
All in the family: aldose reductase and closely related aldo-
keto reductases
J. M. Petrash

Washington University School of Medicine, Department of Ophthalmology and Visual Sciences, Department of 
Genetics, 660 South Euclid Avenue, Box 8096, St. Louis, Missouri 63110 (USA), Fax: +1 314 362 3638,
e-mail: petrash@wustl.edu

Abstract. Aldose reductase catalyzes the first step in the
polyol pathway and is thought to be involved in the patho-
genesis of diabetic complications. In addition to polyol
synthesis, aldose reductase may have multiple other ac-
tivities that intersect with signal processing and oxidative
defense mechanisms. Multiple aldose reductase-like pro-
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teins have been discovered to have structures and cat-
alytic properties that broadly overlap those of aldose re-
ductase. This chapter will summarize new insights into
properties and functions of aldose reductase and closely
related members of the aldo-keto reductase enzyme su-
perfamily.
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Introduction

Aldose reductase (AR) catalyzes the NADPH-dependent
conversion of glucose to sorbitol, the first step in polyol
pathway of glucose metabolism (fig. 1). The pathway is
completed by sorbitol dehydrogenase, which catalyzes the
NAD-linked oxidation of sorbitol to fructose. Thus, the
polyol pathway results in conversion of glucose to fructose
with stoichiometric utilization of NADPH and production
of NADH. Under normal glycemic conditions, only a
small fraction of glucose is metabolized through the
polyol pathway, as the majority is phosphorylated by hex-
okinase, and the resulting product, glucose-6-phosphate,
is utilized as a substrate for glycolysis or pentose phos-
phate metabolism. However, in response to chronic hyper-
glycemia, glucose flux through the polyol pathway is
markedly increased and may account for up to 33% of glu-

cose utilization in some tissues [1]. Galactose is also a
substrate for the polyol pathway, but the corresponding
keto sugar is not produced because sorbitol (polyol) dehy-
drogenase is incapable of oxidizing galactitol [2–3]. In-
terest in the polyol pathway was stimulated by the obser-
vation that sorbitol levels were markedly increased in tar-
get tissues associated with diabetic complications [4, 5]. If
polyol accumulation, either directly or indirectly, plays a
role in the pathogenesis of diabetic complications, the cat-
alyst of the first step in polyol synthesis would be an ob-
vious and attractive therapeutic target for drug inhibitors.
Thus, much effort has been focused on gaining a better un-
derstanding of the catalyst, AR, and in developing thera-
peutic strategies to block sorbitol synthesis in diabetic tis-
sues. The goal of this review is to summarize new findings
on AR, particularly in light of new insights from cell and
molecular biology studies. In addition, aldose reductase

Figure 1. The polyol pathway of glucose metabolism. AR catalyzes the NADPH-dependent reduction of glucose to sorbitol. Sorbitol 
dehydrogenase oxidizes sorbitol to fructose in an NAD+-linked reaction.



will be discussed in the context of its similarities and dif-
ferences with structurally related members of the aldo-
keto reductase (AKR) enzyme superfamily. 

