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Abstract. Since its discovery in 1962 by Ritossa, the heat
shock response has been extensively studied by a number
of investigators to understand the molecular mechanism
underlying the cellular response to heat stress. The most
well characterized heat shock response is induction of the
heat shock proteins that function as molecular chaper-
ones and exert cell cycle regulatory and anti-apoptotic ac-
tivities. While most investigators have focused their stud-
ies on the toxic effects of heat stress in organisms such as
severe heat stress-induced cell cycle arrest and apoptosis,
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the cellular response to fever-ranged mild heat stress has
been rather underestimated. However, the cellular re-
sponse to mild heat stress is likely to be more important
in a physiological sense than that to severe heat stress be-
cause the body temperature of homeothermic animals in-
creases by only 1–2°C during febrile diseases. Here we
provide information that mild heat stress does have some
beneficial role in organisms via positively regulating cell
proliferation and differentiation, and immune response in
mammalian cells. 

Key words. Heat stress; heat sensing; cell cycle; growth; differentiation; thermotolerance; signal transduction.

Introduction 

Organisms have undergone natural selection for how to
deal with the insults of thermal fluctuations in the ambi-
ent environment to obtain well-developed defense and
adaptation machineries. When cells encounter heat stress,
they provoke active responses such as raising signal path-
ways and reprogramming gene expression to retune their
internal milieu. The most well characterized heat shock
response is induction of a highly conserved set of
polypeptides termed the heat shock proteins (HSPs) [1,
2]. The HSPs are also increased by other unrelated
stresses such as oxidative and osmotic stresses and are de-
tected even in the absence of stress [1–4]. HSPs such as
HSP70 and HSP90 function as molecular chaperones that
facilitate protein folding and assembly, and membrane
translocation [1, 2, 5–7]. The HSPs are also implicated in
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cell cycle regulation [8], in resistance to stress-induced
programmed cell death or necrotic cell death, and in an-
tioxidative defense [9–17]. Expression of HSPs by heat
stress is mediated by activation of the heat shock factor 1
(HSF1) [1, 2, 18–21]. Under normal conditions, HSF1
forms heterocomplexes with regulatory proteins such as
HSP70 and HSP90 in the cytosol, which interfere with
HSF1 transactivation [22–32]. It is generally accepted
that accumulation of non-native proteins caused by heat
stress is a proximal signal for HSF1 activation [1, 2,
33–37]. As a result of competition with non-native pro-
teins for chaperones that prefer non-native proteins to
HSF1, HSF1 is relieved and activated through a multistep
process that involves conversion from the inactive
monomer to the homotrimer, translocation into the nu-
cleus, binding to heat shock element (HSEs), a consensus
sequence located upstream of heat shock genes and target
gene activation [19–21, 38–40]. HSF1 is a redox-sensi-
tive transcriptional factor and can be directly activated by
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oxidative stresses and heat stress in vitro and in vivo,
which can be reversibly inactivated by reducing agents
[41–45]. Recently, it was also demonstrated that HSE is
not the only HSF1 binding site in the promoters of the
heat shock genes, and transcription factors other than
HSF1 are also implicated in the induction of transcript
that accumulates after heat stress [46].
Although information about the heat shock response has
contributed to the advance of biological science, it
should be pointed out that most studies focused largely
on cellular responses to severe heat stress. Acute expo-
sure to severe heat stress leads to a transient arrest of cell
cycle mainly at two checkpoints, the G1/S and G2/M
transitions [47–52]. More severe heat stress also leads to
programmed cell death, known as apoptosis [53]. How-
ever, body or tissue temperature increases by only
1–2°C during febrile diseases. Therefore, cellular re-
sponse to mild heat stress is likely to be more important
in a physiological sense than that to severe heat stress.
As expected, mild heat stress induces HSPs to a lesser
extent than severe heat stress does, because the cytopro-
tective function of HSPs is not demanded [1, 2]. Treat-
ment of cycloheximide, an inhibitor of protein synthesis,
blocks HSF1 activation, and HSP expression in HeLa
and Rat-2 cells in response to mild heat stress (39–42°C,
15–20 min), whereas the treatment does not affect the
heat shock response by severe heat stress (43–45°C,
15–20 min) [36, 54]. In addition, cycloheximide also in-
hibits HSF1 activation due to L-azetidine-2-carboxylic
acid, a denaturant of nascent peptides. Thus, mild heat
stress seems to affect only newly synthesized polypep-
tides, resulting in partial HSF1 activation, whereas se-
vere heat stress causes unfolding of pre-existing 
proteins as well as misfolding of nascent polypeptides,
leading to complete activation of HSF1. Despite partial
HSP induction, fever-range mild hyperthermia may be
beneficial to organisms, although its molecular mecha-
nism is not clearly understood. For instance, fever-range
elevation of temperature is presumed to positively regu-
late cell growth and development, in contrast to severe
heat stress [55, 56]. In addition, fever seems to provoke
effective immune response through facilitating T cell
proliferation and activation [57–59]. Mild heat stress
may regulate cell survival through triggering a complex
cascade of signaling events, including Ras, Rac1, mito-
gen-activated protein kinase (MAPK), and other pro-
survival molecules that are independent of HSF1-HSP
induction [54, 60]. We collected and analyzed the con-
sequences of heat stress to outline the data that support
a positive role(s) of mild heat stress in helping cellular
events. This review deals with cellular responses to mild
heat stress in mammalian cells. First, we summarize 
the heat-sensing machinery, including cellular proteins
and membrane components and their thermodynamic
properties. 

