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Abstract. The congenital muscular dystrophies are a
clinically and genetically heterogeneous group of neuro-
muscular disorders. Each form has a characteristic phe-
notype, but there is overlap between some entities and
their classification is based on a combination of clinical
features and the primary or secondary protein defect. 
Recent studies have identified the genetic basis of a num-
ber of congenital muscular dystrophies (11 genes in total)
and have recognised a novel pathological mechanism that
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highlights the importance of the correct posttranslational
processing of proteins, in particular a-dystroglycan. 
Diagnosis of these conditions has been aided by the avail-
ability of specific antibodies for each protein and a better
understanding of the protein changes that accompany
each condition. In this review we present the major 
molecular, clinical and diagnostic aspects of each group
of congenital muscular dystrophy with an emphasis in the
more recent developments. 
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Introduction

The congenital muscular dystrophies (CMDs) are a clin-
ically and molecularly heterogeneous group of inherited
neuromuscular disorders (table 1). Recent clinical studies
have categorised the various forms of CMD, and major
advances have been made in identifying causative gene
mutations and alterations in the immunolocalisation of
proteins in relation to these phenotypes. Several of the
proteins affected (primarly and secondarly) in CMDs are
associated with the sarcolemma and are involved in the
interaction between the muscle cell and the extracellular
matrix (fig. 1). These include cell surface receptors, such
as integrins, basal lamina proteins, such as laminin-a2,
and extracellular matrix proteins, such as collagen VI.
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Disruption of the mechanical and probably also the 
signalling links provided by these proteins is thought to
be at the centre of the pathological mechanism in each
condition. The other major group of proteins includes
those with known or putative enzyme activity that reside,
and probably act, intracellularly, such as POMT1 (protein
O-mannosyl transferase 1) and POMGnT1 (protein O-
mannose b1,2-N-acetylglucosaminyltransferase 1) (fig. 2).
In addition, the function of some of the proteins involved
has yet to be proven. These include fukutin, fukutin-
related protein (FKRP), LARGE and selenoptotein-1
(SEPN1). There is a degree of association between all
these proteins either by means of a direct interaction
(such as laminin-a2 and integrin a7), a common binding
partner (such as dystrolgycan, collagen VI and biglycan)
or by acting upon each other (the glycolsyltransferases
that act on dystroglycan). This article aims to review 
current knowledge of the cellular and molecular aspects



of those primary and secondary defects that are of 
diagnostic value and which are contributing to our under-
standing of the pathogenesis of this group of disorders.

Main clinical features of CMD

Classification of the CMDs has become increasingly
complex, and a wide spectrum of clinical features are
now apparent. Patients present at birth, or within the first
few months of life, with hypotonia, muscle weakness and
often with joint contractures. Serum creatine kinase (CK)
levels are markedly elevated in some variants while 
normal in others. 
A major distinction between the various forms is the 
involvement of the central nervous system (CNS) which
may include white matter abnormalities, structural
changes, mental retardation and involvement of the eyes.
Early and severe rigidity of the spine, distal joint laxity,
muscle hypertrophy and respiratory insufficiency are also
features of note in distinct entities. 

Pathological features of CMD

The key features of CMDs are muscle wasting, muscle 
fibre necrosis and fibrosis (fig. 2). These characterisitics,
however, are variable in the different forms and may also
depend on the muscle biopsied since selective muscle 
involvement occurs in some CMDs. Similarly, other 
features, such as internal nuclei and adipose tissue, are
variable. 
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Oxidative enzyme histochemistry may also show staining
abnormalities, such as areas of mitochondrial depletion,
aggregation (lobulated fibres) and myofibrillar disruption
(e.g. in rigid spine muscular dystrophy (RSMD1) and
Ullrich’s congenital muscular dystrophy (UCMD) (fig. 2).
Fibre regeneration is a consequence of necrosis, and such
fibres can be identified by antibodies to developmentaly
regulated proteins, such as neonatal/foetal myosin. Imma-
ture fibres as a consequence of age rather than disease
may also be present and will be recognised by antibodies
to neonatal myosin. The number of regenerating fibres
with neonatal myosin varies in the different forms of
CMD. For example, a large number of positive fibres of
varying size are observed in the severe forms with
marked ongoing damage and very elevated CK levels,
such as MDC1A and MDC1C, in contrast to only very
few positive fibres in cases with a normal or slightly 
elevated CK levels, for example in RSMD1.

Laminin-aa2 and CMD

Laminins are essential components of basement mem-
branes which provide tissue compartmentalisation by 
acting as barriers to cell penetration and filtration. There
are at least 15 different heterotrimers formed from 5a, 3b
and 3g chains encoded by different genes. The three
chains bind together via their central coiled-coiled 
domains. Laminins are able to self-assemble via their
short arms and through multiple interactions with other
proteins play a crucial role in basement membrane 
integrity both during development and in adult life. In

Table 1. Congenital muscular dystrophies.