Structural and functional features of AR

Most organisms contain a large number of structurally re-
lated enzymes that catalyze the pyridine nucleotide-de-
pendent reduction of carbonyl groups. Examples include
aldose and aldehyde reductases, which are responsible for
NADPH-linked formation of alcohol products from aldo
and keto sugars, and aldehydic functional groups of aro-
matic and aliphatic hydrocarbons [6–8], hydroxysteroid
dehydrogenases, which catalyze steroid conversion and
detoxification of polycyclic aromatic hydrocarbons [9],
and prostaglandin synthases [10]. Because of overlapping
substrate and coenzyme specificity, a generally broad
pattern of tissue distribution and similarities in subunit
mass, there are many cases where identical gene products
having been assigned different names and inferred func-
tions. For example, the same protein has been purified
and studied by different investigators as AR, 20a
hydroxysteroid dehydrogenase and prostaglandin syn-
thase [10–12]. Primary structural data produced from
cloning and genome sequencing efforts over recent years
have made it possible to minimize if not eliminate the ap-
parent redundancy in enzyme nomenclature. These en-
zymes are now categorized into functionally and evolu-
tionarily related groups based on their genetic origins
[13, 14]. Thus, the superfamily of AKRs is organized into
a hierarchy of families (<40% amino acid identity with
other families) and subfamilies (>60% identity among
constituent members). A web site created to post cur-
rently recognized members of the AKR  superfamily may
be viewed at www.med.upenn.edu/akr/
AR may be considered the prototypical enzyme of the
AKR superfamily. The enzyme comprises 315 amino
acid residues and folds into a b/a-barrel structural motif
with the catalytic active site situated in the barrel core
[15, 16]. The nucleotide cofactor binds in an extended
conformation at the top of the b/a barrel, with the
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nicotinamide ring projected down in the center of the 
barrel and pyrophosphate straddling the barrel lip. The 
reaction mechanism of AR in the direction of aldehyde
reduction follows a sequential ordered mechanism in
which NADPH binds first, followed by aldehyde sub-
strate binding (fig. 2). Binding of NADPH induces a con-
formational change (E•NADPH Æ E*•NADPH) that in-
volves hinge-like movement of a surface loop so as to
cover a portion of the coenzyme in a fashion similar to a
safety belt. The alcohol product is formed by transfer of
the pro-R hydride of NADPH to the re face of the sub-
strate’s carbonyl carbon. Following release of the alcohol
product, a second conformation change is required
(E*•NADP+ Æ E•NADP+) in order to release the oxi-
dized coenzyme. Elegant kinetic studies showed that the
conformation change required for NADP+ release repre-
sents the rate-limiting step in the direction of aldehyde re-
duction [17–19]. As the rate of coenzyme release limits
the catalytic rate, it can be seen that perturbation of inter-
actions that stabilize coenzyme binding can have dra-
matic effects on Vmax [20] (see below). 
Location of the C-4 of the nicotinamide ring at the base
of the hydrophobic cavity defined the enzyme’s active
site. Three residues within a suitable distance of the C-4
were identified as the potential proton donor, including
Tyr-48, His-110 and Cys-298. Evolutionary, thermody-
namic and molecular modeling considerations, which im-
plicated Tyr-48 as the proton donor, were borne out by the
results of mutagenesis studies [16, 21, 22]. A hydrogen-
bonding interaction between the phenolic hydroxyl group
of Tyr-48 and the ammonium side chain of Lys-77 is
thought to help to facilitate hydrogen transfer [16]. Lys-
77 is in turn salt linked to carboxylate of Asp-43. This
general arrangement is conserved among other AKR sub-
family enzymes whose structures have been solved, in-
cluding AR/AKR1A1 [23], 3a-hydroxysteroid dehydro-
genase AKR 1C9 [24], FR-1 AKR1B8 [25] and CHO 
reductase AKR1B9 [26]. While the overall structural 
features of the AKR family members are well conserved,
subtle differences near the C-terminal domain are
thought to be responsible for differences in substrate
specificity among closely related enzymes (see below).

Figure 2. AR follows a sequential ordered reaction mechanism. A large conformational change involving movement of a loop akin to a
safety belt occurs after binding of NADPH to free enzyme (E•NADPH Æ E*•NADPH) and prior to release of NADP+ (E*•NADP+ Æ
E•NADP+). 



General kinetic features
AR has been isolated and studied from a variety of
species and tissues. Placenta and muscle are typical hu-
man tissue sources for enzyme purification [27–29], al-
though enzyme levels may be highest in the adrenal gland
[30]. Kinetic and structural properties appear to be con-
sistent regardless of tissue source. Since recombinant AR
produced in Escherichia coli-based bacterial expression
systems is essentially identical to the native enzyme puri-
fied from tissues or cultured cells [31–34], most studies
now utilize the recombinant enzyme for biochemical, ki-
netic and structural studies.
AR exhibits a broad substrate specificity, reducing the
aldehyde group of aldoses, aliphatic and aromatic alde-
hydes, and to a lesser extent keto groups, from aromatic
and aliphatic ketones. Major endogenous substrates
linked to metabolic diseases are glucose and galactose,
which are converted to sorbitol and galactitol, respec-
tively. Reactive sugars and trioses derived from aldohex-
oses, including methylglyoxal, glucosone and deoxyglu-
cosone, are excellent substrates for AR [35]. Indeed,
methylglyoxal is one of the best physiological substrates
identified so far [36]. Several investigators have noted a
marked preference of AR for hydrophobic substrates, in
apparent contrast to what one would expect for an en-
zyme associated with metabolic disturbances involving
aldo sugars [28, 37]. Endogenous substrates with marked
hydrophobic character have been identified recently, in-
cluding steroids and precursors [12, 38–40], norepineph-
rine catabolites [41], retinal isomers [42] and lipid-de-
rived aldehydes [43].
In relative terms, glucose is a poor substrate for AR. The
apparent Km value for glucose has been reported by vari-
ous groups to be in the range of 50–200 mM, well above
normal physiological levels [29, 34] but not unreasonable
considering that the reducible (acyclic carbonyl species)
form of glucose represents less than 0.1% of the substrate
population. Nevertheless, the catalytic efficiency of al-
dose reductase is approximately four orders of magnitude
lower for D-glucose than for lipid-derived aldehydes, in-
cluding 4-hydroxy-2-nonenal [35, 44]. The poor apparent
kinetic efficiency of AR with glucose suggests that the
enzyme is maximally active only when intracellular hex-
ose concentrations rise to abnormally high levels. That
glucose is an endogenous substrate of AR has been con-
vincingly demonstrated in a variety of experimental set-
tings. In diabetic animals, sorbitol production correlates
with tissue levels of AR – low levels of sorbitol accumu-
late in the diabetic mouse lens, which contains low levels
of AR [45]. In contrast, rat and gerbil lenses, which are
endowed with an abundance of AR, accumulate patho-
logical levels of polyols when exposed to high sugar lev-
els [46]. Transgenic overexpression of the AR gene
causes polyol accumulation in targeted tissues following
diabetes induction [47, 48]. The opposite effect is ob-