Heat-sensing machineries

Heat is rapidly sensed by physico-chemical perturbations
of various biomolecules in plasma membrane, cytosol
and subcellular organelles of cells, which provoke partic-
ular signals for the heat shock response. The thermody-
namics of cellular constituents are useful for understand-
ing the primary effect of hyperthermia: the structures, ac-
tivities and interactions of macromolecules reflect their
ambient temperature.

Thermodynamics of biomolecules and heat sensing
Heat capacity, the amount of heat involved in the temper-
ature elevation of 1 g of substrate (e.g. protein) by 1°C, is
determined by both the intrinsic temperature dependence
of the solvation enthalpy of the protein group and the con-
tribution from the temperature dependence of the protein
conformational distribution, which varies with mole-
cules, structures and interactions [61]. Protein structure
transition and protein unfolding result in heat capacity
change. For example, the enthalpy of the helix-coil tran-
sition decreases with the increase of temperature. The
values for heat capacity change of the helix-coil transi-
tion are found to be negative, which is in contrast to the
positive heat capacity change for protein unfolding [62].
The rise in temperature increases the exposure of polar
groups in the denatured state and thus decreases the sol-
vation enthalpy difference between the denatured and na-
tive conformation. The unfolding enthalpy is decom-
posed into intraprotein-bonded, van der Waals and elec-
trostatic terms and solvation terms [63, 64]. The
denatured state is relatively compact but more labile than
the native state, so that the thermal component of heat
stress breaks interactions in denatured state more easily
than in the native state. This implies that the enthalpy of
the denatured state increases with temperature more than
that of the native state and contributes significantly to
change in heat capacity. In cells, pre-folded nascent
polypeptides are more sensitive to heat stress than fully
folded proteins: mild heat stress affects only polypeptides
being newly synthesized [36, 54]. Three major terms, (i)
the primary or covalent structure, (ii) noncovalent inter-
actions arising from secondary and tertiary structure of a
protein, and (iii) hydration account for the absolute heat
capacity of a protein [65]. For a typical globular protein
in solution at 25°C, the heat cpacity is determined mostly
by the covalent structure term (close to 85% of the total)
and to a lesser extent by the hydration term (15%). Upon
protein unfolding, contribution of the hydration term in-
creases to 40% of the total heat capacity of the protein
[65]. Thus, the change in heat capacity upon unfolding is
primarily given by the increase in the hydration term. 
Macromolecules, in particular polypeptides, have differ-
ential sensitivity to heat stress due to their specific heat
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capacity. Thermal change determines the structures and
interactions of a number of cellular proteins, including
surface receptor tyrosine kinases and cytosolic enzymes
such as pyruvate carboxylase, to alter their activities [66,
67]. HSF1 has also been demonstrated to directly sense
heat stress  in vitro and in vivo to be activated in a re-
versible manner. The sensing of heat stress requires two
cysteine residues (C35 and C105), localized within or
nearby the HSF1 DNA binding domain, that are required
for disulfide bond formation and HSF1 activation in re-
sponse to heat stress [41–45]. In addition, ion channel ac-
tivities reflect the temperature applied [68–71]. Activities
of ion channels such as Na+/K+ and Ca2+ flux of mammals
are highly sensitive to the change in ambient tempera-
tures and thus suggested to be a kind of thermoreceptor or
thermosensor that is involved in the perception of tem-
perature [70]. Macromolecular behaviors such as protein
interactions are also determined according to thermody-
namics [72, 73]. A typical thermodynamic property of
protein-protein interactions has been reported with Ras
superfamily proteins, Ras, Rap, TC21 and R-Ras, that
play crucial roles in growth factor-mediated cell regula-
tion through interacting with various effector molecules
such as the Raf and Ral/guanine nucleotide dissociation
stimulator (GDS) [72]. Recognition of multiple effectors
is important for communicating signals different ways.
Upon association, Ras/effector interactions exhibit a de-
crease in heat capacity that is one of the most meaningful
thermodynamic parameters in terms of characterizing the
nature of protein/protein interactions. Although changes
in enthalpy, entropy and heat capacity of association with
various Ras proteins are similar for the same effector, the
thermodynamics of the Ras/Raf and Ras/RalGDS inter-
actions are quite different, indicating that the effectors ex-
ert different Ras affinities and that Ras interaction with
its effectors is dependent on temperature [72]. 