CMD forms where causative gene is known

Name Brain involvement Gene symbol Location Protein

Merosin deficient white matter hypodensity LAMA2 6q laminin-a2
Fukuyama mental retardation + structural changes FKTN 9q fukutin
Muscle-eye-brain disease mental retardation + structural changes POMGnT1 (FKRP) 1p POMGnT1 
Walker-Warburg syndrome structural changes POMT1 (FKRP, POMGnT1) 9q POMT1
MDC1C variable FKRP 19 FKRP
MDC1D mental retardation + structural changes LARGE 22q LARGE
RSMD1 none SEPN1 1p selenoprotein-1
Integrin a7 deficiency none ITGA7 12q integrin a7
Ullrich’s disease none COL6A1, A2, A3 2 and 21q collagen VI

CMD forms where causative gene/s is unknown

Name Brain involvement Gene symbol Location Protein

WWS not linked to POMT1 (80% of WWS) structural changes ? ? ?
MDC1B none ? 1q ?
Italian MEB mental retardation + structural changes ? ? ?
CMD with PNS and CNS involvement structural changes + white matter hypodensity ? ? ?
CMD with adducted thumbs mental retardation + cerebellar hypoplasia ? ? ?



muscle this role is faciliated by interactions between the
C-terminal globular LG domains and a-dystroglycan
(LG 4–5) and integrin a7B1D (LG 1–3) on the muscle
cell surface [1, 2] (fig. 2). 
The predominant laminin form in the skeletal muscle
basal lamina is laminin-2 (merosin), which is composed
of a2, b1 and g1 chains. The expression of different
laminin chains is developmentally regulated and cell type
specific. In skeletal muscle, laminin-a2 is found around
the muscle fibre, in the Schwann cell basal lamina and at
the neuromuscular (NMJ) and myotendinous junctions
(MTJ) [1]. The laminin b1 and g1 chains are also found
in capillaries and blood vessels. Laminin-a2 is not 
expressed in capillaries and blood vessels in muscle, but
it is expressed in the brain vasculature [3]. There are also
appreciable amounts of laminin-4 (a2, b2, g1) . The b2
chain is detected around the muscle fibre basal lamina
(where it is developmentally regulated) but is more abun-
dant in blood vessels, at the NMJ and in peripheral nerves
in the perineurium [4]. 
Many laminin chains undergo spontaneous posttransla-
tional proteolytic cleavage within the G-domain or short
arms (hereby the 80-kDa and 300-kDa fragments of lami-
nin-a2). The exact purpose of this processing is unknown,
but it may regulate binding to cell surface receptors; for
example, mutation of the cleavage site in laminin-a2 re-
duces its binding affinity to a-dystroglycan [5]. 
Approximately one-third of all CMD cases are due to 
mutations in the LAMA2 gene in 6q22, which encodes 

for the laminin-a2 chain (MDC1A [MIM156225]); but
regional variations in the frequency of this form are
known to occurr [6, 7]. Since laminin-2 and -4 both 
contain the a2 chain, both heterotrimers are affected in
these patients. Most mutations in the LAMA2 gene re-
sult in complete absence of laminin-a2 protein; however,
rare allelic mutations can result in partial protein reduc-
tion [8].
Laminin-2 performs important functions in muscle [9,
10], and mouse models have been instrumental in eluci-
dating these functions. Briefly, these models include the
naturally occuring dy and dy2J mice with very little and 
reduced expression of laminin-a2, respectively, and the
genetically engineered dyW and dy3K mice, which are
partly deficient and complete knockout respectively
[11–14]. In accordance with its proposed role in the correct
assembly and maintenance of the muscle fibre basal 
lamina, ultrastructural studies have shown an abnormal
basal lamina surrounding the fibres of MDC1A patients
and the dy mouse models [15].
Whilst polymerisation of laminin requires binding to 
dystroglycan and a7B1D integrin and reorganisation of
the actin cytoskeleton, laminin is in turn necessary to 
organise dystroglycan, integrin, dystrophin and spectrin
upon polymerisation [1]. It has been shown on teased
mouse muscle fibres that laminin is distributed around
the fibre in an ordered spatial pattern that resembles the
costameric distribution of a-dystroglycan. However, in
fibres from dy2J mice this pattern was not maintained, and
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Figure 1. Diagram showing the location of the main proteins involved in CMD and the protein interactions relevant to this review. BM,
basement membrane; ECM, extracellular matrix; ER, endoplasmic reticulum.



laminin staining was diffuse. The costameric distribution
of dystrophin and vinculin was similarly affected. This
could be physiologically important since the costameres
are thought to be the sites of force transmission across 
individual basement membranes [16].
Animal experiments show that injection of Evans blue dye
(which accumulates in fibres with membrane damage)
does not accumulate inside the muscle fibres of dy and dy2J

mice as it does inside mdx muscle, suggesting that muscle
membrane leakage is not central to the pathogenis of
MDC1A [17].

Clinical phenotype of MDC1A
MDC1A is a severe form characterised by hypotonia,
markedly elevated CK (10–150 fold), delayed motor
milestones, respiratory insufficiency and feeding difficul-
ties. Children sit unsupported but almost invariably do
not achieve independent ambulation. Progressive joint
contractures, rigidity and scoliosis of the spine are com-
mon, making ambulation more difficult. Respiratory 
failure followed by death (if untreated) in the first decade
of life has been observed in 30% of patients with com-
plete laminin-a2 deficiency. Most patients have normal

