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Abstract. b-lactams have a long history in the treatment
of infectious diseases, though their use has been and con-
tinues to be confounded by the development of resistance
in target organisms. b-lactamases, particularly in Gram-
negative pathogens, are a major determinant of this resis-
tance, although alterations in the b-lactam targets, the
penicillin-binding proteins (PBPs), are also important,
especially in Gram-positive pathogens. Mechanisms for
the efflux and/or exclusion of these agents also con-
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tribute, though often in conjunction these other two. Ap-
proaches for overcoming these resistance mechanisms in-
clude the development of novel b-lactamase-stable b-lac-
tams, b-lactamase inhibitors to be employed with existing
b-lactams, b-lactam compounds that bind strongly to
low-affinity PBPs and agents that potentiate the activity
of existing b-lactams against low-affinity PBP-producing
organisms. 
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Introduction

b-lactam antibiotics are an important component of the
antimicrobial armamentarium of the infectious disease
specialist, used in the treatment of a variety of Gram-
negative and Gram-positive infections [1]. These agents
represent >65% of the world antibiotic market with >50
marketed drugs of this class which include the penicillins,
cephalosporins, carbapenems, monobactams (reviewed
in [2, 3]) and more recently the penicillin-cephalosporin
hybrids, the penems (e.g. faropenem) [4]). Characterized
by a four-membered b-lactam ring, these agents target the
bacterial enzymes of cell wall biosynthesis (the so-called
penicillin-binding proteins, PBPs) [2, 3], although the ac-
tual mechanism of killing is as yet unresolved [5]. Resis-
tance to these agents is, unfortunately, all too common in
Gram-positive [6, 7] and Gram-negative [8–11] bacterial
pathogens and occurs as a result of drug inactivation by
b-lactamases, target site (i.e. PBP) alterations, dimin-
ished permeability and efflux [2]. 

* Corresponding author.

bb-lactamases

A major mechanism of b-lactam resistance, particularly
amongst Gram-negative bacteria, is the production of b-
lactamases, hydrolytic enzymes that disrupt the amide
bond of the characteristic four-membered b-lactam ring,
rendering the antimicrobial ineffective [12, 13]. Intrigu-
ingly, b-lactamases are structurally related to PBPs [14]
and may have evolved from these b-lactam-binding en-
zymes of cell wall biosynthesis. First reported in Esch-
erichia coli isolates prior to the clinical release of the first
b-lactam, penicillin, these enzymes have since been de-
scribed in a myriad of Gram-negative and Gram-positive
organisms and in the mycobacteria [12, 15], where they
are variably chromosomally or plasmid encoded, often as-
sociated with mobile genetic elements such as trans-
posons and integrons (see [16] for a review on integrons).
Four molecular classes of b-lactamases are known,
dubbed A–D (table 1), and include both metal-dependent
(Zn2+-requiring; class B) and metal-independent (active
site serine; classes A, C and D) enzymes [12, 13]. 
Numerous kinetic, mutagensis and structural studies 
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have been performed on these enzymes, providing im-
portant details of their catalytic mechanisms and sub-
strate specificities (reviewed in [12, 13, 17]). Of particu-
lar concern are enzymes able to target the expanded 
spectrum b-lactams, including the AmpC (class C ce-
phalosporinases) enzymes [18, 19], the so-called ex-
tended spectrum b-lactamases (ESBL) (classes A and D)
[20–22] and the carbapenemases that hydrolyze most b-
lactams, including the carbapenems (classes A, B and D)
[23, 24]. 

Extended spectrum bb-lactamases

First appearing following the widespread use of broad-
spectrum b-lactams in the early 1980s, ESBLs constitute
a major problem in the use of b-lactams to treat infectious
disease given their broad substrate specificity and ability
to hydrolyze many of the extended-spectrum, third-gen-
eration cephalosporins (reviewed in [20–22]). Typically
plasmid encoded but also present on chromosomes, often
in association with integrons, these enzymes are deriva-
tives, predominantly, of class A and class D b-lactamases
and are generally inhibited by available b-lactamase in-
hibitors (table 1). Found in a range of Gram-negative or-

Table 1.  Classification and properties of b-lactamases

Ambler Type of enzyme Preferred substrates Inhibited by: Representative enzymes
classifi-
cation CAa EDTA

A penicillinase penicillins + – penicillinases from Gram-
positive bacteria

restricted-spectrum penicillins, cephalosporins + – TEM-1, TEM-2, SHV-1
b-lactamase

extended-spectrum penicillins, narrow-spectrum + – numerous SHV and TEM 
b-lactamase and extended-spectrum variants, CTX-M-1 to -28,  

cephalosporins, monobactams PER-1 & -2, VEB-1, GES-1, 
IBC-1, several chromosomal 
enzymes in Gram-negative 
bacteria

inhibitor-resistant penicillins, cephalosporins – – TEM-30 to -41, -44, -45, -51, -54
b-lactamase

inhibitor-resistant penicillins, narrow-spectrum – – TEM-50, -68, -80
extended-spectrum cephalosporins, extended-spectrum 
b-lactamase cephalosporins (low level)

carbapenemase penicillins, cephalosporins, + – NMC-A, SME-1 to -3, IMI-1, 
carbapenems, monobactams; KPC-1 to –3, GES-2, SHV-38 
sometimes extended-spectrum 
b-lactams

B carbapenemase most b-lactams, including – + IMP-1 to -13, VIM-1 to -7, SPM-1,
carbapenems and extended-spectrum several chromosomal enzymes of 
b-lactams and 4th generation Gram-negative bacteria
cephalosporins

C expanded-spectrum penicillins, narrow and extended- – – CMY-2 to -13, LAT-1, MOX-1 and 
cephalosporinase spectrum cephalosporins, -2, FOX-1 to -6, ACT-1, MIR-1, 

cephamycins, monobactams DHA-1 and -2, ACC-1, CFE-1, 
several chromosomal enzymes of 
Gram-negative bacteria 

D narrow-spectrum penicillins, cloxacillin ± – numerous OXA variants
penicillinase

extended-spectrum penicillins, cloxacillin, extended- ± – several OXA-2 and -10 derivatives, 
b-lactamase spectrum b-lactams, sometimes OXA-18, -29, -30, -31, -32, -45

monobactams or 4th generation 
cephalosporins

carbapenemase penicillins, oxacillin, carbapenems + – OXA-23 to -27, -40, -48, -54

a Clavulanic acid.



ganisms [25], particularly members of the Enterobacteri-
aceae [26–34], these enzymes are most commonly re-
ported in E. coli and Klebsiella pneumoniae [28, 34–37].
ESBL-producing organisms are typically resistant to
penicillins, first- and second-generation cephalosporins
as well as the third-generation oxyimino cephalosporins
(e.g. cefotaxime, ceftazidime, ceftriaxone) and mono-
bactams (aztreonam), retaining susceptibility only to
cephamycins, fourth-generation cephalosporins (ce-
fepime, cefpirome) and carbapenems [38]. Still, the pres-
ence of an AmpC enzyme [22, 27, 39] or loss of porins
[38] in ESBL producers will compromise cephamycin
use. Moreover, cefepime effectiveness in treating ESBL
producers is uneven and often less effective than antici-
pated [40–42], shows adverse inncolum effects [43, 44]
and its use in treating ESBL producers can lead to clini-
cal failure [45]. In some instances, porin loss in ESBL-
producing strains increases resistance to fourth-genera-
tion cephalosporins and/or carbapenems (e.g. [46, 47]).
The description, too, of in vitro-selected TEM-1 variants
providing resistance to cefepime [48] suggests that ESBL
variants resistant to fourth-generation cephalosporins
may occur in clinical strains in the future, under appro-
priate antibiotic selection. 