Biomembrane fluidity
Biomembranes, including plasma membrane and subcel-
lular organelle membranes, reflect physico-chemical
properties of ambient temperature to provoke suitable in-
tracellular signal transduction cascades and to regulate
gene expression [74, 75]. Exposing cells to hyperthermic
stress disturbs the membrane physical state: membrane
lipids primarily undergo a rapid decrease in molecular or-
der to hyperfluidity and form transient local non-bilayer
lipid structures such as hexagonal phase. Additionally,
lipid-protein interactions in the plasma membrane
are also influenced by rapid thermal changes [76]. One
phenomenon associated with the acclimation of organ-
isms to changes in ambient temperature is to regulate the
fluidity of membrane lipids via changes in the extent of
unsaturation of their fatty acids. Desaturase encoded by
the desA gene introduces specific double bonds and

therefore activation of its transcription results in an in-
crease in with membrane fluidity of plasma membrane as
well as thylakoid membrane of cyanobacterium Syne-
chocystis [77]. HSPs such as GroEL chaperonin and small
HSP (alpha-crystallin and Synechocystis HSP17) are as-
sociated with model lipid membranes and have stabilizing
effects on membranes formed of synthetic and cyanobac-
terial lipids in the bilayer liquid-crystalline state, suggest-
ing that HSPs can modulate membrane lipid polymor-
phism [78, 79]. Binding is apparently governed by lipid
composition and the extent of lipid unsaturation.
Physical alterations in membrane lipids may evoke nu-
merous physiological events: increase in ion fluxes such
as Ca2+, Na+, K+, H+, loss of membrane integrity and the
change in gene expression. For instance, transition in mi-
tochondrial membrane order by thermal stress is concur-
rent with temperature-induced alteration in proton leak
conductance or thermogenesis [66]. In addition, the in-
flux of extracellular Ca2+ stimulates activity of calmod-
ulin-dependent protein kinases, inositol triphosphate pro-
duction and other signal cascades. Alterations in activity
of the Na+/H+ exchanger and Na+, K+-ATPase result in hy-
perpolarized membrane potential. 
Responses of the cellular membrane to temperature shift
depend largely on the molecular characteristics of lipids
such as the degree of saturation and the length of mem-
brane lipids. The membrane’s physical properties appear
to be related to induction of HSPs [75, 80, 81]. Membrane
lipid perturbation modifies the set point of the tempera-
ture of heat shock response in yeast [80, 81]. Addition of
a saturated fatty acid (SFA) induces a strong increase in
heat shock messenges RNA (mRNA) transcription when
cells are heat-stressed, whereas treatment with an unsatu-
rated fatty acid (UFA) reduces or eliminates the level of
heat shock gene transcription at 37°C. In addition, short
chain fatty acids including butyric and propionic acids
suppress the expression of HSPs in response to heat
stress. Furthermore, HSP coinducers such as bimoclomol
with no effect on protein denaturation specifically modu-
late the membrane lipid phase, indicating that perturba-
tion of the lipid phase is sensed and transduced into a cel-
lular signal, leading to enhanced activation of heat shock
genes [82]. 

Definition of mild heat stress 

Before discussing the cellular response to mild heat
stress, it is important to distinguish between mild (natural
and usually beneficial) and severe (mostly destructive to
physiological events) heat stress. However, it is very dif-
ficult to define the terms ‘mild’ and ‘severe’, since the ef-
fects of heat stress are determined by both heat tempera-
ture and exposure time: as temperature increases by 1°C,
the time required for the same extent of heat shock re-
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sponse is reduced twofold [83, 84]. Furthermore, heat
shock sensitivity varies depending on biological factors,
including cell types, tissue origin, developmental stage,
and cell cycle phase of the cell line analyzed and the cel-
lular events measured. Thus, the criteria for grading heat
stress should be considered in both theis arithmetic and
biological aspects. Here, we propose criteria for distin-
guishing between mild and severe heat stress: the criteria
are based on the effects of mild versus severe stress on
several experimental parameters such as protein denatu-
ration, HSF1 activation/HSP synthesis, cell cycle, cell
growth and differentiation, apoptosis, acquisition of ther-
motolerance and activation of signaling pathways
(table 1). The major difference between the cellular re-
sponses to mild and severe heat stress is adaptation of
growth conditions (mild) versus cell death or morbidity
(severe). 

Regulation of cell survival pathways 
by mild heat stress

Whereas severe heat stress has been shown to lead to cell
cycle arrest and apoptosis [47–53], mild heat stress is 
presumed to positively regulate cell cycle progression
and differentiation, through multiple Ras signal pathways
involving the Raf-extracellular-regulated kinase 1/2
(ERK1/2) pathway, phosphatidylinositol-3 kinase
(PI3K)-Akt/PKB-glycogen synthase kinase (GSK)-3b
pathway, and Rho-Rac1-nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidase pathway (fig. 1).
First, we discuss the regulation of these pro-survival sig-
nal pathways by mild heat stress. 

Figure 1. The signal pathways responsible for cyclin D1 synthesis and HSF1 activation/HSP expression in response to mild heat stress in
mammalian cells. HSFi, inactive HSF1; HSFa, active HSF1.