intelligence, but some have been reported to show mod-
erate mental retardation and epilepsy [18].
In brain, laminin- a2 is found in the basement membrane
of brain blood vessels, epithelial cells lining the choroid
plexus, oligodendrocytes tracts and glia-limitans [3, 19].
The most characteristic finding in MDC1A patients brain
is a specific and invariable pattern of white matter
changes on magnetic resonance imaging (MRI) after 6
months of life which are thought to represent dysmyeli-
nation [18]. Interestingly, these changes are not observed
in the dy mice [20, 21]. A breach in the blood-brain 
barrier has been suggested as a possible explanation, but
this has yet to be proven and has not been supported by
studies in MDC1A patients and dy mice [authors’ personal
observations]. Therefore, the causal relationship between
these white matter changes and laminin-a2 is still unclear.
Additional structural brain abnormalities include 
hypoplasia of the cerebellum (up to one-third of cases)
and more rarely neuronal migration defects, mostly 
localised in the occipital lobes [18].
Laminin-a2 is also expressed in the Schwann cell basal
lamina, and both MDC1A patients and laminin-a2-
deficient mice have reduced nerve conduction velocity
(mainly motor nerves) [18]. In dy mice this could be due
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Figure 2. Muscle pathology of CMD. (A, B, C, D, E, G and H): Haematoxilin and eosin showing the variable degree of fibrosis, variation
in muscle fibre diameter and degeneration. (F and I) Oxidative enzyme stain (NADH-TR). Type I fibres are more intensely stained 
because of their higher mitochondrial content. Pale areas reflect focal mitochondrial depletion and myofibrillar disruption in F and I (cut
longitudinally). (A) MDC1C, (B) MEB, (C) MDC1D, (D) WWS, (E) MDC1A, (F, G) RSMD1, (H and I) UCMD. Scale bar represents
118 mm in A, C, D, F, G, H, I and 38 mm in B and E. 



to disrupted Schwann cell basal lamina and defective
myelination and/or the observed widening of the nodes of
Ranvier [21]. In humans, dysmyelination is a feature, but
in contrast to the dy mouse, the Schwann cell basement
membrane seems well preserved, and other ultrastructural
abnormalities have not been found [22]. It is possible that
upregulation of other laminin chains (a4) [4] at the
Schwann cell basement membrane has an undesired 
negative effect. 

Genotype-phenotype correlation
While complete absence of laminin-a2 always leads to a
severe phenotype, partial deficiency can result in a mild
or severe phenotype depending on the effect of the specific
mutation on laminin-a2 function [23]. For example, the
mutation in the LAMA2 gene responsible for the dy2J

mouse phenotype is a splice site mutation leading to an
in-frame deletion within the polymerising N-terminal 
domain and partial laminin-a2 deficiency and a mild
phenotype compared to the severe phenotype of the dy
and dy3k mice, which have very little or no laminin-a2, 
respectively. In contrast, misensense mutations in the
conserved cysteine residues involved in trimer assembly
result in partial deficiency but a severe phenotype 
[8]. Mutations affecting the LG domains often result in 
a severe MDC1A phenotype because they potentially 
interfere with the interactions with a-dystroglycan and/or
integrin a7/b1D [5]. 

Diagnosis of MDC1A
The muscle biopsies of MDC1A patients show a variable
degree of fibre necrosis and regeneration, increased 
endomysial connective tissue and occasional inflammatory
infiltration (fig. 2). It is important to use a range of 
antibodies that recognise both 80-kDa C-terminal and 
300-kDa N-terminal fragments since labelling with one
antibody may be well preserved but may be very reduced
or absent with another antibody [24, 25]. Western blotting
can also be used to detect laminin-a2 defects.
a-Dystroglycan may often be reduced, making it difficult
sometimes to distinguish between a partial laminin-a2
deficiency and a dystroglycanopathy (see below). In 
addition, in dy mice, levels of laminin-a2 in peripheral
nerve are lower than those observed in the sarcolemma,
suggesting tissue-specifc regulation of expression [3]. 
Laminin b2 can be a useful indirect diagnostic marker
since it is reduced at the sarcolemma and in the nerve in
primary laminin-a2 deficiency cases [26]. However, it is
important to look at age-matched controls when assessing
b2 levels because it is developmentally regulated. Other
secondary markers that can assist diagnosis are laminin
a5 and a4 chains that are upregulated at the sarcolemma
[27] and a7 integrin, which can be reduced [28].

Laminin chains are expressed at the epidermal dermal
junction and in the basal lamina of blood vessels, seba-
ceous and sweat glands and hair follicles. When laminin-
a2 is absent from muscle basal lamina, it is also absent
from the epidermal-dermal junction and other structures
in the skin where it would normally be expressed [29].
However, quantitatively, laminin-a2 expression may be
different in skin and muscle taken from the same patient,
suggesting that it is worth labelling both tissues when
possible. Although assessment of laminin-a2 status in the
skin is useful, secondary alterations must also be consid-
ered since laminin-a2 can also be reduced in patients
with proven mutations in FKRP and with other dystro-
glycanopathies [authors’ personal observations].

Prenatal diagnosis
Laminin chains are expressed in chorionic villi (CV) in a
developmentally regulated fashion [30]. They are found
in the basal lamina underneath the trophoblast, in the
mesoderm and in the basal lamina of intramesodermal
blood vessels. 
Absence of laminin-a2 from trophoblast is highly sugges-
tive of a foetus affected by MDC1A, but a combined mol-
ecular genetic approach is recommended [31]. Studies of
CV samples from foetuses with a potential reduction of
laminin-a2 have not been reported; and it is not known 
if a secondary reduction might occur in association 
with other gene defects, although we have seen normal
laminin-a2 in an MDC1C CV sample from a family in
which the proband had reduced laminin-a2 in muscle
[author’s personal observation]. 
Immunolabelling for laminin-b2 is reduced in MDC1A
foetuses (with total absence of laminin-a2), and prelimi-
nary data suggest it is normal in foetuses affected 
by MDC1C, implying that laminin-b2 may be a useful 
distinguishing marker for primary defects in the LAMA2
gene as opposed to FKRP gene [32].