ESBL families
Classical ESBLs evolved from class A TEM (from TEM-
1 or TEM-2) and SHV (from SHV-1) enzymes, and these
remain the most prevalent types of ESBLs, though class
D ESBLs (i.e. of the OXA family) have also been known
for some time [20, 21]. Still, over the past several years a
plethora of non-TEM, non-SHV, non-OXA ESBLs have
been reported in several organism all over the world (e.g.
families BES, GES, PER, TLA, VEB and CTX-M) [20,
21], with CTX-M-type ESBLs, in particular, increasingly
prevalent (reviewed in [49]). In contrast to the TEM-,
SHV- and OXA-derived ESBLs, which result from muta-
tion of their narrow-spectrum counterparts, many of
these other ESBLs, which are typically plasmid encoded
or otherwise mobile, originated from naturally occurring
(i.e. chromosomal) enzymes that are innately broad spec-
trum.

TEM-/SHV-derived ESBLs
More than 150 TEM/SHV-derived ESBLs have been re-
ported (http://www.lahey.org.studies/), most commonly
in E. coli and Klebsiella spp. but also in other members
of the Enterobacteriaceae, including Serratia marces-
cens, Shigella dysenteriae, Morganella morganii, Citro-
bacter spp., Enterobacter spp. , Proteus spp., Providencia
spp., Salmonella spp. and Leclercia adecarboxylata [26,
27, 30, 31, 50–55] (and several references in [20]), as
well as in Burkholderia cepacia, Capnocytophaga

ochracea, Aeromonas spp., A. baumannii and Pseudo-
monas aeruginosa, [56–63] (and several references in
[20]). Amino acid substitutions responsible for the ESBL
phenotype occur at a limited number of positions within
theTEM and SHV enzymes, with mutations at Glu104,
Arg164, Gly238 and Glu240 in TEM [20] and at Gly238
and Glu240 in SHV-1 of particular importance [20, 64].
Substitutions at Arg164 in TEM are typically associated
with resistance to ceftazidime and substitutions at Gly238
with resistance to cefotaxime, while substitutions at the
Gly238 and Glu 240 residues of SHV-1 are important for
resistance to ceftazidme and cefotaxime, respectively
[12, 20]. Avalable crystal structures for TEM [65, 66] and
SHV [67]-derived ESBLs reveal enzymes with ex-
panded/altered binding cavities that are apparently able 
to accommodate the bulky oxyimino substituent of ex-
tended spectrum agents such as cefotaxime and cef-
tazidime, a finding common to many ESBLs (e.g.
[68–70]). Still, ESBL structures lacking an expanded
binding cavity have been reported [71], which suggests
that alternative ways of accommodating extended-spec-
trum b-lactams are possible. 
A few inhibitor-resistant enzymes, derivatives mostly of
TEM, have been described and though most of these are
not ESBLs, a few rare instances of inhibitor-resistant en-
zymes that confer some resistance to extended spectrum
b-lactams have been noted recently (e.g. TEM-50, TEM-
68 and TEM-80) [21, 72]). Inhibitor-resistant TEM vari-
ants remain susceptible to inhibition by tazobactam and
have been reported mostly in E. coli but also in Klebsiella
spp., Proteus. mirabilis, Citrobacter freundii, Shigella
sonnei and E. cloacae [13, 20, 72–74]. Inhibitor-resistant
TEM (IRT) enzymes, like their ESBL counterparts, carry
amino acid substitutions at a limited number of positions,
with changes at Met69 most commonly encountered [20].
Intriguingly, the crystal structure of one such IRT reveals
no alterations in the enzyme’s three-dimensional (3-D)
structure, reflecting a very modest impact of the
Met69Leu change on the enzyme, in keeping, perhaps,
with the need to maintain activity against its b-lactam
substrates [75]. 

OXA-type ESBLs
ESBL-type members of the OXA family (OXA-18 and
derivatives of OXA-2 and OXA-10) are comparatively
rare, and found mostly in P. aeruginosa [20, 21, 63, 76],
with the majority providing resistance to oxy-
iminocephalosporins such as ceftazidime, although a re-
cently described variant, OXA-45, provides resistance to
several third-generation cephalosporins as well as to
aztreonam and a fourth-generation cephalosporin, ce-
fepime [77]. OXA-29, a chromosome-encoded enzyme
from Legionella gormanii also exhibited activity against
oxyimino cephalorporins and aztreonam [78]. An un-
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usual OXA ESBL from P. aeruginosa, OXA-31, provides
resistance to cefepime but not to ceftazidime [79], and a
similar enzyme (OXA-30) showing preference for fourth-
generation cephalosporins has been described in E. coli
[80]. OXA-type ESBLs typically carry multiple muta-
tions, with OXA-10-derived ESBLs often carrying sub-
stitutions at Gly167 that are responsible for resistance to
ceftazidime [12]. OXA-type ESBLs can be plasmid or
chromosomal but apparently are not associated with clas-
sical integrons, in contrast to oxa determinants for nar-
row-spectrum enzymes.

CTX-M ESBLs
Members of the plasmid-encoded CTX-M series, of
which at least 37 variants have been described [49], are
geographically widespread [21, 32, 47, 81–87] and re-
ported in several members of the Enterobacteriaceae, in-
cluding E. coli [32, 83, 84, 87], Enterobacter spp. [32,
88], S. marcescens [32, 89], Proteus spp. [32, 84, 85, 90],
K. pneumoniae [47, 83, 85, 86], Salmonella spp. [91–94],
C. freundii [88], Vibrio cholerae [95], Providencia stuar-
tii [32] and S. sonnei [96]. CTX-M enzymes preferen-
tially hydrolyze cefotaxime over ceftazidime and do not
generally confer resistance to the latter drug. 
Interestingly, a chromosomal b-lactamase of Kluyvera
ascorbata (KLUA-1) also demonstrates activity against
extended spectrum cephalosporins, especially cefo-
taxime, reminiscent of the CTX-M series of ESBLs.
Moreover, KLUA-1 and several CTX-M enzymes show a
high degree of sequence similarity consistent with
KLUA-1 being the progenitor of at least some of the plas-
mid-borne CTX-M family ESBLs [97, 98], particularly
CTX-M-2 [91, 99]. Still, other studies indicate that the
CTX-M-8 enzymes originated with the chromosomal b-
lactamases of Kluyvera georgiana [100]. 

