatory genes that control neuronal
differentiation. These genes are expressed in selected pre-
cursors and are therefore called neuronal precursor genes.
Some of them are neural bHLH genes, like ase [60]. It is
generally not expressed in clusters of ectodermal cells, but
instead in most or all selected progenitors. It is required
for the correct differentiation of sensory neurons [71, 72].
Genetic analysis has shown that ase mutations alter the
differentiation of sensory organs [72, 73]. Similar to ase,
the third ato family gene, cato, is also expressed in NPCs
and is involved in neuronal differentiation [56]. 
Regulation of NPC selection is both positive and negative.
On the one hand, proneural genes inhibit their own ex-
pression in adjacent cells through activation of the Notch
signalling pathway [74, 75]. This results in the expression
of repressors, such as the Enhancer of split [E(spl)]
bHLH proteins, which restrict proneural gene expression
into single cells [76, 77]. On the other hand, positive feed-
back regulation is required to increase and/or maintain
the levels of proneural gene expression in the selected
neural progenitors. Proneural proteins can either positively
auto-regulate or induce the Zn-finger protein Senseless

Table 2. Expression of proneural proteins in embryos.

Gene Expression pattern

ato P cell; chordotonal organ; central brain; external sensory organ

amos abdominal segment; antenno-maxillary complex; cellular blastoderm; sensillum precursor

ac ectoderm; midline; neuroblast; procephalon

sc ectoderm; neurectoderm; neuroblast; stomodeum

Math1 cranial ganglia; dorsal wall of the neural tube; spinal cord; midbrain; hindbrain; cerebellum; metencephalon; inner ear 
sensory epithelium; cochlear duct; vestibular component; primordium

Math5 hypothalamus; thalamus; cerebral cortex; corpus striatum; telencephalon; olfactory lobe; hindbrain; midbrain; ventricular
layer; cranial; spinal cord; dorsal root ganglion; neural retina; nuclear layer; outer nuclear layer

Ngn1 olfactory pit; midbrain ; dorsal root sensory ganglia ; subset of cranial ganglia ; otic placode; epithelium; telencephalon; spinal 
cord; neural tube; pancreas 

Ngn2 telencephalon; basal palte and dorsal of spinal cord; neural tube; ventral hindbrain; dorsal thalamus; optic vesicle; geniculate 
and petrosal ganglion; subset of dorsal root ganglion; cranial; lateral wall; pretectum; hypothalamus; cerebral cortex; retina

Mash1 olfactory pit; prosencephalon; midbrain; rhombencephalon; neural tube; forelimb bud; ventral spinal cord; nasal placode; 
ventral telencephalon; dorsal aorta; lateral wall; metencephalon; sympathetic ganglion; sympathetic and enteric neural crest; 
dorsal cerebral cortex; cerebellum; thalamus; hippocampus; ventral hypothalamus; mantle layer; corpus striatum; olfactory 
lobe; hindbrain; ventral zone; cranial; dorsal root ganglion; nasal cavity; dorsal telencephalon; autonomic nervous system; 
ear; retina; pancreas; nuclear layer 
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(Sens), which in turn represses E(spl) function [78, 79].
Recently, another Zn-finger protein, Charlatan (Chn),
was identified. It specifically activates a certain enhancer
of ac/sc, stimulating Ac/Sc expression. Absence of chn
leads to loss of embryonic peripheral neurons and causes
aberrant development of chordotonal organs, but does not
seems to affect Ato function in the eye [80]. 
Another aspect of NPC selection is regulated by anti-
neuronal bHLH/HLH genes. Two mechanisms have been
found for anti-proneural function. One is to inhibit the
formation of functional heterodimers between proneural
proteins and Da by competitive binding. This mechanism
has been shown for the HLH protein Extramacrochaetae
(Emc) and the bHLH proteins Hairy (H) and E(spl)
[81–86]. Another is to repress transcription of neural
bHLH genes by binding site-dependent transcriptional
repression, as has been shown for H and E(spl), which
bind to a CACNAG sequence called N box in the promoter
region of neural bHLH genes and recruit the transcrip-
tional repressor Groucho through the WRPW motif in
their carboxy-terminal regions [76, 84, 87–89]. More
recently, it was shown that transcriptional activation of
the C-terminal domain of Sc is required for E(spl) recruit-
ment in an enhancer context-dependent manner [90].
Beside using the anti-neural bHLH/HLH genes to regulate
timing of differentiation, other elements and signalling
pathways which control cell cycle exit, cell proliferation
and asymmetric/symmetric cell division also play impor-
tant roles in proper neural lineage development (reviewed
in [26, 91–93]). The cell autonomous proneural regulatory
network is shown in figure 1B. 