Table 1. Criteria for distinguishing between mild and severe heat
stress.
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Ras and Rac1
Ras superfamily GTPases are membrane-bound small
GTP-binding proteins that play a crucial role(s) in diverse
cell physiology, including cell cycle progression, cell di-
vision, regulation of cell morphology and motility, and
intracellular trafficking of molecules and organelles
[85–95]. Ras functions as a relay switch that is positioned
downstream of cell surface receptor tyrosine kinases
(RTKs) and upstream of a cytoplasmic signal cascade.
The biological activity of Ras proteins is mediated by
multiple signaling pathways, including the Raf-ERK1/2
pathway, PI3K-Akt/PKB-GSK-3b pathway and Rho-
Rac1-NADPH oxidase pathway. Rho GTPases of the Ras
superfamily are 20–30-kDa GTP-binding proteins and in-
clude RhoA, B, C, D, E; Rac1, 2; and Cdc42. Rho GT-
Pases also play a wide range of physiological roles in
actin cytoskeleton regulation, transcriptional regulation,
growth and development [85–97]. 
Mild heat stress (39–42°C, 15–20 min) has been shown
to activate Ras and Rac1, major components of Ras sig-
naling pathways, as demonstrated by pull-down assay us-
ing the Ras binding domain of Raf and the Rac1 binding
domain of p21-activated kinase (PAK), respectively [54,
60]. In addition, mild heat stress induces membrane ruf-
fling in a Rac1-dependent manner, similar to that ob-
served in growth factor-treated cells [54], whereas severe
heat stress (44–45°C, 15–20 min) causes breakdown of
actin stress fiber [98–100]. It is not clear how mild heat
stress activates Ras and Rac1 GTPases. Although heat
stress induces the release of fibroblast growth factor
(FGF)-1 from NIH3T3 cells [101], Ras and Rac1 activa-
tion by mild heat stress is not likely mediated by heat
stress-secreted growth factor since the activation occurs
rapidly (within 5 min after mild heat shock treatment)
[54, 60]. Mild heat stress may activate multiple growth
factor receptors, including epidermal growth factor
(EGF) receptor tyrosine kinase, by affecting membrane
structure and mobility, which in turn activates the Ras
signal pathway [102]. Otherwise, the Ras molecule may
be directly activated by heat stress [72]. 
As Ras and Rac1 regulate a huge number of cellular
processes including cell cycle, transformation, cell mi-
gration and thermosensitivity, through multiple cooperat-
ing pathways, the consequences of Ras and Rac1 activa-
tion by mild heat stress may be diverse. One of them may
be HSF1 regulation [54]. Overexpression of Rac1N17, a
dominant negative mutant Rac1, completely prevents
HSF1 activation and HSP expression in response to mild
or moderate heat stress (40–43°C, 20 min), but not to 
severe heat stress (44–45°C, 20 min) [54]. Similarly,
Rac1N17 inhibits HSF1 activation and HSP expression
by hypoxia/reoxygenation and sodium arsenite [103] and
by mechanical stress in vascular smooth muscle cells
[104], indicating that the Rac1 GTPases play a critical
role(s) in stress-induced HSF1 activation and HSP70 ex-

pression (fig. 1). However, constitutively active Rac1V12
does not induce HSF1 activation, suggesting that Rac1
may be necessary but insufficient for HSF1 activation
[54, 103]. Although reactive oxygen species (ROS) par-
ticipate in HSF1 activation by hypoxia/reoxygenation and
sodium arsenite [103], they are is not likely involved in
heat stress-induced HSF1 activation and HSP expression,
as diphenyleneiodonium, an NADPH oxidase inhibitor,
and other antioxidants such as pyrrolidine dithiocarba-
mate, butylated hydroxytoluene and ascorbic acid do not
exert inhibitory effects on heat stress-induced HSP regu-
lation [54]. Since mild heat stress affects only newly syn-
thesized polypeptides [36, 54], the Rac1 GTPase signal
pathway may be implicated in the molecular mechanism
that specifically recognizes misfolding of nascent poly-
peptide, but not of formerly folded proteins to activate
HSF1. Thus, the efficiency of protein synthesis and fold-
ing occurring on the ribosome may be communicated to
the cytoplasm via several signal transduction pathways,
including Rac1 signaling. 

PI3K and Akt/PKB
PI3K is one of the most important regulatory proteins in-
volved in cell functions such as mitogenic signaling,
growth and survival, cytoskeletal remodeling, metabolic
control and vesicular trafficking [105, 106]. PI3K can be
activated via Ras in response to growth factor stimulation
and possess double-enzymatic activity, lipid kinase and
protein kinase. Among the main effectors of PI3K are the
mitogen-transducing signal proteins such as phospho-
inositide-dependent kinases (PDKs), protein kinase C
(PKC), and MAPK. In most case, the anti-apoptotic ef-
fect of PI3K is mediated by a serine/threonine kinase
Akt/PKB that is the best-characterized pro-survival pro-
tein kinase [105–113] and is constitutively activated in
many cancer cells [113–116]. The pro-survival kinase,
can also be activated via the PI3K-independent pathway,
including protein kinase A (PKA) or calmodulin-depen-
dent protein kinase kinase [105, 106]. Akt/PKB regulates
cell viability through both activating pro-survival mole-
cules and inactivating pro-apoptotic molecules. For exam-
ple, it phosphorylates and inactivates GSK-3b, which
plays important roles in apoptosis, cell cycle regulation
and insulin-mediated glycogen metabolism [105, 106,
108, 109]. In addition, Akt/PKB inhibits the pro-apoptotic
protein Bax conformational change that is responsible for
apoptosis in response to various stresses [113].
Moderate heat stress (43°C) has been shown to induce
the maximal increase of c-Src activity that recruits PI3K
to the Src homology (SH)-2 domain to activate PI3K in
NIH 3T3 fibroblasts [102]. Additionally, mild heat stress
(41–42°C) induces phosphorylation and activation of
Akt/PKB in a PI3K-dependent manner in NIH 3T3 
fibroblasts [60, 117], whereas prolonged treatment of 
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severe heat stress (44–45°C) fails to activate Akt/PKB.
Mild heat stress also inactivates GSK-3b through
Akt/PKB phosphorylation at Ser-9 [60]. LY294002, a
PI3K inhibitor, significantly blocks phosphorylation of
Akt/PKB and GSK-3b in response to heat stress, sug-
gesting heat shock activation of the PI3K-Akt/PKB-
GSK-3b pathway. In vivo experiments show that mild
heat stress (41°C, 30 min) application induces PI3K acti-
vation and GSK-3b inactivation in the absence of poly
(ADP-ribose) polymerase (PARP) degradation, a sign of
apoptosis [118]. Akt/PKB and GSK-3b phosphorylation
by heat stress is transient (detected only in cells heat
stressed at 41–43°C for 40 min, but not in cells recovered
at 37°C) compared to that induced by growth factors
[60]. Mild heat stress-induced PI3K-Akt/PKB activation
may be associated with the apoptosis-suppressive effect
of mild heat stress, in contrast to severe heat stress. 