Other ESBLs
PER-1, first identified in P. aeruginosa, is also present in
S. enterica serovar Typhimurium, K. pneumoniae, A. bau-
mannii and P. mirabilis [20, 81, 101–103], and a highly
related enzyme (86% amino acid homology), PER-2, has
been identified in S. enterica serovar Typhimurium, En-
terobacter spp., K. pneumoniae and V. cholerae [20, 32,
47, 95]. Related enzymes, which like PER preferentially
hydrolyze and promote resistance to both oxy-
iminocephalosporins (e.g. ceftazidime) and aztreonam,
include VEB-1, found in E. coli [85, 104, 105], P. aerug-
inosa [56, 106, 107], P. putida [56], Acinetobacter spp.
[108], P. mirabilis [85, 109], Enterobacter spp. [104], C.
freundii [56] and K. pneumoniae [85, 104] (see also sev-
eral references in [20]), and the CME-1 and TLA-21 en-
zymes reported in Chryseobacterium meningospeticum
and E. coli, respectively [20]. The VEB-1 enzyme is usu-

ally integron and/or transposon associated [104, 105,
107–109] and typically plasmid-borne in Enterobacteri-
aceae but chromosomal in P. aeruginosa and A. bauman-
nii. Other uncommon ESBLs include the SFO-1 enzyme
of E. cloacae (related to the class A enzyme of Serratia
fonticola) [110]), the BES-1 enzyme of S. marcescens re-
lated to a penicillinase of Yersinia enterocolitica [111],
the DES-1 ESBL found in Desulfovibrio desulfuricans
and related to the PenA b-lactamase of Burkholderia
pseudomallei [112], and the FEC-1 enzyme found in a
single isolate of E. coli [20]. Another ESBL related to the
Y. enterocolitica enzyme, IBC-1, is encoded by an inte-
gron-associated gene first reported in E. cloacae [113],
although it is also seen in E. coli and K. pneumoniae
[114–116]. A related enzyme, IBC-2, has also been iden-
tified in P. aeruginosa [117]. Finally, a GES-1 enzyme
first reported in K. pneumoniae [118–120] but also seen
in P. aeruginosa [121] is an ESBL possibly related to a P.
mirabilis b-lactamase [119]. A similar ESBL, GES-2, has
been identified in P. aeruginosa [122], and like GES-1
[120, 121], its gene is integron associated [122]. 
ESBLs have not been reported in Haemophilus influen-
zae, though in vitro-derived mutants of the ROB-2 b-lac-
tamase, an important determinant of cefaclor resistance
in this organism, have been generated that provide resis-
tance to extended spectrum b-lactams (e.g. cefotaxime)
[123]. Interestingly, inhibitor (i.e. clavulanate)-resistant
variants of this enzyme have also been isolated in vitro
[123]. Similarly, clinical isolates of B. pseudomallei
showing resistance to ceftazidime and clavulanate have
been described as a result of mutation of this organism’s
chromosomal class A b-lactamase [124]. Expression of a
class D b-lactamase in clinical isolates of B. pseudoma-
llei has also been implicated in resistance to ceftazidime
[125]. Finally, a Klebsiella oxytoca chromosomal en-
zyme, previously dubbed K1 and now called OXY-2, is
also an ESBL [126], and a chromosomally encoded vari-
ant of this enzyme, OXY-2-5, has been reported in a clin-
ical strain of this organism displaying resistance to cef-
tazidime [127].

Multidrug resistance in ESBL producers
ESBL-producing strains sometimes demonstrate resis-
tance to an even broader range of b-lactams, as a result of
coproduction of imported AmpC [22, 27, 39], their pres-
ence in strains stably derepressed for the chromosomal
AmpC [128] or porin deficiency (the latter providing for
pan-b-lactam resistance in some instances [47]). Co-
resistance to non-b-lactams is also frequently seen in
ESBL-producing Enterobacteriaceae [22, 129, 130], par-
ticularly to fluoroquinolones and aminoglycosides (e.g.
[52, 129, 131–133]), with such multidrug resistance se-
verely limiting therapeutic options in the treatment of
these strains. The association of some ESBL genes with
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integrons carrying additional antibiotic resistance genes,
especially in non-fermentative Gram-negative organisms
[107, 108, 121, 122] but also in the Enterobacteriaceae
[91, 104, 113, 114, 118, 120] is one explanation for this. 

AmpC

The class C cephalosporinase, AmpC, is a significant
contributor to multiple b-lactam resistance in Gram-neg-
ative pathogens, particularly the Enterobacteriaceae [25,
29, 31, 134], and can be chromosomal or plasmid en-
coded. AmpC b-lactamases demonstrate activity against
most penicillins and cephalosporins, including in many
cases the oxyiminocephalosporins (cefotaxime, cef-
tazidime and cefpodoxime), cephamycins (e.g. cefoxitin,
cefotetan) and monobactams (aztreonam), usually retain-
ing susceptibility to carbapenems and, in some instances,
fourth-generation cephalosporins (e.g. cefepime, cef-
pirome). Still, the susceptibility of AmpC-producing or-
ganisms to cefepime can be compromised by high innoc-
ula [135], and in vitro-derived AmpC variants active
against cefepime have been reported [136, 137]. Produc-
tion of mutant AmpC enzymes has also been described in
clinical isolates resistant to fourth-generation cephalo-
sporins [138, 139]. Finally, concomitant porin loss in
AmpC-producing strains can provide resistance to 
carbapenems (e.g. [140–142]). Unlike the class A b-
lactamases, including most ESBLs, AmpC b-lactamases
are not readily inhibited by approved b-lactamase in-
hibitors. 

Chromosomal AmpC bb-lactamases
Genes encoding AmpC enzymes are present in the chro-
mosomes of several Enterobacteriaceae (C. freundii, E.
coli, Enterobacter spp., P. stuartii, M. morganii, S.
marcescens (and other Serratia spp.), Y. enterocolitica
(and other related Yersinia spp.), Hafnia alvei, Butti-
auxella spp. and Ewingella americana [19, 143–146] 
and other Gram-negative organisms (P. aeruginosa,
Aeromonas spp., A. baumannii and Ochrobactrum an-
thropi) [19, 143, 147] and, with the exception of E. coli, 
are inducible by a number of b-lactam antibiotics, though
apparently poorly if at all by many of the newer
cephalosporins. And while carbapenems are, in fact, good
inducers of AmpC enzymes, their rapid bactericidal activ-
ity and stability to hydrolysis nonetheless renders them ef-
fective against AmpC-producing organisms [148]. A num-
ber of chomosomal wild-type AmpC enzymes are not ef-
fective at hydrolyzing extended-spectrum b-lactams such
as the oxyiminocephalosporins (e.g. enzymes from E. coli,
C. freundii and E. cloacae), owing to an inability to bind
these agents in a catalysis-competent conformation [149].
Still, mutant variants capable of accommodating oxy-