Functional diversity of Drosophila proneural genes
The two sets of proneural proteins, Ato-related and AS,
share the common characteristics of selecting NPCs by
activating the Notch signalling pathway and interacting
with Zn-finger transcription factors [79]. However, exter-
nal sensory organs are formed from single precursors that
send only inhibitory signals to their neighbours (fig. 1A),
while secondary precursors within the chordotonal precur-
sor cluster (fig. 1A) and the non-R8 photoreceptors are
recruited by EGFR signalling activated by Ato-expressing
precursors [94, 95]. LOF and GOF studies have shown
that different proneural genes are involved in the devel-
opment of different types of sense organs. This indicates
that proneural genes have a role in the specification of
neuronal identity. 
One interesting question is whether proneural bHLH
proteins alone are sufficient to specify distinct NPCs.
Jarman et al. showed that ectopic expression of Ato pro-
motes the formation of ectopic chordotonal organs as well
as ectopic bristles depending on levels of Ato expression
and the context in which it is expressed [57]. Bristle for-
mation does not depend on ectopic activation of ac/sc.

Another example comes from the observation that sc can
partially rescue the eye phenotype of ato null mutants,
inducing formation of ommatidia apparently without
first inducing R8 cells [96]. However, this study did not
exclude that R8 photoreceptors are formed initially but
undergo apoptosis later. It would be interesting to test
this more carefully. It is important to note that no evi-
dence exists to suggest that ac or sc can induce cordo-
tonal organs. However, to fully exclude the possibility
that both sets of proneural proteins have a certain capa-
bility to promote NPCs of either type of sensory organ in
the correct context, reciprocal rescue experiments are
needed. The overexpression of a homeodomain tran-
scription factor, Cut, which is normally induced by AS
and expresses only in the external sensory organ NPCs,
is able to transform chordotonal organs to external 
sensory organs. In contrast, mutations in cut transform
external sensory organs into chordotonal organs [97, 98].
Genetic data indicate that Ac/Sc induce cut expression,
whereas Ato represses the activation of cut [97, 99]. The
differential abilities in regulating cut may in part under-
lay the functional diversity of these two types of proneural
genes.
The Cut data suggest that selecting neural precursors per
se is genetically separable from specifying lineage iden-
tity, at least downstream of proneural activity. The ability
of Ato to repress cut means that the proneural genes
themselves control lineage specification. This raises the
question whether different structural properties of pro-
neural genes mediate the different aspects of their activi-
ties. Another interesting question is the extent to which
lineage specification requires cooperation with other fac-
tors in the correct context. However, one thing is certain:
in vivo, distinct proneural bHLH proteins are required to
coordinate with context specific co-factors to promote
the formation of distinct cell fates. 