MAPKs
Among the many signaling pathways that respond to mi-
togens and stresses, MAPK family members are crucial
for maintenance of cells through regulating the activities
of nuclear transcription factors. [119–121]. Three sub-
families of MAPKs have been identified: ERKs,
SAPK/JNKs and p38MAPKs. It was originally shown
that ERKs are important for cell survival, whereas
SAPK/JNKs and p38MAPKs are more strongly tied to
stress and thus involved in apoptosis [122–125]. It is ac-
cepted that the balance between the magnitude of ERK
and SAPK/JNK/p38MAPK activation is key to determin-
ing whether the cells survive or undergo apoptosis. How-
ever, many investigators have recently demonstrated that
regulation of apoptosis by MAPKs is more complex than
initially thought and often controversial [124–127]. For
instance, SAPK/JNK activation potentially promotes or
inhibits apoptosis depending on the cell type and the
types and strength of stresses. 
Instant or mild heat stress (43°C, 5 min) activates
ERK1/2 through its phosphorylation at Thr-202/Tyr-204
in NIH 3T3 fibroblasts, which can be blocked by the
dominant negative Raf mutant and partially by wortman-
nin [102]. Mild heat stress (42°C)-induced ERK1/2 acti-
vation is transient, which is different from serum-stimu-
lated persistent ERK1/2 induction [60]. Mild heat stress
also induces ERK1/2 transiently in the cerebellum in vivo
but does not induce it at all in rat liver and hippocampus
in vivo [118, 128]. Mild heat stress appears to stimulate
SAPK/JNK in a Rac1-dependent manner, whereas severe
heat stress-mediated SAPK/JNK activation is regulated
independently of Rac1. Heat stress induces phosphoryla-
tion of p38MAPK at Thr-180/Tyr-182, while serum addi-
tion does not [60]. In rat liver in vivo, mild heat stress
(41°C, 30 min) promotes activation of SAPK/JNK and
p38MAPK and their upstream kinases such as MKK3/6

and PAK but does not affect glutathione S-transferase
(GST) and germinal center kinase (GCK) [118].
p38MAPK can phosphorylate HSP27 which dissociates
into monomer or dimmer, resulting in stabilization of mi-
crofilaments to protect cells from deleterious signals
[129]. Mostly, p38MAPK is known to play a role(s) in
triggering the apoptotic process in response to various
stresses. In addition, p38MAPK activated by a low
dosage of oxidative stress is involved in mitotic arrest
[130]. Even brief heat stress (44 °C, 10 min) as well as
oxidative stress activates apoptosis signal-regulating ki-
nase-1 (Ask1) that stimulates the activity of p38MAPK
and SAPK/JNK [131]. Ask1, which activated via 
dissociating from its inhibitors, GSTM1-1 (glutathione
S-transferase Mu1-1), for heat stress or redox-sensing
protein, thioredoxin, for oxidative stress. At the present
time, the consequences of ERK1/2, SAPK/JNK and
p38MAPK activation by heat stress are not clear since
their acting mechanism is very complicated and diverse
[122–127]. 

Cyclin D, a mediator of cell cycle regulation 

Cell cycle is finely controlled by the cooperation of mul-
tiple Ras effectors [132–136]. When quiescent cells enter
the cell cycle in response to mitogenic signals, they in-
duce genes encoding D-type cyclins (D1, D2 and D3),
key molecules required for passage through the restric-
tion point in the mammalian cell cycle [132, 133, 137].
The cyclins assemble with their catalytic partners, cyclin-
dependent kinase (CDK) 4 and CDK6, as cells progress
through G1 phase, thereby inactivating the growth-sup-
pressive function of retinoblastoma (Rb) protein through
its phosphorylation [132, 133, 138]. Cyclin D-CDK4/6
complex also titrates CDK inhibitors, such as p27Kip1 and
p21Cip1, facilitating cell cycle progression [132, 133, 135,
139]. Growth factor-induced cyclin D1 expression is
mainly regulated by multiple Ras signal pathways which
involve (i) the Raf/MAPK kinase (MAPKK)/ERK1/2
pathway, (ii) the PI3K/Akt/PKB pathway and (iii) the
Rac1/NADPH oxidase/ROS pathway [132, 133, 140,
141]. The level of cyclin D1 is also post-transcriptionally
controlled by the PI3K-Akt/PKB pathway [132, 133,
136]. GSK-3b, a downstream effector of Akt/PKB, can
phosphorylate cyclin D1 and thereby stimulate its nuclear
export and accelerate its ubiquitin-dependent proteaso-
mal degradation in the cytoplasm. Furthermore, GSK-3b
is involved in targeting the adenomatous polyposis coli
(APC)-mediated degradation of b-catenin, which regu-
lates the expression of cyclin D1. p38MAPK, which is in-
duced by several different kinds of stresses including heat
stress, has also been implicated in downregulation of cy-
clin D1 by regulating its transcription and degradation
[132, 133].
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The effects of heat stress on the cell cycle depend on the
strength and the duration of applied heat stress [48, 142,
143]. Acute exposure to heat stress leads to a transient ar-
rest of cells at mainly two cell cycle check points, the
G1/S and G2/M transitions, through inducing p21WAF1