iminocephalosporins have been described (e.g. the GC1
variant of the E. cloacae P99 AmpC) whose structures now
permit efficient hydrolysis of these agents [150]. 
Expression of chromosomal ampC genes are typically in-
fluenced by the AmpR regulator (negatively in the ab-
sence of inducer, positively in the presence of inducer)
and the ampD-encoded cytosolic amidase whose activity
(in the absence of inducer) negatively impacts ampC ex-
pression (reviewed in [151]). AmpC-mediated resistance,
especially to many of the newer-generation b-lactam, typ-
ically results from mutational expression of the ampC
gene [134], often owing to mutations in ampR [152] or
ampD [151, 153, 154], though promoter mutations may
also contribute [155]. Overexpression of a two-compo-
nent system response regulator gene, fimZ, has also been
shown to promote AmpC-dependent b-lactam resistance
in E. coli, though how is unclear [156]. ampC derepres-
sion in the absence of any of these has also been reported,
indicating that other means for upregulating this enzyme
exist [154]. Finally, recent reports on AmpC-mediated b-
lactam resistance in A. baumanni show that ampC hyper-
expression can occur as a result of upstream insertion of
an insertion sequence (IS) element, possibly due to an IS-
provided strong promoter [157, 158]. 
Stable depression of chromosomal AmpC enzymes is a
significant determinant of resistance to b-lactams, partic-
ularly the newer, broad-spectrum cephalosporins, in sev-
eral Enterobacteriaceae [134, 148], particularly Enter-
obacter spp., Citrobacter spp. and S. marcescens [133,
159–161], and is seen, also, in clinical strains of P. aerug-
inosa [134, 162–164] and Acinetobacter spp. [157, 165].
A chromosomal AmpC enzyme (OCH-1) also explains
the general resistance of O. anthropi to most b-lactams
with the exception of the carbapenems [147]. 

Plasmid-encoded AmpC bb-lactamases
Of increasing importance as regards resistance to ex-
panded-spectrum b-lactams are plasmid-encoded AmpC
b-lactamases whose spread to historically AmpC– organ-
isms, particularly Klebsiella spp. [166, 167] and E. coli
(although it carries a chromosomal ampC gene, it is gen-
erally expressed at only very low levels), threatens to
compromise the use of these important therapeutic agents
(see [18, 19] for recent reviews). Most plasmid-borne
ampC genes are not inducible, owing to the absence of a
corresponding ampR regulatory gene, and overproduc-
tion of the AmpC in resistant strains likely results from
promoter alterations/mutations rather than, for example,
plasmid copy number effects or loss of AmpR repression
[168]. Plasmid-borne ampC genes originate with the
chromosomes of certain naturally AmpC+ organisms (see
below) from which they have been mobilized. Consistent
with this, many of these are associated with integrons and
transposable elements, though unlike plasmid-borne b-
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lactamases of classes A, B and D, they are not contained
in characteristic gene cassettes [19]. AmpC plasmids can
carry additional resistance determinants for non-b-lac-
tams such that their acquisition can promote multidrug
resistance [169–172]. On the basis of amino acid se-
quence homologies, plasmid-encoded AmpC b-lacta-
mases are divided into five families, C-1 to -5 [19].

Families of plasmid-borne AmpC bb-lactamases
Family C-1, whose members are all closely related and
are among the most disseminated geographically appear
to be derived from the chromosomal AmpC enzyme of C.
freundi [173, 174]. Members include CMY-2 (= BIL-1 =
LAT-2; [18]), CMY-3, CMY-4, CMY-5, CMY-6 (= LAT-3;
[18]), LAT-1 (= LAT-4; [18]) (reviewed previously in
[19]), three recently identified CMY variants, CMY-7
[175], CMY-12 [176] and CMY-13 (GenBank Accession
number AAQ16660), and the recently reported CFE-1
[177]. CMY-2 has been reported in a variety of Salmo-
nella spp. [19, 178-180], E. coli [19, 179-182], Klebsiella
spp. [19, 176, 179, 180] and Proteus spp. [19, 179]. CMY-
4 has been reported in S. enterica servar Wein [140], E.
coli [19] as well as K. pneumoniae and P. mirabilis [19,
176]. CMY-5 and CMY-6 have been described in K. oxy-
toca and E. coli, respectively [19], and CMY-7 in both E.
coli [19] and S. enterica serovar Typhimurium [175]. The
lone examples of CMY-12 and CMY-13 reported to date
are found in P. mirabilis and E. coli, respectively, with
CMY-12 being chromosomal owing, presumably, to
transposon/plasmid mobilization [176]. Finally, the LAT
series has been described in both E. coli and K. pneumo-
niae [19]. 
Family C-2 includes CMY-1, CMY-8 through-11, MOX-
1, MOX-2 and FOX-1 through-6 [19] and appear to be
derived from the chromosomal AmpC b-lactamases of
Aeromonas spp. [183–185]. CMY-1, -9 and -11 are found
in E. coli [184, 186, 187] with CMY-1 and CMY-8 also
found in K. pneumoniae [19, 186]. Intriguingly, the CMY-
10 enzyme was described in a strain of E. aerogenes
[188], which is unusual given the natural occurrence of a
chromosomal AmpC enzyme in this organism. MOX-1
and MOX-2 have both been described only in K. pneu-
moniae [19, 189]. Organisms harbouring the FOX series
include K. pneumoniae (FOX-1 through -6) [19, 135,
185], E. coli (FOX-2 and FOX-4) [19] and K. oxytoca
[19].
The C-3 family includes the ACT-1 and MIR-1 enzymes
which, despite earlier suggestions that they originated
from the chromosomal enzyme of E. cloacae, appear in
fact to be most closely related to the chromosomal AmpC
of Enterobacter asburiae [190]. ACT-1 has been de-
scribed in K. pneumoniae [19, 135, 191] and MIR-1 in E.
coli [19], with the former occurring, in some instances, in
the chromosome, again suggestive of horizontal transfer

from another organism. Unlike most plasmid-borne
AmpC enzymes, plasmid-encoded ACT-1 in K. pneumo-
niae isolates was shown to be inducible [191].
The C-4 family includes DHA-1 (found in Salmonella
enteriditis and K. pneumoniae; [192]] and DHA-2 (found
in K. pneumoniae; [19]) and appear to have originated
from M. morganii [193, 194]. The DHA enzymes, like
some plasmid-borne ACT-1, are inducible [19, 195]. 
The lone example of the C-5 family is the ACC-1 enzyme
found in K. pneumoniae [19], S. enterica serovar Mban-
daka [196], E. coli [197] and P. mirabilis [197] and ap-
parently related to the chromosomal AmpC of H. alvei
[198, 199]. 