Proneural bHLH proteins in vertebrate PNS 
neurogenesis 

Function of proneural proteins
After neural induction, vertebrate neurogenesis, does not
occur homogeneously and simultaneously throughout the
neural plate. Its pattern responds to precise, positionally
distinct developmental cues within the neural plate,
rather similar to Drosophila proneural clusters. Within
each domain, neuronal precursors are defined by the
lateral inhibition process of Delta-Notch signalling.
Some transcription factors, including the AS- and Ato-
related proneural bHLH proteins, the Zn-finger protein
Gli/Zic, Winged helix (XBF) and Iroquois (Iro), act
complementarily to define proneuronal clusters and are
required for neuronal differentiation within the neural
plate [61, 100, 101]. 
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In general, unlike Drosophila, vertebrate early-acting
bHLH proteins appear to control neuronal vs. glial cell
fate rather than neural vs. epidermal cell fate decisions.
However, a case was found in the chick caudal neural
plate where it appears that some neural plate cells are
committed to epidermis [102]. It is worth noting that an
AS bHLH protein family gene is expressed in the most
caudal part of the neural plate both in frog (Xash3) and in
chick (Cash4) [103–105]. 
Homologues of the proneural bHLH proteins acting in
Drosophila neurogenesis have been found in vertebrates
(table 1). More than one AS homologue (Ash) exists in rat,
mouse, chicken, Xenopus and zebrafish [104, 106–108].
Similarly, homologues of the Ato-related protein family
also exist in all vertebrates. They can be subdivided into
Aths (vertebrate homologue of Ato), Ngns/Ngnr (verte-
brate homologue of Tap) and the other subgroups NeuroD
and Olig [60]. 
If one defines proneural genes as those sensitive to 
lateral inhibition and expressed in neural or neuronal
proliferative progenitors, then clearly several vertebrate
bHLH proteins can be defined as proneural proteins, in-
cluding X-Ngnr1 (Ato family) and Xash (AS family) in
Xenopus, Mash1 (AS family), Ngn1, Ngn2 and Math1
(Ato family) in mouse [106, 109–114]. Others, such as
NeuroD in Xenopus and Math2 in mouse are found in
postmitotic cells and are regulated by proneural proteins,
and therefore can be considered as neuronal differentia-
tion regulators [115, 116]. In addition to the bHLH do-
main, in the NeuroD subgroup (NeuroD, Math2/Nex1
and mNDRF/KW8/NeuroD2) [117, 118], a 40-amino
acid sequence was found that contains a leucine-proline-
rich region and a junctional sequence (Met-His-Gly/
Asp/Asn) important for internal E-box residue specifica-
tion [119].
Genetic analysis of vertebrate proneural bHLH genes has
shown that the general rules of how these genes regulate
neurogenesis are similar to their Drosophila counterparts.
LOF analysis suggests that progenitor populations are
lost and Notch signalling is not activated in some null
mutants. For example, Mash1null mutants show severe
defects in neurogenesis in the olfactory sensory epithe-
lium [38, 120]. Ngn1 or Ngn2 single mutant mice show
complementary sets of cranial sensory ganglia defects
[111, 121–123]. It is likely that in these cases, Ngn1 and
Ngn2 act to specify neuronal (vs. glial) fate as opposed to
early neural progenitors. 
Vertebrate neural crest contains multipotent progenitors,
and bHLH proteins appear to play a role in the cell fate
specification of these progenitors. Sensory neurons and
autonomic neurons are two major neuronal classes of
vertebrate PNS neurons [124]. Ato-related proteins, such
as Ngns, are required for sensory neuron specification,
while AS proteins, such as Mash1, are required for auto-
nomic neuron specification [111, 122, 125]. 

In the vertebrate retina, the seven basic neural and glial
cell types form through position-dependence and cell-cell
interaction. A large body of studies has revealed the role
of proneural bHLH proteins in retinal development. It is
known that retinal ganglion cells (RGCs) require Ath5, an
orthologue of ato [126, 127], amacrine cells and photore-
ceptors require NeuroD [128], bipolar cells require Ash1
and Ath3 [129, 130], and bipolar cells and photoreceptors
require Ngn2 [131]. Ath5 begins to express in the ven-
tronasal optic cup and spreads dorsally and temporally. It
regulates the expression of the Brn3 subfamily of POU
homeodomain transcription factors for RGC development
and survival [132, 133]. However, the ability of Ath5 to
activate target genes becomes inhibited in later progenitors
[134]. Mash1 is transiently expressed by differentiating
bipolar cells, and Mash1-null mutations show a decrease
in bipolar cell number while increasing Muller glial cells
[135]. Math3 is also expressed in bipolar cells, but Math3-
null mutations do not affect bipolar cell development
[135]. Double mutation studies indicate that Mash1 and
Math3 cooperatively regulate neuronal vs. glial cell fate
determination in the retina [135]. An excellent overview
of bHLH factors involed in retinal cell fate determination
is given in a recent review [136].
Beside the essential role of proneural bHLH proteins in
neuronal differentiation, recent studies have shown that
they also act through independent mechanisms to inhibit
gliogenesis [35, 36, 135]. Studies on both Mash1/Math3
double mutant [135] and Mash1/Ngn2 double mutant
[35] deficient mice show increased gliogenesis in addition
to reduced neurogenesis. Sun and colleagues proposed
that Ngn1 inhibits gliogenesis by binding to the CBP/
Smad1 or p300/Smad1 co-activators and competing them
away from promoters of glial genes [36]. A recent study
has further demonstrated that Mash1 is required for spec-
ification of both neurons and oligodendrocytes [137].
These findings suggest that proneural bHLH proteins
integrate different contextual information and play mul-
tiple roles in nervous system development. 