Future perspectives
Further understanding of the functions of laminin-a2 in
brain and peripheral nerve will help clarify the reason 
underlying the reduced nerve conduction velocity and
brain white matter changes.
Potential therapies currently revolve around observations
that the transgenic expression of human laminin-a2 in
dyw and dy2J mice results in partial correction of the muscle
phenotype (but do not alleviate the neurological symp-
toms) [14], and myoblast transplantation in dy mice has
also been used to restore laminin-a2 [33]. More recently,
agrin and laminin-a1 transgenes have been used to 
succesfully compensate for the missing laminin-a2 chain
in the linkage between dystroglycan and the basement
membrane [34, 35].
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Dystroglycan and its role in CMD

The dystroglycan gene, DAG1, encodes for a polypeptide
that is posttranslationally modified to yield two glycopro-
teins known as a- and b-dystroglycan (fig. 3) which 
remain non-covalently associated in the cell surface where
a-dystroglycan binds to a variety of ligands within the ex-
tracellular matrix that include laminin-a2, perlecan, bigly-
can, neurexin and agrin. b-Dystroglycan spans the cell
membrane and binds to dystrophin, utrophin, actin and
Grb2. Thus, the dystroglycan complex provides a link 
between the extracellular matrix and the cytoskeleton
[36–40].
Dystroglycan has been implicated in a variety of cell
processes including development, cell adhesion, and 
signalling in both muscle and various non-muscle tissues
[38, 40, 41]. However, it is its role in basement membrane
formation that has received the most attention. This work
has been carried out predominantly in ES (embryonic
stem) cells and attributes dystroglycan and integrin
a7b1D with a role in the organisation of laminin near the
cell surface [42–44].
Because of the early lethality of DG-null embryos [42],
dystroglycan chimaeric mice and Cre-loxP muscle-
specific conditional knockouts have been generated [45].
These mice develop a muscular dystrophy and display
neuromuscular junction defects. In addition, removing
dystroglycan from zebrafish leads to a disruption of the
dystrophin-associated complex and loss of muscle 
integrity and necrosis [46].
The molecular weight of a-dystroglycan in skeletal muscle
is 156 kDa due to extensive and tissue-specific posttrans-
lational modifications of the original 72-kDa polypeptide.
Differential patterns of glycosylation are thought to confer
functional variability to a-dystroglycan, and this is 

supported by the presence of at least three different 
a-dystroglycan glycoforms in skeletal muscle [47].
Electrophoretically, a-dystroglycan runs as a broad smear
which is not diminished after PNGaseF treatment, 
suggesting that the main modification is O-rather than 
N-linked carbohydrate addition [37]. Protein O-glyco-
sylation [48] involves the addition of glycans to the 
hydroxyl groups on either serine or threonine residues.
One particular glycosylation, O-mannosylation, is very
rare inmammals but is crucial for confering specific 
ligand binding properties to dystroglycan.
The domain structure of dystroglycan is well charac-
terised (fig. 3) [38], and studies using deletion constructs
have shown that the N-terminal and the first half of the
mucin-like domain of dystroglycan are necessary for
laminin and perlecan clustering. The N-terminal domain
is recognised by LARGE (fig. 2 and see below), an 
enzyme that induces the glycosylation of the central
mucin-like region of a-dystroglycan [49]. 
The O-linked carbohydrate moieties are crucial for 
a-dystroglycan function since they mediate its binding to
laminin-a2 and agrin, and indeed dystroglycan from 
patients with defects in a-dystroglycan glycosylation
have reduced laminin-binding activity [50–52]. The
structure of the major O-linked mannose glycan on a-
dystroglycan has been elucidated [50] (fig. 4), and its 
formation involves the action of several enzymes (collec-
tively refered as glycosyltransferases) that add different
monosaccharides in a stepwise manner. 
A number of forms of CMD are now thought to be asso-
ciated with the inteference of this glycosylation process
and the subsequent hypoglycosylation of a-dystroglycan.
These are often refered to as dystroglycanopathies or as
defects of a-dystroglycan glycosylation [53]. The defect,
however, is secondary, although suggesting a pathogenic
pathway, unlike other disorders named after the primary
protein defect, such as dystrophinopathy. These condi-
tions include Fukuyama congenital muscular dystrophy
(FCMD, MIM 253800, [54]), muscle-eye-brain disease,
(MEB, MIM 253280, [55]), Walker-Warburg syndrome
(WWS, MIM 236670, [56]), , MDC1C (MIM 606612,
[57]) and MDC1D [58]. The primary protein defects for
these disorders lie in Fukutin, POMGnT1, POMT1,
FKRP and LARGE, respectively. 
Fukutin, FKRP and POMGnT1 are type II transmembrane
proteins (N-terminus outside and C-terminus inside) and
contain a motif (Asp-Xaa-Asp) in their C-terminus 
conserved in several glycosyltransferases [59]. The 
Asp-Xaa-Asp motif is not present in POMT1. The enzy-
matic activity of fukutin and FKRP and their substrates
have yet to be directly demonstrated, although the observa-
tion that a-dystroglycan appears hypoglycosylated in
FCMD patients, fukutin chimaeric mice and in MDC1C
patients provides indirect evidence that both proteins exert
an effect on the glycosylation of a-dystroglycan [51]. 
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Figure 3. Schematic representation of the structure of the dystro-
glycan precursor showing the extent (numbers indicate aa) of the
main domains of a- and b-dystroglycan (SwissProt Q14118). 
O-linked glycans are situated in the mucin-like domain. Interactions
with other proteins are indicated by arrows. 