Carbapenemases

Carbapenems (e.g. imipenem, meropenem, biapenem,
panipenem, ertapenem) are an important class of b-lac-
tams owing to their stability to most b-lactamases (re-
viewed in [200]) and are of particular use in treating in-
fections associated with ESBL- and AmpC-producers. b-
lactamases capable of hydrolyzing carbapenems are
known, though comparatively rare and are found amongst
three of the four molecular classes of b-lactamases, A, B
and D (reviewed in [23, 24, 201]). An apparently novel
carbapenem-hydrolyzing b-lactamase not inhibited by ei-
ther EDTA or a serine b-lactamase inhibitor has been re-
ported in an imipenem-resistant isolate of Aeromonas
veronii biovar sobria, AVS-1 [202]. Carbapenemases can
occur naturally, often in environmental strains of limited
clinical significance, and can be acquired by clinically
relevant organisms where they can be plasmid or chro-
mosomally encoded. 

Class A carbapenemases
Class A b-lactamases with activity against carbapenems
are uncommon and are active site serine enzymes that are
inhibitable by available b-lactamase inhibitors (e.g.
clavulanate). These enzymes are able to hydrolyze some
penicillins, early (first- and second-)generation cepha-
losporins, imipenem (and sometimes meropenem) and
aztreonam. Examples include the chromosomal NMC-A
enzyme from E. cloacae, the SME-1 through -3 enzymes
from S. marcescens and IMI-1 from E. cloacae, and the
plasmid-encoded GES-2 from P. aeruginosa and KPC-1
from K. pneumoniae [24]. The crystal structure of NMC-
A reveals an enzyme with several structural differences in
the vicinity of the active site relative to other class A
(non-carbapenemase) enzymes, including additional
space in the region where e.g. carbapenems would need to
be accommodated [203]. Recently, a second plasmid-
encoded KPC enzyme, KPC-2, was reported in K. oxy-
toca [204], K. pneumoniae [36, 205] and S. enterica
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serovar Cubana [206]. A KPC-3 enzyme has also been
described, also in K. pneumoniae (GenBank accession
number AF395881). The KPC enzymes are active against
most b-lactams, including oxyiminocephalosporins and
imipenem. GES-2 is derived from the ESBL GES-1 from
which it differs by a single amino acid, and while it hy-
drolyzes imipenem much more effectively as a result, it is
still much less active than other enzymes of this class,
producing reduced but not insusceptibility in strains har-
bouring it [23, 24, 122]. Not surprisingly, the KPC (trans-
poson) and GES-2 (integron) enzymes are associated
with mobile genetic elements, with GES-2 one of only
two class A b-lactamases known to be integron associated
(the VEB-1 ESBL is the other) [24]. 

Class B metallo-bb-lactamases
Class B metal-requiring enzymes are divided into three
subclasses, B1-3 [207], all exhibiting resistance to com-
mercially available b-lactamase inhibitors but inhibitable
by metal ion chelators such as EDTA. This class of en-
zymes is of particular interest and concern owing to the
ability of many of these to hydrolyze and, thus, provide
resistance to virtually all classes of b-lactams, including
the carbapenems. Despite the lack of activity against
monobactams, the presence of additional b-lactamases
(e.g. chromosomal or acquired AmpC) tends to compro-
mise the use of these agents in metallo-b-lactamase-pro-
ducing strains. Naturally occurring, generally chromoso-
mal class B metallo-b-lactamases have been described in
a number of environmental species, most of which are of
limited clinical significance [23, 24, 208]. A number of
clinical Burkholderia cepacia isolates producing an in-
ducible metalloenzyme (PCM-I) that also shows prefer-
ential hydrolysis of carbapenems/imipenem have also
been described [208]. A limited number of B. fragilis iso-
lates have been shown to produce a chromosomal metal-
loenzyme, CcrA (a.k.a. CfiA) that provides resistance to
e.g. imipenem [209]. 
Acquired carbapenem-hydrolyzing metallo-b-lactamases
are generally of two types, IMP and VIM, are plasmid or
chromosome encoded and usually associated with inte-
grons carrying addition resistance genes. Enzymes of the
IMP series hydrolyze most b-lactams except monobac-
tams and were first described in a clinical strain of S.
marcescens from Japan [24]. There are currently 13 IMP-
type metallo-b-lactamases described in the literature
(IMP1-9 [23, 24], IMP-10 [210], IMP-11 (GenBank ac-
cession number AB07437), IMP-12 [211] and IMP-13
[212]). These have been described in a number of organ-
isms, particularly P. aeruginosa [210, 212–217] and A.
baumanii [214, 215, 217–219], but also P. putida [211,
217], K. pneumoniae [221], E. cloacae [222], Alcaligenes
xylosoxidans [210, 217], Shigella flexneri [23, 24], S.
marcescens [217] and Citrobacter youngae [23, 24],

mostly in Europe and the Far East, though IMP-7 has
been described in North America (Canada) [224].
Enzymes of the VIM series were first described in a P.
aeruginosa isolated from Italy and like the IMP enzymes
hydrolyze most b-lactams very well, again with the ex-
ception of monobactams [24]. Seven VIM-type enzymes
have been described to date (VIM-1 and -2 [23], VIM-3
[223], VIM-4 [224], VIM-5 (GenBank accession number
AY144612), VIM-6 (GenBank accession number
AY165025) and VIM-7 [225] mostly in Europe and the
Far East, though a VIM-7-carrying P. aeruginosa isolate
was recently reported in the US [225]. VIM type enzymes
have been described in several organisms including P.
aeruginosa [214, 217, 223–231], P. putida [217, 229,
232], Acinetobacter spp. [233], A. xylosoxidans [23, 24],
E. cloacae [234, 235], S. marcescens [236], K. pneumo-
niae [235, 237], E. coli [238] and C. fruendii [222] (see
additional references in [23, 24]). 
Recently, a third class of acquired metallo-b-lactamase,
SPM-1, was found in P. aeruginosa [239–241]. A chro-
mosomally encoded SHV-type enzyme (SHV-38) provid-
ing reduced susceptibility to ceftazidime and imipenem
in K. pneumoniae was also recently described [242]. This
is the first report of an SHV enzyme with imipenem hy-
drolytic activity.

Class D oxacillinases with carbapenemase activity
A limited number of class D enzymes with some activity
against carbapenems have been reported, mostly in A.
baumannii (e. g. OXA-23 through -27 [24, 201]) found in
Europe, South America and the Middle and Far East.
Chromosomal OXA-23 has also been reported in P. mira-
bilis [243], and a chromosome-encoded novel OXA vari-
ant with activity against carbapenems, OXA-40, has re-
cently been described in A. baumannii [244, 245]. Plas-
mid-encoded OXA-48 with activity against imipenem
has also been described in K. pneumoniae [246]. A re-
lated (98% identity) carbapenem-hydrolyzing class D en-
zyme, OXA-54, was shown recently to be chromosome-
encoded in Shewanella oneidensis and is proposed to be
the progenitor for carbapenem-hydrolyzing oxacillinases
[247]. These enzymes do not generally hydrolyze ex-
tended-spectrum b-lactams (OXA-40 has some activity
against ceftazidime) or aztreonam but are active against
oxacillin (OXA-27 being an exception). While class D
carbapenemases typically display weak activity against
carbapenems in vitro they are, nonetheless, associated
with carbapenem resistance in vivo, possibly owing to the
limited permeability of host strains. In contrast to most
class D oxacillinases, those with carbapenemase activity
are inhibited by one or more of the available b-lactamase
inhibitors. 
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Gram-positive and mycobacterial bb-lactamases