The regulatory cascade
Although the roles of proneural bHLH proteins in regu-
lating neurogenesis are well established, their downstream
targets genes remain poorly defined. A screen for down-
stream effectors of Ngn2 in the cortex using a subtractive
hybridization method identified 16 misregulated genes in
an Nng2 mutant [138]. These genes include transcription
factors as well as genes involved in migration and axonal
pathfinding, such as Sema3C and EphA5. Further analysis
of these genes should provide a better understanding of
the molecular mechanisms underlying neurogenesis.
Xseb4R, an RNA-binding protein, has been isolated in
Xenopus [139]. LOF and GOF studies suggest that
Xseb4R strongly promotes neural differentiation and is
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involved in retinogenesis. It is responsive to proneural
transcription cascade-upregulated by the proneural gene
XNgnr1 and differentiation gene XNeuroD and is inhibited
by Delta-Notch signalling [140]. A study of commissural
neurons shows that a Bar-class homeobox gene, Mbh1, is
necessary and sufficient for specification of commissural
neurons, as a direct downstream target of Math1. Further
Mbh1 enhancer analysis indicates that Math1 directly
activates the expression of Mbh1 by binding to the E-box
in its promoter region, probably in a collaboration with
other factors [141]. 
GOF experiments in Xenopus [142] and LOF analysis in
mouse [110, 111, 122] have shown that the bHLH Neu-
roD family genes are induced by proneural proteins and
act downstream of vertebrate proneural genes in the
later stage, similar to ase and cato in Drosophila. The
activation of NeuroD subfamily genes is directly pro-
moted by proneural proteins. Most structures of the PNS
transiently express high levels of neuroD RNA during
embryogenesis, as well as in differentiating adult neu-
rons. Ectopic expression of NeuroD family genes pro-
motes neuronal differentiation [116, 143]. LOF analysis
shows that NeuroD family proteins are required for the
proliferation, differentiation and survival of many types
of neurons [144, 145]. This is clearly different from the
loss of progenitor cells in mice which lack Mash1 or
Ngn. Therefore, proneural proteins act through a regula-
tory cascade of bHLH proteins to specify subsets of
neuronal lineages.
Interactions among proneural genes and Notch signalling
are remarkably conserved (fig. 1B). Neural progenitors
activate Notch signalling to inhibit proneural protein
expression in neighbouring cells, while simultaneously
forming a positive regulatory loop within the NPC. This
regulatory loop is maintained by inducing expression of
other factors, such as Hes6, Coe2 and the Zn-finger pro-
tein gene MyT1. These progenitors exit the cell cycle and
activate neuronal bHLH genes, such as Math2/NeuroD2/
Ebf3, for initiating neuronal differentiation. In parallel,
they inhibit glial differentiation by blocking gliogenic
signalling. Two groups of neural bHLH transcription
repressor genes, inhibitor of differentiation (Id) [146, 147],
which is a homologue of emc, and Hes/Her/Esr, which
resemble Drosophila hairy and E(spl), have also been
identified in vertebrates [25, 148]. They are under the
control of Notch signalling and appear to exert their in-
hibition using the same mechanisms as their Drosophila
counterparts. 

Functional diversity of proneural genes 
Most animals have more than one paralogue of each
bHLH gene. Most if not all of these express in comple-
mentary subtype progenitors and play distinct roles. Two
mouse ato family genes, Math1 and Math5 are such exam-