POMT1 in yeast catalyses the transfer of a mannosyl
residue (the first step of O-linked glycosylation) and has
been shown to act on recombinant a-dystroglycan in vitro
together with its closely related isoform POMT2 [52, 60,
61]. POMGnT1 catalyses the subsequent addition of 
GlcNAc (N-acetyl glucosamine) to a peptide-linked 
mannose residue (fig. 4). 
Fukutin and POMGnT1 are thought to reside in the Golgi
system [62, 63]. However, the localisation of FKRP may
vary from one cell type to another and also between 
different stages of development For example, in C2C12
myoblasts, neuronal, oligodendroglial and cardiac cells
we have observed FKRP in the Golgi apparatus, but in
well-differentiated C2C12 myotubes and in transverse
sections of normal striated muscle endogenous FKRP 
appears to co-localise with components of the nuclear
membrane [62, 63, authors’ personal observation]. 
Fukutin, FKRP, POMT1 and POMGnT1 genes have a
wide tissue distribution and are expressed in a similar set
of tissues that include skeletal and cardiac muscle, brain
and testes but with some individual differences. During
foetal life, Fukutin and POMT1 messenger RNAs 
(mRNAs) are expressed mainly in developing CNS, 
muscle and eye [57, 62, 64–66]. 
Targeted inactivation of fukutin leads to embryonic death
at 7 days, suggesting that fukutin is crucial for normal 
development. Heterozygous mice have no phenotype,
and as a consequence chimaeric mice were generated.
Mice with more than a 50% contribution of fukutin-
deficient cells had difficulties walking and suffered sig-
nificant muscle weakness. Histologically, chimaeric mice
muscle showed signs of necrosis and subsequent regener-
ation and reduced a-dystroglycan immunolabelling and
laminin binding. The brain was also affected, with abnor-
mal cerebral cortex and cerebellum histogenesis and 
abnormalities in the meningeal basal lamina. In the brain,
dystroglycan was also reduced on Western blots, and
laminin binding activity was similarly reduced. These

mice also showed abormal retina and lens development
[67]. POMT1-null mice die at very early stages of devel-
opment, and similarly to DG-null mice, lethality is likely
to be due to the disruption of Reichert’s membrane [65]. 
LARGE is characterised by two separate catalytic domains
with Asp-Xaa-Asp motifs [68]. One of them is similar to
a bacterial a-glycosyltransferase involved in the synthesis
of membrane lipopolysaccarides, and the second one is
similar to a glucosaminyltransferase. The precise function
of LARGE is unknown, although its interaction with 
dystroglycan seems to facilitate the glycosylation of 
a-dystroglycan [49].
Indeed, a-dystroglycan is severely hypoglycosylated in
the muscle and brain of the myodystrophic myd mouse,
the only known naturally occuring mammalian model of
dystroglycanopathy, which carries a mutation in the
murine large gene. These mice show the muscle, brain
and eye pathology seen in MEB, FCMD, WWS and
MDC1C, and also the cardiac and tongue muscle abnor-
malities seen in MDC1C and MDC1D. Neuronal migra-
tion is affected throughout the brain areas affected in 
humans with the CMD muscle-brain forms [69]. Another
related animal model is the chicken with muscular 
dystrophy and abnormal glycosylation of a-dystroglycan
[70]. The primary genetic defect in this animal model is
not known.

Clinical phenotype of dystroglycanopathies
FCMD, MEB, WWS and MDC1D are characterised by
the combination of muscular dystrophy and brain malfor-
mations. In addition, brain malformations have now been
described in patients at the severe end of the MDC1C
spectrum [71]. Severe ocular abnormalities involving the
retina and the anterior chamber (myopia, cataracts and
retinal detachment) are also present in WWS and MEB
and more rarely in FCMD and MDC1C. 
Although initially described as defined individual clinical
entities, recent molecular data rather suggest that the 
dystroglycanopathies represent a continuous spectrum,
the severity of the affected individuals being determined
by the specific mutations in each of the genes affected
[72, 73]. Broadly speaking, WWS is the most severe 
variant and MDC1C the mildest, with FCMD, MEB and
MDC1D in an intermediate position. However, severe
non-sense mutations in the fukutin gene can result in a
WWS phenotype, and the clinical severity of patients
with mutations in FKRP ranges from WWS-like to mild
limb-girdle muscular dystrophy (LGMD), depending on
the severty of the individual mutations [74].
Most of these CMD forms share common structural brain
abnormalities. The most characteristic abnormality is
type II (cobblestone) lyssencephaly. This is caused by
neurons overmigrating and passing through the glia 
limitans during the development of normal cortex layering.
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Figure 4. Structure of the main O-mannosyl glycan (Siaa2-3Galb1-
4GlcNac b1-2 mannose) modification on a-dystroglycan. 



Other changes include flattened brainstem, ventricular
dilation and a delay in myelination. Seizures are a feature
of WWS, FCMD and MEB. 
Cardiac involvement invariably presents after the first
decade in FCMD and in MDC1C and the milder allelic
LGMD2I [18, 75].