b-lactamases are generally uncommon in Gram-positive
organisms of clinical significance (e.g. S. pneumoniae
and Enterococcus spp. [248, 249]), although chromoso-
mal and plasmid-encoded (i.e. BlaZ) penicillinases are
prevalent in Staphylococcus aureus [250]. A plasmid-en-
coded enzyme of presumed staphylococcal origin, BlaZ,
has, however, been described in Enterococcus faecalis
[251]. While these enzymes are generally only active
against older-generation b-lactams, borderline or low-
level resistance to newer agents such as methicillin in S.
aureus has been attributed to hyperproduction of native
b-lactamases and/or production of a novel enzyme with
activity against methicillin [252]. Recent studies on
Bacillus anthracis reveal the presence of two chromoso-
mal b-lactamase genes, bla1and bla2 [253], encoding a
class A penicillinase and class B cephalosporinase with
activity against carbapenems, respectively [254]. Still,
these genes are expressed weakly if at all in most strains
[253], although b-lactamase-mediated resistance to peni-
cillins in this organism has been reported [255]. My-
cobacterial resistance to b-lactams is commonplace and
generally attributed to the production of b-lactamases by
these organisms [256, 257]. In Mycobacterium tubercu-
losis the major enzyme is a class A penicillinase [258], al-
though an enzyme with cephalosporinase activity has
also been reported in this organism and, indeed, other
mycobacteria [257, 258]. 

Target site mutations

Gram-negative organisms
Although b-lactamases are associated with resistance to
b-lactams in organisms such as H. influenzae and Neisse-
ria spp., increasingly, non-b-lactamase resistance to these
agents is seen in H. influenzae [259], Neisseria
gonnorhoeae [260] and Neisseria meningitidis [261],
possibly due to alterations in PBPs. Indeed, mutations in
PBP genes have been reported in b-lactam-resistant
strains of these organisms (H. influenzae [262–265], N.
gonorrhoeae [266–268] and N. meningitidis [269–271]),
including strains resistant to extended-spectrum ce-
phalosporins [263, 267, 268]. Interestingly, the PBP
genes (i.e. penA) of resistant Neisseria spp. often show a
mosaic-like structure reminiscent of b-lactam-resistant S.
pneumoniae, consistent with horizontal transfer of penA
sequences from e.g. other resistant Neisseria [267, 269].
Resistance to carbapenems owing to changes in PBPs has
been seen in A. baumanni [272] and P. mirabilis [273].
PBP changes responsible for b-lactam resistance in
anaerobes (e.g. B. fragilis group [274, 275] and Veil-
lonella spp. [276]), including resistance to extended-
spectrum b-lactams [275], have also been reported. Pro-

duction of altered PBPs with reduced affinity for b-lac-
tams is seen, too, in b-lactam-resistant S. dysenteriae
[277], P. aeruginosa [278] and Helicobacter pylori [279,
280]. 

Enterococci
The enterococci are intrinsically resistant to most b-lac-
tams, including the newer cephalosporins as a result of
production of a low-affinity PBP, PBP5 [281], although
high-level resistance to e.g. ampicillin in clinical isolates
of Enterococcus spp. is typically achieved by overpro-
duction (e.g. [282]) or mutation (e.g. [283, 284]) of this
PBP. Resistance to imipenem owing to hyperproduction
of an altered PBP5 with reduced affinity for this agent
has also been seen in E. faecium [285]. A b-lactam-re-
sponsive two-component sensor kinase-response regula-
tor, CroRS, was recently described in E. faecalis and
shown to be essential for PBP5-mediated b-lactam resis-
tance, although it was not required for PBP5 production
[286]. Recently, too, PBP5-independent high-level resis-
tance to ampicillin was confirmed in E. faecium as in-
volving a bypass of this otherwise essential PBP, as a re-
sult of its transpeptidase function being replaced by a b-
lactam-insensitive transpeptidase [287].

S. pneumoniae
b-lactamases are virtually unheard of in S. pneumoniae,
with resistance to these agents almost exclusively result-
ing from changes to the PBP targets of the b-lactams
[288–293], such changes decreasing the affinities of the
PBPs for b-lactams [292]. While point mutations in PBP
genes are associated with b-lactam resistance in lab iso-
lates, clinical isolates typically express PBPs whose
genes vary substantially from wild-type pbp genes, and
these so-called mosaic genes have been taken as evidence
of horizontal transfer of ready-made resistant genes that
have evolved in other Streptoccus spp. (reviewed in [248,
294]). Despite the substantial variation in sequence be-
tween the PBPs of susceptible and resistant isolates, re-
cent in vitro studies suggest that only a few mutations are
important for resistance [295–297]. This was confirmed
by the crystal structure of one of these, PBP 2X, bound to
cefuroxime, which highlighetd only a limited number of
residues as being directly related to resistance [298]. Un-
like S. aureus where production of a single, low-affinity
PBP is sufficient for resistance to virtually all b-lactams,
significant b-lactam resistance in S. pneumoniae is asso-
ciated with alterations to several (e.g. PBPs 1A, 2B and
2X, [289, 290]), and sometimes all of the organism’s six
endogenous PBPs [248, 294]. A specific mutation in
PBP2x, Met339Phe, has been reported in several highly
resistant strains that carry, as well, multiple mutations in
this and other PBPs. This mutation, alone and with a sec-
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ond mutation common in resistant strains, Thr338Ala,
has been shown to reduce susceptibility of the PBP to the
action of b-lactams, apparently owing to their alteration
of the stucture of the PBP2X active (i.e. b-lactam bind-
ing) site [297]. 
Resistance associated with expression of low-affinity
PBPs in S. pneumoniae is dependent upon functional
MurM, a muropeptide branching enzyme that works to-
gether with a similar enzyme, MurN, and whose inactiva-
tion compromises such resistance [299, 300]. The signif-
icance of peptide branching in the context of low-affinity
PBP production and b-lactam resistance is, however, still
unclear. As with E. faecium, b-lactam resistance associ-
ated with mutations in a two-component system, CiaHR,
has been noted, with resistance attributable to constitutive
expression of a functional CiaR response regulator [301].
ciaH mutations also have a negative impact on trans-
formability, a phenotype shared by another non-PBP mu-
tation associated with b-lactam resistance in S. pneumo-
niae, cpoA [248]. 