ples. Math1 mutant mice lack cerebellar granule cells in
the central nervous system (CNS) and lose inner ear hair
cells, which are essential for hearing and balance [112,
149]. GOF and LOF studies also indicate a role for Math1
in the specification of interneuron identity [150, 151].
LOF mutation of Ath5 in mouse and zebrafish results in
the loss of most RGCs [126, 152]. Conversely, in Xenopus
and chicken, overexpression of Math5 or Cath5 promotes
differentiation of RGCs [127, 153]. 
Despite evidence showing that aspects of proneural
function can be interchangeable, it is clear that different
proneural genes play different roles in vivo. For instance,
the phenotype of Ngn2-null mutant embryos is transient
and is recovered after an delay in an Ngn1-dependent
manner [125]. Ngn2 is required for large-diameter sen-
sory neuron (trkc+/trkB+) development, whereas Ngn1
is required for small-diameter sensory neuron (trkA+)
development. It is possible that both Ngn1 and Ngn2 can
potentially promote the differentiation of both types of
neurons, but they are normally expressed at different
times and therefore at least encode the proper timing of
neural differentiation and presumably act with different
co-factors. 
It is known that Ngn2 and Mash1 express complementarily
in most regions of the nervous system, and have distinct
roles. In multipotent cortical progenitors the proneural
proteins Mash1, Ngn1 and Ngn2 play key roles. Ngns are
expressed in the dorsal telencephalon, which gives rise to
glutamatergic neurons, wherease Mash1 is predominantly
expressed in the ventral telencephlon, which gives rise to
GABAergic and cholinergic neurons [154, 155]. When
the coding sequence of Mash1 is knocked into the Ngn2
locus, the cortical progenitors in the dorsal telencephalon
are misdirected in their fate and become GABAergic
neurons [123, 156]. When Ngn2 replaces Mash1, ventral
telencephalon neurons differentiate normally and show
no change in phenotype [157]. These data indicate that
the ability of proneural bHLH factors to play a role in
neural subtype specification relies strongly on the cellular
context. 
Increasing evidence suggests that different bHLH pro-
teins, partially due to their spatial and temporal regulation,
coordinate with different co-factors, and therefore inte-
grate all regulatory information and specify neuronal
differentiation. For example, bHLH proteins cooperate
with ETS proteins, Paired homeodomain proteins and
Lim homeodomain proteins [26, 92, 136, 158] as well as
chromatin remodelling proteins [159]. A recent study
showed that bHLH proteins Ngnr1 and NeuroD physically
associate with chromatin remodelling complex SWI/SNF
via its catalytic subunit Brg1. The transactivation of pro-
neural bHLH proteins in neuronal differentiation may
therefore be mediated by Brg1. Although the sequences
of bHLH proteins are highly conserved and functions 
are occasionally interchangeable, their distinct functions
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still cannot be solely explained by their differential ex-
pression and/or co-factors. The structural diversity of
neural bHLH proteins itself plays an important role in
adapting to developmentally and evolutionarily contextual
specificities. 

The bHLH domain: structural diversity encodes 
functional specificity

A large body of analysis in both vertebrates and inverte-
brates shows that proneural gene activity is highly depen-
dent on cellular context. Perhaps a key function of
proneural bHLH proteins is to allow neural cells to cor-
rectly interpret specific positional cues provided by local
factors. An interesting question is how this integrative
specificity is achieved. Increasing evidence supports the
possibility that direct protein-protein interactions between
proneural protein and co-factors are essential for the
specific functions of proneural proteins. A recent study
gives a direct example of a specific binding pocket for the
ETS protein Pointed needed to mediate specific functions
of Ato [160]. The Sc C-terminal containing a transcrip-
tional activation domain has recently been found to be 
required for E(spl) recruitment [90]. It is noteworthy that
E(spl) use different domains to contact Sc (the N-terminal
region) [90] vs. Sens (the middle Orange region) [161],
which probably allows it to repress a Sc/Sens complex
more effectively. These findings suggest that protein-
protein interactions may play a common role in both
positive and negative regulation. Studies have shown that
direct interactions between regionally expressed transcrip-
tion factors and proneural proteins regulate the transcrip-
tion of target genes in a region-specific manner [162, 163].
In one case, a bridging factor brings the Drosophila GATA
factor Pannier to the AS-Da heterodimer, which binds to
the E-box in the promoter region [162]. In another case,
certain binding site combinations serve an architectural
function to mediate or enable transcriptional synergy,
which drives target gene activation in specific cells [163].
DNA-protein level regulation of proneural downstream
target genes can be found as well [164–167]. A study
from last year has shown that although neural bHLH
proteins from different families recognize the common
hexamer CANNTG, they recognize different bases in the
two central positions, as well as in the adjacent positions
[164]. Therefore, different proneural proteins interact
with distinct co-factors regulating transcription of distinct
downstream target genes via both protein-protein and
protein-DNA interactions. 
It is reasonable to assume that the functional diversity of
neural bHLH proteins is mediated by their structural 
diversity. Indeed, some bHLH proteins lack certain sub-
domains and others contain additional domains [31, 76,
90]. Domain exchange experiments have shown that 