CDK inhibitor and other regulatory proteins [47–52]. In
addition, severe heat stress reduces the level of cell cycle
regulatory molecules, including cyclin D1, CDK and
phosphorylated Rb, resulting in a transient cell cycle 
arrest mostly at the G1 stage of the cell cycle [47–50].
If once HSPs are induced, thermotolerance is acquired
and normal cell cycle resumes [47]. Severe heat stress
also suppresses the hyperphosphorylation of Rb via 
the p53-induced CDK inhibitor p21, which prevents 
S phase entry in EGF-stimulated Swiss mouse 3T3 cells
[47]. 
Recently, it was demonstrated that exposing quiescent
serum-starved NIH3T3, Rat-2, and HeLa cells to heat
stress conditions in a range of 39–43°C increases the cy-
clin D1 level in a temperature- and time-dependent man-
ner [60]. While serum stimulation of quiescent cells
maintains the increased levels of cyclin D1, heat stress
transiently increases its levels, with the maximal induc-
tion at 9 h after heat stress at 42°C for 40 min and at 16 h
after prolonged exposure to 39.5°C. Mild heat stress also
causes cyclin D1 to assemble with CDK4/6 and to
translocate to nucleus. Although heat stress has been
shown to induce secretion of growth factors such as FGF
in animal cell cultures even though in an inactive form
[101], heat stress itself acts as a signal activator for the
cyclin D1 induction. Mild heat stress-induced cyclin D1
expression is mediated through multiple Ras signal path-
ways involving ERK1/2, PI3K/Akt (PKB)/GSK-3b and
Rac1/NADPH oxidase, which are responsible for growth
factor-induced cyclin D1 expression [60] (fig. 1). While
mild heat stress induction of cyclin D1 is regulated
mostly at the transcriptional and translational levels, its
turnover is also controlled by heat stress. Since heat stress
induces the phosphorylation and inactivation of GSK-3b,
which stimulates degradation of cyclin D1 as well as b-
catenin, which regulates the expression of cyclin D1, cy-
clin D1 degradation could be inhibited by heat stress.
Transient ERK1/2 activation and GSK-3b inactivation
may explain this transient cyclin D1 induction in re-
sponse to heat stress. p38MAPK may also be involved in
this phenomenon. 
When cells are exposed to prolonged heat stress at
39.5°C, cyclin D1 induction is sustained for a longer pe-
riod (until 16 h after heat stress). In addition, prolonged
exposure to mild heat stress is sufficient for induction of
cyclin A, which is required for DNA synthesis and begins
to be synthesized as cells approach the G1-S transition
[132–136]. However, in NIH3T3 and Rat-2 cells, mild
heat stress itself does not exert significant stimulatory ef-
fects on cell proliferation. Mild heat stress may facilitate

growth factor-stimulated cell proliferation through induc-
ing cyclin D1. In fact, fever-range hyperthermia is known
to facilitate interleukin 1-dependent T cell proliferation
and activation [58]. It was recently demonstrated that
mild heat stress stimulates cell proliferation and DNA
synthesis in human bone marrow stromal cells and MG-
63 cells in vitro [144]. Thus, the effect of mild heat stress
on cell cycle progression or proliferation is quite am-
biguous, and cellular response to mild heat stress varies
according to types of cell line analyzed. 