S. aureus
Although b-lactamases have been an important determi-
nant of b-lactam resistance in S. aureus, resistance to now
important b-lactams like methicillin results from the pro-
duction of a low-affinity PBP, PBP 2a (a.k.a. PBP 2¢),
whose low affinity for virtually all b-lactams renders me-
thicillin-resistant S. aureus (MRSA) pan-b-lactam resis-
tant. PBP 2a is encoded by the mecA gene found on a
novel mobile element, the 21- to 60-kb staphylococcal
cassette chromosome mec (SCCmec) that is found at a
unique site in the chromosome of MRSA (reviewed in
[302, 303]). SSCmec also carries the mecA regulator
genes, mecI and mecR1 (though these can be completely
or partially deleted), and the cassette chromosome re-
combinase (ccr) genes, ccrA and ccrB, responsible for
site-specific integration and excision of SSCmec, as well
as a number of open reading frames and pseudogenes of
unknown function and/or benefit. Significantly, some
SSCmec elements carry additional antibiotic (non-b-lac-
tam) resistance genes, which likely contributes to the
well-known multidrug resistance of MRSA [7, 34, 304,
305]. While horizontal transfer of SSCmec does occur
among staphylococci [305, 306], there appear to be host-
specific restrictions as regards stability and maintenance
of mecA in Staphylococcus spp. [307], which might ex-
plain the rather limited number of closely related MRSA
clonal complexes observed worldwide [304, 308]. 
The acquisition of SSCmec alone is, however, insuffi-
cient to provide for the level and spectrum of b-lactam re-
sistance seen in MRSA strains, such resistance typically
relying on mutations in the staphylococcal genome (but
not in SSCmec) [302, 303]. Several genes impacting me-
thicillin resistance in MRSA have been identified to date,

many of which are either regulatory or play a role (direct
or indirect) in peptidoglycan biosynthesis and turnover
and whose loss negatively impacts resistance (e.g. the
fem/fmt genes [303], pbpB [309], murE [310] and murF
[311]). Consistent with the apparent importance of pepti-
doglycan structure for expression of methicillin resis-
tance in MRSA, alterations in the terminal stem peptide
amino acid achieved in feeding studies markedly reduced
the methicillin resistance of a mecA-containing S. aureus
[312]. Recently, a two-component putative positive regu-
lator of cell-wall peptidoglycan synthesis, VraSR, was
shown to contribute the b-lactam resistance of MRSA
(and methicillin susceptible S. aureus), though methi-
cillin was not specifically examined – inactivation of
these genes decreased b-lactam resistance in both in-
stances [313]. Methicillin resistance independent of
mecA is also seen in S. aureus [7, 314] and may be ex-
plained by alterations in [252] or overproduction of [252,
315] other PBPs in this organism. 

Impermeability

The entry of hydrophilic antimicrobials such as b-lactams
into Gram-negative bacteria occurs via channels in the
outer membrane formed by porins [316]. Reduced outer
membrane permeability to b-lactams, then, as a result of
porin loss of or changes in porin structure can promote re-
sistance to these agents. Indeed, porin deficiency is a con-
tributing factor to b-lactam (including newer generation
cephalosporin) resistance in a number of organisms, in-
cluding E. coli, Proteus spp., P. aeruginosa, A. bauman-
nii, S. dysentariae, N. gonorrhoeae, S. marcescens and H.
pylori (see [142, 280, 317–319] and several references in
[320]), though it is most often seen in K. pneumoniae [46,
47, 320–322] and Enterobacter spp. [320, 323–325], usu-
ally in conjunction with expression of a b-lactamase. Re-
duced permeability is also a factor in the b-lactam resis-
tance seen in some clinical strains of M. smegmatis [326]
and possibly Bacteroides spp. [274, 275]. Porin defi-
ciency is an important determinant, too, of carbapenem
resistance/reduced susceptibility, particularly in P. aerug-
inosa where loss or mutation of the OprD porin is com-
mon in carbapenem-, especially imipenem-resistant
strains (see [327–329] and several references in [320]),
but also in E. aerogenes [324, 325], A. baumannii [142,
272, 330], K. pneumoniae [46, 47, 321], S. enterica
serovar Wien [140], S. dysentariae [320] and P. mirabilis
[320]. Intriguingly, recent observations that eluates from
siliconized latex urinary catheters enhance resistance of
P. aeruginosa to carbapenems are explainable by the loss
of OprD expression in the presence of these eluates [331,
332]. Moreover, it has been shown that it is the zinc pre-
sent in these eluates which downregulates OprD expres-
sion [332, 333], such downregulation being related some-
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how to the activity of the CzcRS two-component system
that controls expression of the CzcCBA heavy metal ef-
flux system in this organism [333]. Indeed, 20% of in
vitro-selected imipenem-resistant strains in one study
were coresistant to zinc and carried a mutation in the
CzcS protein, and this mutation was responsible for in-
creased expression of the efflux system and decreased
production of OprD [333]. This is reminiscent of nfxC-
type multidrug resistant strains of P. aeruginosa, which
simultaneously overproduce the MexEF-OprN multidrug
efflux system and shut down OprD production, the latter
being responsible for the imipenem resistance of these
mutants as well [334]. 

Efflux 

Efflux has long been appreciated as a mechanism of an-
timicrobial resistance, with five families of bacterial ef-
flux systems described to date: the major facilitator su-
perfamily (MFS); the ATP-binding cassette (ABC) fam-
ily; the resistance-nodulation-division (RND) family; the
multidrug and toxic compound extrusion (MATE) fam-
ily; and the small multidrug resistance (SMR) family (re-
viewed in [334, 335]). Members of the RND family,
which are almost exclusively chromosomal and widely
distributed in Gram-negative bacteria, appear to be the
most significant as regards export of and, thus, resistance
to clinically important antimicrobials [334]. Moreover,
several of these in Campylobacter jejuni, E. coli, N. gon-
orrhoeae, P. aeruginosa, P. putida, S. enterica serovar Ty-
phimurium and S. maltophilia accommodate b-lactams
[334], including third (e.g. cefotaxime; MexAB-OprM
(P. aeruginosa) [336]) and fourth (e.g. cefepime and cef-
pirome; MexCD-OprJ (P. aeruginosa) [336]) generation
cephalosporins and carbapenems (e.g. several Mex sys-
tems of P. aeruginosa [337]). While MexAB-OprM,
MexCD-OprJ and MexXY-OprM all demonstrated some
ability to promote resistance to carbapenems, none of
these had any effect on imipenem or biapenem resistance
[337], and only MexAB-OprM has been implicated in
carbapenem resistance in clinical strains [329]. The re-
cent observation that in vitro selected imipenem-resistant
isolates of E. aerogenes demonstrate increased produc-
tion of the AcrA component of this organism’s AcrAB-
TolC efflux system has been taken as evidence for an ef-
flux contribution to resistance [338], though this still
needs to be verified. An observed increase in OprM in
several ticarcillin-resistant isolates of P. aeruginosa also
supports a contribution by MexAB-OprM and/or
MexXY-OprM to resistance in these strains [164]. Simi-
larly, the recent demonstration that the cefuroxime resis-
tance of a clinical E. coli isolate was modestly reduced by
the efflux inhibitor MC-201,110 suggested that efflux
was a contributing factor for this resistance [339]. Efflux

in the form of MexAB-OprM also contributes substan-
tially to the noted intrinsic resistance of P. aeruginosa to
penems, though both the chromosomal AmpC b-lacta-
mase and the outer membrane barrier contribute as well
[340, 341]. 