Diagnosis 
The muscle biopsies of patients with these forms of CMD
show features of muscular dystrophy (fig. 2) with a signif-
icant proportion of fibres expressing neonatal myosin.
Immunocytochemistry and immunoblotting of muscle
biopsy reveals an apparent reduction in a-dystroglycan
but normal b-dystroglycan (in contrast to a reduction of
both a- and b-dystroglycan as seen in dystrophinopathies).
The majority of studies have used a combination of 
polyclonal antibodies raised to the primary amino acid
sequence of an a-dystroglycan peptide, [51, 76, 77] and
monoclonal antibodies to the glycosylated epitopes of 
a-dystroglycan (clones IIH6 and VIA4-1, Upstate
Biotechnologies). IIH6 recognises the laminin binding
site on a-dystroglycan. The epitope recognised by VIA4-1,
is still unknown. Although commercially available, there
is significant performance variability between different
batches of the IIH6 and VIA4-1, and this variability can
affect the Western blot and immunohistochemistry results
[authors’ personal observation]. There is currently no
commercial antibody to the core protein.
The extent of the reduction of a-dystroglycan labelling is
variable amongst these diseases, broadly correlating with
disease severity. For example, in MEB [78] a-dystroglycan
immunolabelling is significantly reduced with IIH6 and
VIA4-1 antibodies but only slightly reduced with the
sheep antibody to core dystroglycan [51, 78], whereas in
WWS a-dystroglycan labelling can be completely absent
[79]. A similar correlation between disease severity and
the extent of the reduction of a-dystroglycan has been
demonstrated in MDC1C and LGMD2I (with confirmed
mutations in FKRP) [74]. 
Another common feature of the dystroglycanopathies is a
reduction in labelling for the laminin-a2 chain. The 
extent of the immunocytochemical reduction is variable
but is never completely absent as in primary laminin-a2
deficiency. However, on immunoblots of LGMD2I and
WWS muscle extracts, the 80-kDa fragment of laminin-a2
may be very reduced or almost absent. This discrepancy
may relate to the solubility of laminin-a2 [57, 79].
The other major laminin receptor in skeletal muscle is 
integrin a7b1D. In MDC1C, some authors have reported
that both a- and b-chains were reduced [80], while others
have noted an apparent upregulation of this integrin [74]
in a proportion of fibres. Other proteins may be reduced,
i.e. laminin-b2 [81], perlecan [80] and P180 [75, 82]. 
Ultrastructural analysis has revealed some changes, but it

is not clear if these are specific or due to muscle regener-
ation/degeneration and generalised basal lamina damage
[80, 83]. 
a- and b-dystroglycan are expressed in the skin (in the
epidermal-dermal junction and around keratinocytes)
[84]. However, a reduction of dystroglycan immunola-
belling in the skin in patients with muscular dystrophy or
indeed any other disorder has not yet been described. 
Immunolabelling of the skin with laminin antibodies is
also helpful since a secondary reduction of laminin-a2 at
the epidermal-dermal junction can also be seen in
MDC1C patients [authors’ observation]. At present, it is
possible to analyse POMGnT1 enzymatic activity in 
extracts obtained from a muscle biopsy and from cultured
fibroblasts [85, 86].

Prenatal diagnosis
Genetic analysis allows prenatal diagnosis in families
where the primary genetic defect has been identified and
prenatal scans are useful [78] in this context. 

Future perspectives 
There are several important questions outstanding, the
first being what the precise enzymatic function of fukutin
and FKRP is and whether dystroglycan is in fact the 
primary target/substrate. It will also be important to iden-
tify any additional targets that may contribute to the 
clinical phenotype. 
Other proteins that contribute to the glycosylation of 
a-dystroglycan are obviously primary candidates for the
glycosylation syndromes of unknown genetic aetiology,
such as a form of CMD linked to chromosome 1q42 [87]
and Italian MEB [88], in which a-dystroglycan immuno-
labelling is reduced [authors’ personal observation]. 
Animal models will be instrumental in understanding the
pathogenesis and will also be valuable as tools with
which to try future therapeutic strategies.
Very recently gene transfer of a LARGE construct into
the legs of myd mice resulted in expression of a highly
glycosylated form of a-dystroglycan, the restoration of
its binding capacity to laminin, agrin and neurexin and an
improvement of the muscle pathology [89]. These studies
raise the possibility that modulating the expression of
LARGE may be a possible therapy for all these defects of
dystroglycan glycosylation.

Integrin a7 and CMD

The laminin-binding integrin a7b1 is a major laminin 
receptor of skeletal, cardiac and smooth muscle cells
[90]. During muscle development, the laminin-specific
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a7 integrin is alternatively spliced in both the cytoplas-
mic (a7A, a7B) and the putative ligand binding domains
(a7X1 and the a7X2). Similarly, the partner b1 integrin 
cytoplasmic domain is converted from the b1A to the
b1D splice variant. In skeletal muscle, integrin a7b1 is
located predominantly at the myotendinous and neuro-
muscular junctions and in the sarcolemma [91, 92]. The
critical role of a7 integrins in muscle function became 
evident after inactivation of both alleles of the itga7 gene
in mice. Deficient mice developed a myopathy, accompa-
nied by disruption of the myotendinous junctions [93].
Subsequently, human patients were identified with similar
defects associated with mutations in the ITGA7 gene
(MIM 600536, [94]).

Clinical phenotype
Only three Japanese cases have been reported so far.
These patients presented with delayed motor milestones,
proximal weakness and mildly elevated CK. One patient
had mental retardation and two patients had congential
torticollis. 

Diagnosis
Muscle pathological changes are rather myopathic than
overtly dystrophic, although regenerating fibres were
seen in one patient. On immunohistochemistry the a7
subunit was completely absent and the b1D was slightly
reduced. Laminin-a2 was normal [94]. 

Future perspectives
Because this form of CMD is very rare, patients are not
well characterised at the clinical and pathological level.
Together with dystroglycan, integrin a7b1 is the main
muscle surface receptor, and its crucial role is underscored
by the fact that trangenic overexpression of a7 chain in
dystrophin/utrophin-deficient mice attenuates the muscle
pathology and extends the life span of these mice [95]. 