Differentiation and immune response regulation 

Information about fever-range hyperthermia has been fo-
cused on immune response since immune systems re-
spond to thermal change sensitively and differentially.
Febrile rise in core body temperature is shown to enhance
innate and adaptive immunity through positively regulat-
ing cell growth and differentiation [57–59]. Fever-range
hyperthermia enhances interleukin (IL)-1-dependent T
cell proliferation and activation [58] and granulocyte-
macrophage colony-stimulating factor-induced differen-
tiation of human leukemia cells U937 [145]. Treatment
with heat stress (41.8°C, 60 min) has been used as an ad-
junct to chemotherapy in patients with various malignant
diseases. The treatment induces prolonged T cell activa-
tion in the patients, blood: a drastic increase in peripheral
natural killer cells and CD56+-cytotoxic T lymphocytes, a
marked but short-lived increase in IL-6 and an increase in
the percentage of peripheral cytotoxic T lymphocytes ex-
pressing CD56 [146]. Heat stress sensitivity of immune
response depends on the developmental stage of the
cell. For instance, embryonic thymocytes are able to sur-
vive and differentiate normally in response to heat stress,
whereas adult thymocytes rapidly undergo apoptotic cell
death [147]. The levels of the HSPs may be responsible
for in vivo immune cell regulation, since embryonic thy-
mocytes, but not mature thymocytes, are able to synthe-
size HSP68 continually for up to 4 h under hyperthermia
[147]. Fever-like mild heat stress also functions as a pos-
itive regulator of terminal differentiation in several other
cell types, such as human myeloid leukemic HL-60 cells,
neuroblastoma (N1E 115) cells, thyroid carcinoma cells
and chondrosarcoma [148–152]. However, the molecular
mechanism of HSP-mediated cell differentiation is not
clearly understood [147, 151, 152]. Since mild heat stress
partially activates HSF1 and induces HSP expression to a
lesser extent than severe heat stress [1, 2, 36, 54], mech-
anisms other than HSPs may also be involved in immune
cell regulation by mild heat stress. In fact, mild or mod-
erate hyperthermia enhances, independent of HSF1 acti-
vation, maturation of immune cells, e.g. dendritic cells,
which play a major role in innate and adaptive immunity
[153]. Mild heat stress also induces spectrin reorganiza-
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tion via activation of PKC within T lymphocytes, which
is observed during T lymphocyte activation [154, 155].
Thus, a thermal element of fever can modulate critical
steps in signal transduction pathways necessary for effec-
tive lymphocyte activation and function.
When activated by antigens, helper T (Th) cells differen-
tiate into one of several subtypes, characterized by their
distinct cytokine production patterns. Th1 cells are
known to activate cellular immunity, resulting in inflam-
matory response, whereas Th2 cells induce humoral and
allergic responses and suppress inflammation. Th1 and
Th2 effector functions and their development are attrib-
utable to their distinct cytokine expression patterns. The
ability to selectively produce Th1-cytokine [e.g. IL-2, in-
terferon (IFN)-g, tumor necrosis factor (TNF)-a] and
Th2-cytokine (e.g. IL-5 and IL-13) and thereby to regu-
late Th1/Th2 cytokine balance is highly temperature de-
pendent and tissue specific [59, 156]. For example, when
staphylococcal enterotoxin B (SEB)-stimulated whole
blood is incubated at 38–42°C, it favors Th2 cytokine
production to alter Th1/Th2 cytokine balance [59, 156],
whereas in situ heated-prostate cancer cells favor Th1-cy-
tokine release of tumor-infiltrating T lymphocytes [157].
However, lipopolysaccharide (LPS)-induced expression
of IL-18, an important cytokine that has diverse immune
regulatory effects on T, B, natural killer cells and non-im-
mune cells, is significantly suppressed by heat stress in
murine peritoneal macrophages [158]. Activation of
helper T cells mediated by the T cell receptor induces a
series of biochemical events. For example, Ras-, PKC-
and calmodulin/calcineurin-mediated pathways play a
central role in signal transduction of cytokine gene ex-
pression, and a balance between the signaling pathways
contributes to Th1/Th2 cytokine production. Mild heat
stress-induced survival signal pathways may be linked to
effective lymphocyte activation and cytokine secretion. 
Febrile temperature rapidly promotes neutrophil migra-
tion [159] and secretion of antibacterial chemicals [160,
161]. In addition, fever-range hyperthermia (40°C, 6–12
h) augments actin polymerization in vascular endothelial
cells and enhances the ability of endothelial-derived fac-
tors to transactivate the a4b7 integrin lymphocyte hom-
ing receptor [162]. In contrast, mild heat stress does not
affect expression of adhesion molecules (ICAM-1, E-se-
lectin, VCAM-1, P-selectin, PECAM-1, PNAd, MAd-
CAM-1), cytokine release (IL-1b, TNF-a, IFN-g, IL-6,
IL-11, IL-12, IL-13) or chemokine secretion (IL-8,
RANTES, MCP-1, MIP-1b, MIG) in endothelial 
cells [163]. This implies that hyperthermia avoids  unpro-
ductive exodus of lymphocytes to non-involved extralym-
phoid tissues while simultaneously promoting lympho-
cyte delivery to sites of immune activation. The signal
pathways for this cell regulation are not clearly under-
stood, but mild heat stress-induced cell signal pathway
may be responsible for this event. 