Overcoming bb-lactam resistance

One response to the continuing problem of b-lactam re-
sistance in pathogenic bacteria, particularly when it is
coupled with multidrug resistance, is to develop entirely
new drugs active against entirely novel targets or to in-
vestigate novel therapies unrelated to antimicrobials (see
[342] for a review of novel approaches to tackling mul-
tidrug resistance). A number of agents have, e.g. been/are
being developed for treating MRSA, including oxazolidi-
nones (e.g. linezolid), glycopeptides (e.g. oritavancin),
streptogramins (e.g. quinupristin/dalfopristin), glycycy-
clines (e.g. tigecycline) and lipopeptides (e.g. dapto-
mycin) (reviewed in [343, 344]). Still, given their proven
safety and efficacy, b-lactams remain a popular and use-
ful class of agents whose continued use will, however, ne-
cessitate changes to overcome existing resistance mecha-
nisms, particularly b-lactamases in Gram-negative bacte-
ria and low-affinity PBPs in Gram-positive [345]. 

bb-lactamases 
Much of the history of b-lactam development has been a
response to b-lactamase-mediated resistance, with cur-
rently effective agents like carbapanems (imipenem,
meropenem, ertapenem, biapenem, panipenem) and pen-
ems (e.g. faropenem) useful specifically because of their
stability to most b-lactamases [4, 200]. Inactivation of b-
lactamases is also a proven approach, with b-lactam/b-
lactamase inhibitor combinations often effective in treat-
ing infections caused by b-lactamase-producing organ-
isms [346]. Thus, targeting these enzymes, particularly
the broad-spectrum class C serine and class B metalloen-
zymes, will remain an active area of investigation [342,
347]. Indeed, recent reports highlight a number of novel
inhibitors, some of which are themselves b-lactams
[348–351], of class C [348–356] and class B [357–363]
enzymes (see also several references in [342]). Several of
the class C inhibitors have demonstrated activity against
class A enzymes, including ESBLs, [342, 349–351, 355,
356] and class D enzymes [350, 356], and potentiate the
activity of b-lactams against b-lactamase-producing or-
ganisms [342, 349, 350, 353, 354, 364]. The current
availability of a number of b-lactamase crystal structures
bound to inhibitors (e.g. [149, 361, 365, 366]) should also
assist the rational structure-based design of inhibitors.
The use of so-called dual action hybrid antimicrobials in
which b-lactams are fused to another antimicrobial such
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that b-lactamase cleavage of the b-lactam component re-
leases the latter (reviewed in [367]) continue to be ex-
ploited to provide for a means of not just overcoming but
actually exploiting b-lactamase production. A recent pa-
per highlights the utility of two such dual action ‘pro-
drugs’ in which the biocide triclosan is fused to a
cephalosporin, and b-lactamase-dependent killing of
Gram-positive and Gram-negative bacteria expressing
class A or class C enzymes is seen [368]. 

PBPs
Given the importance of PBP changes for b-lactam resis-
tance in Gram-positive organism, particularly methi-
cillin-resistance in S. aureus, much of the focus in over-
coming b-lactam resistance in these organisms relates to
developing agents with improved binding to the low-
affinity PBPs. Several novel cephalosporins with anti-
MRSA activity (due to increased PBP binding) (reviewed
in [343, 345, 369]) have been reported to date (e.g. BAL-
9141 [370], RWJ-54428 [371, 372], S-3578 [373, 374],
BMS-247243 [375], CP6679 [376], LB 11058 [377] and
several anti-MRSA cephems being developed by Bristol-
Meyers Squibb [378, 379]) many of which show activity
against enterococci and/or penicillin-resistant S. pneumo-
niae [345, 374, 375, 377, 380]. Significantly, since the
majority of staphylococcal clinical isolates produce b-
lactamase, these are stable to hydrolysis by this enzyme.
Novel carbapenems with anti-MRSA activity [369, 381,
382] have also been described with many, again, active
against enterococci and penicillin-resistant pneumococci
[382]. Still, the observation that resistance to an experi-
mental carbapenem with high affinity to PBP 2a could be
selected in vitro as a result of mutation in PBP 2a [383] is
worrying, and suggests that PBP 2a-mediated resistance
to b-lactams that bind with high affinity may be a prob-
lem in the future. Significantly, the available crystal
structures of low-affinity PBPs such as PBP5 of E. fae-
cium [384] and PBP 2a from MRSA [385] should provide
insights to the features of any newly developed b-lactams
that will be important for high-affinity binding and, thus,
assist the development of agents that overcome low-affin-
ity PBP-mediated resistance. Finally, given the therapeu-
tic success of b-lactams, the search is now on for novel
agents that also target PBPs (e.g. [386–389]).

Others
A number of novel oxapenems lacking intrinsic antimi-
crobial activity have been shown to potentiate b-lactam
activity in enterococci and S. aureus, including MRSA,
via an as yet unknown mechanism [350]. Similarly,
flavones have been shown to intensify MRSA’s suscepti-
bility to b-lactams via an as yet unknown effect that is,
however, independent of any direct impact on b-lacta-

mase or PBP2a and presumably involves an action on
some mechanism essential for expression of the MRSA
phenotype [390, 391]. Epigallocatechin gallate [392–
394] and corilagin [395], both tea extracts, also potentiate
the activity of b-lactams against MRSA although, again,
the mechanism(s) are not yet fully elucidated. Intrigu-
ingly, phenothiazines reduce methicillin (oxacillin) MICs
of MRSA, and while these compounds have been shown
to adversely impact drug efflux systems, it is not entirely
clear whether the reduced methicillin resistance was re-
lated directly or indirectly to efflux inhibition [396]. 

Conclusions

Bacterial resistance to b-lactams has historically compro-
mised use of these agents in treating infectious disease
and continues to do so, necessitating the continued devel-
opment of new b-lactams capable of overcoming this re-
sistance. Clearly, however, the development of new
agents must be informed by strategies for their use in
ways that will minimize the selection, first, and spread,
second, of resistance. The observation, for example, that
use of extended-spectrum cephalosporins selects for
ESBL-producing Enterobacteriaceae [397] and that re-
duced use of such agents (replaced by equally effective
fourth-generation cephalosporins) can correspondingly
reduce the incidence of ESBL producers [398, 399] high-
lights the importance of informed use of b-lactams in
limiting resistance. Because of their broad spectrum of
activity and their potential for spread, plasmid and/or in-
tegron-associated ESBL, AmpC and metallo-b-lacta-
mases are of particular concern, with methods for accu-
rately screening/detecting these (e.g. [21, 22, 400]) in-
creasingly vital to inform appropriate antimicrobial
therapy and infection control measures. Similarly, given
the increased mortality associated with serious infections
due to MRSA (vs. MSSA) (e.g. [401]), accurate and rapid
identification of MRSA (e.g. [402–404]) is also needed
to inform appropriate drug therapy and control measures.
With appropriate use and monitoring of resistance b-lac-
tams will continue to play an essential role in antimicro-
bial chemotherapy.
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