Collagen 6 and Ullrich’s CMD 

Collagen VI is a major extracellular matrix protein which
consists of three a chains, namely a1(VI) a2(VI) and
a3(VI), encoded by the COL6A1 and COL6A2 genes on
chromosome 21q22.3 and COL6A3 gene on chromosome
2q37. Each chain is made up of two large globular 
domains connected by a short triple-helical stalk consisting
of Gly-Xaa-Yaa amino acid repeat sequences. All three
chains contain potential N-glycosylation sites, and the a3
chain contains a potential O-linked glycosylation site.
The three polypeptide chains form a trimer which further
assembles into disulfide-bonded antiparallel dimers and

then tetramers (via cysteines in the triple-helical domain)
which are secreted from the cell and associate in an end-
to-end fashion to give rise to the final microfilament 
network (5-nm diameter) with a characteristic beaded 
appearance and 100-nm periodicity [96]. 
Several mutations in the COL6A2 and COL6A3 genes and
one mutation in the COL6A1 gene have been reported in
Ullrich’s (UCMD) families [97–99]. Mutations in the
three collagen VI genes also cause the milder Bethlem
myopathy (MIM 158810). In addition, mice null for
coll6a1 have been generated by targeted inactivation of
the COL6A1 gene [100]. 
Collagen VI is present in most connective tissues and in
skeletal and heart muscle localises in the reticular layer of
the basement membrane around each fiber, perimysium
and endomysium. It is also expressed in Schwann, 
endoneurial and perineurial cells [101] (fig. 2). Collagen
VI microfibrils interact with other components of the
basal lamina, including collagen IV, fibronectin, biglycan,
decorin and perlecan [102–105]. Collagen VI also interacts
with cell transmembrane receptors such as integrins and
NG2 proteoglycan [106], and in this way serves to transmit
signals from the pericellular to the intracellular space. For
example, collagen VI induces DNA synthesis and prolif-
eration [107], spreading of fibroblasts [106], promotes
survival and inhibits apoptosis [108]. In the extracellular
matrix collagen VI interacts with other collagens (colla-
gens I, II and XIV) and with fibronectin [109]. 
Electron microscopy supports a role of collagen VI in 
anchoring the muscle fibre basement membrane to the
extracellular matrix. Consistent with this there are data
showing absence of collagen VI microfibrils from the
area immediately adjacent to the basal lamina in the mus-
cle of UCMD patients [110, 111]. Collagen VI may also
be important for organisation of the components of the
extracellular matrix, since in fibroblast cultures from
mice deficient for collagen VI the three-dimensional 
organisation of fibronectin fibrils is altered [112].
A study of muscle fibers from the COL6A1 knockout
mouse [113] has revealed mitochondrial and sarcoplasmic
reticulum ultrastructural abnormalities and increased
opening of the permeability transition pore in the mito-
chondrial membrane. These defects as well as the resulting
increased spontaneous apoptosis were rescued in vitro by
growing the cells on collagen VI (therefore proving that a
defect in collagen VI was causative) and in vivo by 
cyclosporin treatment which was followed by amelioration
of the contractile strength of the mice, suggesting that
pharmacological intervention in UCMD may be possible. 

Clinical features of UCMD
Typically a UCMD patient will present in the neonatal 
period with muscle weakness, kyphosis of the spine, joint
contractures, torticollis, hip dislocation and hyperextensi-
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bility of the distal joints. The contractures may improve
with physiotherapy but typically recur and may eventu-
ally also affect those initially laxed joints [18]. Some 
patients may never achieve ambulation, while others will
be able to walk independently, although ambulation 
usually decreases with time due to the progressive contrac-
tures. CK levels are usually normal or mildly elevated.
Rough skin (follicular hyperkeratosis) is a constant 
feature, and impaired wound healing resulting in the 
formation of cheloids is common. Many UCMD patients
have a characteristic rounded face and prominent ears.
Respiratory insufficiency invariably appears in the first
or second decade of life, and patients may require venti-
lation. UCMD appears to be the second most common
form of CMD after MDC1A in the West and after FCMD
in Japan [114, 115]. Collagen VI is expressed in cardiac
muscle; however, heart involvement is not recognised as
part of the UCMD phenotype.
Until recently, it was believed that dominant mutations
resulting in haploinsuficiency or in normal levels of a
mutated collagen VI caused the mild Bethlem phenotype,
whereas recessive mutations resulting in greatly reduced
or no collagen VI caused the Ullrich phenotype. However,
dominant mutations have also been reported even in 
severe patients [99]. Therefore, it seems that it is the 
effect of each specific mutation in the production and
function of collagen VI that determines the severity of the
outcome.

Diagnosis
Muscle pathology in the severe cases shows marked varia-
tion in fibre size, necrosis and regeneration, increased
peri- and endo-connective tissue and a dramatic increase
in intramuscular fat (fig. 1). Histochemical reactions for
oxydative enzymes may show core-like areas of mito-
chondrial depletion within muscle fibres or areas of 
peripheral clusters of mitochondria resembling lobulated
fibres. There is a spectrum of collagen VI immunola-
belling anomalies. Collagen may be completely absent
both from the basal lamina and endomysial and per-
imysial connective tissue, or the changes may be subtle,
with only absence at the basal lamina and apparently 
normal labelling of the peri- and endomysium [99, 114,
116]. The subtle reduction makes it important to make
comparisons with the localisation of another protein such
as perlecan or collagen IV or V to asses the integrity of
the basal lamina and amount of interstitial connective 
tissue. The extent of immunolabelling reduction may be
more marked with some antibodies than others [115].
Normal or nearly normal collagen VI immunolabelling
does not exclude a diagnosis of UCMD [117]. In addition,
a reduction in collagen VI immunolabelling has also been
found in patients with no detectable mutations in the
COL6A genes [116].