Thermotolerance

It is well known that preconditioning mild heat stress
causes a transient and cross-resistance of cells and vari-
ous organs such as lungs, myocardium and kidney to a
second heat challenge and other environmental stresses,
which is termed acquired thermotolerance [164–166].
For instance, mild heat shock preconditioning induces
protection against neurotoxicity of 1-methyl-4-phe-
nylpyridinium, a neurotoxin that selectively targets
dopaminergic cells [167]. The molecular mechanism(s)
for the development of thermotolerance has not been
clearly understood. Thermotolerance development and
decay are dependent on the cell cycle phase [168, 169]:
thermotolerance develops faster in G1 than in G2/M
phase cells, whereas it does not at all in S phase cells.
Thermotolerance is decayed accompanying with the en-
try of formerly G1-arrested cells into S phase. Although
many cells, particularly S phase cells, die from the chro-
mosomal aberration, some cells are apt to develop ther-
motolerance or adaptation. 
The HSPs appear to play a critical role in the develop-
ment of thermotolerance and protection from cellular
damage associated with various stress stimuli such as 
ischemia, cytokines, energy depletion and oxidative
stress [164–166, 170–173]. Particularly, HSP70 has been
shown to play a critical role in cell survival and thermo-
tolerance in response to stresses, possibly through in-
hibiting a number of anti-survival pathways such as the
SAPK/JNK pathway [174–179]. Disruption of the dou-
ble-stranded RNA-dependent protein kinase gene that
was recently identified as essential for efficient activation
of the heat shock response through stabilization of
HSP70 mRNA species blocks the development of ther-
motolerance [179]. 
However, some cells such as HL-60 cells are able to in-
duce thermotolerance even when they fail to express
HSP70, suggesting that HSP70 expression is not obliga-
tory in thermotolerance induction. In the yeast Saccha-
romyces cerevisiae, mild heat treatment strongly induces
HSP104, which provides acquisition of thermotolerance.
HSP104 plays a crucial role in keeping cells from being
damaged by oxidative stress, thus acting as a modulator
of the intracellular redox state [180–184]. HSP27 has also
been implicated in acquired thermotolerance [185–187].
Human cells infected with virus such as mumps virus
were recently shown to be more susceptible to apoptosis
caused by extracellular stresses. The susceptibility is due
to suppression of HSP27-dependent thermotolerance by
the viral accessory protein V-mediated destruction of
STAT-1 [188]. STAT-1 is required for transcriptional acti-
vation of the HSP27 gene, but not for the HSP70 gene, in
addition to the activated HSF1 [188]. HSP70 and HSP27
have also been implicated in translational thermotoler-
ance; heat stress results in inhibition of general protein
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synthesis and in thermotolerant cells, protein synthesis is
still rapidly inhibited by heat stress, but recovers faster
than in naive heat-shocked cells, a phenomenon known as
translational thermotolerance. Overexpression of HSP27
protects cap-dependent initiation of translation, while
HSP70 overexpression protects both cap-dependent and 
-independent translation, indicating that translational
thermotolerance would be a co-operative effect of differ-
ent heat shock proteins [189].
HSF1 is also critical for maintaining cellular integrity af-
ter heat stress, cells from hsf1–/– mice lack the ability to
develop thermotolerance [190–191]. This deficiency is
explained by the elimination of stress-inducible HSP70
and HSP27 response in the absence of HSF1 activity,
leading to a lack of HSP-mediated inhibition of apoptotic
cell death via both caspase-dependent and caspase-inde-
pendent pathways [191]. However, coinfection with ade-
noviral HSP70 and HSP27 constructs did not fully recre-
ate thermotolerance in either hsf1+/+ or hsf1–/– mouse
embryo fibroblasts (MEFs), indicating that other HSF1-
mediated gene expression is required for complete ther-
motolerance, and proteins other than HSP70 and HSP27
are also implicated in thermotolerance [190]. 
The disaccharide trehalose, which accumulates dramati-
cally during heat shock and stationary phase in yeast, en-
hances thermotolerance and reduces aggregation of dena-
tured proteins [192, 193]. Trehalose accumulation de-
creased the initial appearance of damaged proteins,
presumably by acting as a free radical scavenger. There-
fore, trehalose accumulation in stressed cells plays a ma-
jor role in protecting cellular constituents from oxidative
damage.
In addition to the HSPs, HSF1 and trehalose, pro-survival
signal molecules may also be involved in thermotoler-
ance. As described previously, mild heat stress triggers a
complex cascade of signaling events, including Ras,
Rac1, MAPK and other pro-survival molecules, which
may be responsible for the development of thermotoler-
ance [54, 60, 102, 117]. Further studies on this powerful
protective adaptation of cells may contribute to a better
understanding of the cellular responses to mild heat stress
and to the design of cytoprotective pharmacological
agents. 

Conclusion

Although a number of investigators have demonstrated
that severe heat stress exerts cytotoxic effects on organ-
isms, including induction of apoptosis and cell cycle ar-
rest, fever-range elevation of temperature or mild heat
stress may be beneficial to living cells through positively
regulating cell proliferation and differentiation. Although
body or tissue temperature increases by only 1–2 °C dur-
ing febrile diseases, it is sufficient to produce multiple

changes that ultimately affect both the structure and func-
tion of several proteins and membrane fluidity. The
change in the fluidity of membrane lipids may be the first
event that signals a change in temperature, and thus is re-
garded to act as a thermosensor. Fever-range hyperther-
mia- or mild heat stress-induced increase in membrane
fluidity may result in activation of several membrane pro-
teins, including growth factor receptors, which in turn ac-
tivate intracellular signal transduction cascades such as
the Ras signal pathway. Disturbance of the membrane
physical state by heat stress may cause transduction of a
signal that induces the heat shock response, such as HSF1
activation and HSP expression. In this respect, we suggest
that mild heat stress may act as one of physico-chemical
signals that may play a critical role(s) in cell growth and
differentiation through modulating the physical proper-
ties and activities of several important regulatory pro-
teins. Although mild heat stress itself is not sufficient for
cell growth and differentiation, it may facilitate growth
factor-mediated cell growth and differentiation. Similar
activity in facilitating the action of growth factors is ob-
served with ROS that modulate the structure and activity
of biomolecules, in particular proteins, via oxidizing spe-
cific redox-sensitive sulfhydryl groups. We further sus-
pect that mild heat stress and ROS may have evolved as
primitive signal molecules at an early stage of evolution
before the growth factor-mediated cell growth machinery
was established. Further careful studies may provide new
insights into the elucidation of molecular mechanisms for
fever-dependent cell regulation in organisms. 
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