although the sequence of the bHLH domain is highly
conserved between different proneural families and
across different species, a few distinct amino acids alter
functional specificity. For example, placing three amino
acids from the basic region of MyoD into E12 creates
myogenic specificity [119]. Swapping the basic region of
Ato to Sc allows Sc to induces chordotonal organs [168],
suggesting that Ato-specific function relies on a motif in
the basic region, perhaps mediating protein-protein inter-
actions. In vertebrates, the comparison between Xash1 and
XNgnr1 proneural activities demonstrates that although
overexpression of both these genes induces neuronal
differentiation, they do induce distinct downstream targets,
and these functional specificities rely on the first helix
[169]. A single amino acid mutation which changes the
three-dimensional structure of Mash1 by introducing an
additional helical turn endows it with myogenic activity
[170]. Another study compared the function of different
domains of Mash1 and Math1 and showed that different
motifs in different domains are required for distinct
functions, probably reflecting the importance of unique
protein-protein interactions [171]. A recent study compar-
ing the mechanisms used for regulating the selection of
NPCs in vertebrates and Drosophila by the proneural
proteins Ngn1 and Ato has shown that divergence in
proneural activity is encoded by three amino acids in the
basic region. This motif in Ato and Ngn1 induces and
interacts with the Zn-finger proteins Sens and MyT1, 
respectively. In addition, a five-amino acid motif in the
second helix domain of Ngn1 is sufficient to induce 
neurogenesis in vertebrates [172].
It is worth noting that the class-specific residues in the
bHLH domain are located on the outer surface of the pro-
tein dimer, and that all the specific functions discussed
above are encoded by these residues (fig. 2). Taken to-
gether these data suggest that physical interactions with
context-specific factors may play an important role in
proneual bHLH protein function. Such co-factors could
affect the interaction of proneural proteins with their
DNA binding sites and regulate their transcriptional ac-
tivity or the choice of target genes. All these data support
the idea that the structural specificity of proneural genes
integrates spatial and temporal information to specify
neural lineage development. Therefore, identifying new
co-factors, possible binding sites and fishing out distinct
downstream targets are now the crucial requirements for
better understanding the mechanisms involved in regulat-
ing neural development by bHLH proteins.
From a developmental point of view, the diversity of
proneural proteins could allow them to regulate different
processes to give rise to different cell lineages in a 
positionally and temporally specific manner. From an
evolutionary point of view, this variety could allow 
organisms to diversify developmental processes using the
same conserved machinery. 
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Conclusion

Growing evidence has revealed that proneural genes play
crucial roles in specifying different aspects of neural
development in vertebrates and Drosophila. Proneural
proteins integrate temporal and positional information by
interacting with co-factors and regulating the development
of distinct neural lineages. The structure of proneural
proteins, especially their bHLH domain, mediates their
vital role in neurogenesis. The structural divergence of
proneural proteins seems to underlie the developmental
and evolutionary dedication of different proneural factors
to different neural lineages. 
Compared with the knowledge we have for the proneural
genes themselves, little is known about their target genes,
in particular the ones required for cell fate specification.
It would be also interesting to find specific co-factors for
distinct lineages and investigate how proneural bHLH
proteins interact with these distinct pathways. 
Finally, bHLH families arose from ancestral sequences
by duplication in the protostomian and deuterostomian
lineages. Currently, there are two alternative models to
explain the evolutionary divergence of bHLH families. A
classic model proposes that duplications gave rise to fully
redundant copies, allowing accumulation of random mu-

tations on which natural selection could act. Out of bil-
lions of pseudogenes, a benefitial mutation occurs that
gives rise to a novel function in a process called neofunc-
tionalization. An alternative model suggests that gene du-
plications derived from partial regulatory sequence dele-
tions result in novel expression patterns of an otherwise
identical copy. In the long run, each copy evolves new
functions in a process called duplication-degeneration-
complementation or subfunctionalization [173]. These
two models are not necessarily mutually exclusive. Both
scenarios may have ocurred, giving rise to the diverse ar-
ray of modern, highly specialized bHLH genes. 
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