In the dermis, collagen VI is found in the connective 
tissue and in the basal lamina of glands, hair follicles,
blood vessels, peripheral nerves and erector pili muscles.
In some UCMD cases collagen VI is completely absent
from skin, while in others it may be only reduced or even
look normal [117, 118]. There is one report of reduced 
fibronectin receptor expression in the dermis of a UCMD
skin biopsy [119]. 
Primary fibroblasts can be induced to secrete collagen VI
in vitro using ascorbic acid in the medium. The secreted
collagen VI can be visualised by immunohistochemistry of
confluent cultures. Using this approach several reports [99,
112] have described absence or a reduction in the amount
of collagen VI in fibroblast cultures from UCMD patients.
Collagen VI synthesis can be monitored in vitro using radi-
olabelled methionine and detetcted by autoradiography [97].

Prenatal diagnosis
Collagen VI is abundant in placenta in the mesoderm
within the villi and in the blood vessels, and therefore CV
samples can be used for prenatal diagnosis by immuno-
histochemistry, coupled with haplotype analysis [120].

Future perspectives 
It is becoming increasingly apparent that de novo muta-
tions are a frequent event in UCMD [99; author’s personal
observation]. This may partly explain the genetic basis of
the UCMD cases unlinked to any of the collagen VI loci
[115]. In addition, mutations in two different collagen VI
genes can also occur, making molecular diagnosis and
genetic counselling very complex. 
The report of Irwin and colleagues last year (see above)
suggests that there is scope for pharmacological inter-
vention, but more work is needed to elucidate the intra-
cellular events mediated by collagen VI [113]. 
Despite the complete absence of collagen VI from the ex-
tracellular matrix, coll6a1-null mice have a mild myopa-
thy compared to the severe phenotype of collagen VI-null
humans. For this reason, it will be useful to develop addi-
tional animal models, including knock-in mice carrying
some of the dominant mutations described in humans.
It is likely that genes other than collagen VI genes are 
involved in UCMD [115]. Obvious candidates are other
collagens and extracellular matrix proteins that interact
with collagen VI. 

Seleno-binding protein and RSMD1

Selenoproteins are a family of enzymes that contain a 
selenium atom in the form of a seleno-cysteine in the 
catalytic site and are involved in oxidation-reduction 
reactions. 
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The gene responsible for RSMD1 encodes for selenopro-
tein N (SEPN1), which is a membrane-bound glycoprotein
localising to the rough endoplasmic reticulum and 
expressed in several tissues, including skeletal muscle,
heart, brain, lung and placenta [121]. The protein is found
at high levels in diaphragm, which could explain the res-
piratory impairment in RSMD1 patients. In all cases, it is
more abundant during foetal than adult life [122]. 
The specific function of SEPN1 is not known, but given
its location it may be involved in protein trafficking and
processing or perhaps in calcium homeostasis. Mutations
in SEPN1 also cause multi-minicore-disease (MMD)
[123] and a form of desmin related myopathy with 
Mallory-body-like inclusions [124].

Clinical features of RSMD1
RSMD1 (or rigid spine syndrome, RSS, MIM 602771) is
characterised by rigidity of the spine, scoliosis and respi-
ratory insufficiency requiring ventilation. In addition to
severe axial weakness there is also mild proximal weak-
ness. The severity is variable, but most patients achieve
and maintain ambulation. Patients are usually thin due to
muscle wasting and poor weight gain; muscle hypertrophy
is not observed. Mental retardation and brain structural
abnormalities are not a feature of RSMD1. 
Levels of serum CK are normal or mildly elevated.
RSMD1 patients have a characteristic nasal speech due to
palatal weakness. Muscle MRI reveals a selective pattern
of involvement with wasting of the medial aspect of the
thighs. The absence of contractures at birth, distal joint
laxity and skin hyperkeratosis helps to clinically distin-
guish RSMD1 from UCMD.

Diagnosis 
Muscle biopsy shows myopathic changes (fig. 1) with 
increased variation in fibre diameter, internal nuclei, mild
increase in endomysial connective tissue and predomi-
nance of type 1 fibres. There are no reported secondary
protein abnormalities. 
In some cases core-like lesions can be seen in the muscle
biopsy, but similar features can also be seen in cases with
a mutation in the RYR1 gene [123, 125]. Antibodies to
SEPN1 have been used to show the absence of the 70-kDa
SEPN1 band in fibroblasts from a RSMD1 patient with
nonsense mutations. At present, changes in protein levels
cannot be ascertained on sections by immunohistochem-
istry. 

Future perspectives
This is the first example of a selenoprotein involved in
muscular dystrophy, and therefore very little is known
about the possible pathomechanism. Further research in

skeletal muscle and other tissues needs to be carried out
to elucidate its function and identify interacting proteins.

Conclusions

Despite the advances made in the last few years in the
identification of new CMD loci, there are still a number
of CMD forms in which the molecular basis remains un-
known (e.g. CMD with adducted thumbs) [126], and it is
likely that in the next few years the molecular and pri-
mary protein defects in some of those will be identified.
In some cases, they may lie within proteins related to the
main protein groups described in this review, but new
pathological pathways may also emerge. 
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