tained when the AR gene is knocked out; sorbitol pro-
duction in the kidney is essentially eliminated in AR-null
mice [49]. On the basis of these observations, there seems
little doubt that AR is an in vivo catalyst of polyol syn-
thesis.

Inhibitor binding
Structural studies of the AR holoenzyme complexed with
drugs revolutionized our understanding of interactions
that occur to stabilize inhibitors in the enzyme active site
[50–52]. Most tight-binding AR inhibitors (ARIs) have a
polar group, usually a carboxylate, tethered from a hy-
drophobic core contributed by one or more ring struc-
tures. Inhibitors bind with their polar head groups ori-
ented close to the pyridine ring, usually forming hydro-
gen bonding interactions involving residues Tyr-48,
His-110 and Tyr-111. Extensive hydrophobic interactions
between inhibitors and residues that line the deep hy-
drophobic active site cavity help to stabilize the ternary
enzyme-coenzyme-inhibitor complex. Structural details
of inhibitor binding and interactions will be addressed 
in greater length in other chapters in this Multi-author 
review.

Posttranslational regulation of AR activity
Conflicting reports have been made on whether AR ac-
tivity is subject to posttranslational regulation, and in par-
ticular whether the enzyme is activated in diabetic tissues.
Several investigators have reported evidence for an acti-
vated form of AR, distinguishable from the native en-
zyme form by differences (typically increases) in Km for
aldehyde substrates and by a marked reduction in sensi-
tivity to ARIs [53–57]. Of potential physiological impor-
tance, levels of the activated form were found to be ele-
vated in diabetic tissues [53]. Activated enzyme forms are
generally less susceptible to inhibition by ARIs, which
suggests that the therapeutic effectiveness of such drugs
would be compromised if a large fraction of the enzyme
underwent conversion to the activated form.
Hints that disulfide-mediated posttranslational modifi-
cations could play a role in enzyme activation came from
studies which demonstrated that activation was coinci-
dent with a loss of reactive thiol groups, presumably
through formation of a disulfide bond [58, 59]. Treat-
ment of the AR apoenzyme with thiol-modifying agents
such as iodoacetic acid (IAA) or N-ethylmaleimide
(NEM) causes an increase in Km for most substrates and
a decrease in sensitivity to inhibition by ARIs. These
functional changes are largely prevented if the enzyme is
complexed with NADP(H) prior to treatment with mod-
ifying agents. Sequencing of peptides containing cys-
teine side chains covalently modified by treatment of the
enzyme with iodoacetic acid revealed that Cys-298 was
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a highly reactive cysteine group [60]. Crystallography
studies revealed that of the six cysteine residues in hu-
man AR, three (namely Cys-80, Cys-298 and Cys-303)
were accessible to solvent in the binary enzyme-NADPH
complex [61]. Of these, only Cys-298 was located in suf-
ficient proximity to the active site to be a candidate cat-
alytic side chain. Conversion of Cys-298 to serine
(C298S) or alanine (C298A) resulted in an enzyme form
that was resistant to modification with reagents that are
known to cause functional changes in enzyme activity
[34, 62]. Cys-298 is also a site for thiolation of AR by ox-
idized glutathione [63]; glutathiolated AR is catalytically
inactive, most likely due to blockade of the catalytic site
due to steric interference and interactions between the
glycyl carboxylate of glutathione and His-110 at the AR
active site [63]. Proximity of Cys-298 to the active site
has been demonstrated by affinity-labeling studies [38].
For example, treatment of AR with an alkylating sub-
strate analog, 16a-bromoacetoxyprogesterone, resulted
in a time- and concentration-dependent loss of enzyme
activity. However, a C298S mutant was insensitive 
to inactivation by this affinity-labeling reagent [38]. 
4-Hydroxy-2-nonenal modifies AR predominantly at 
the Cys-298 position, resulting in an enzyme form with
reduced sensitivity to AR inhibitors [43]. 
Recent evidence suggests that nitric oxide (NO), acting
through a posttranslational mechanism, could be a regu-
lator of AR activity. Treatment of AR with NO donors
such as diethylamine NONOate causes a time- and con-
centration-dependent increase in activity by a mechanism
consistent with direct nitrosation of the enzyme at a sin-
gle site [64, 65]. Mutagenesis studies revealed that the
likely site of NO-modification was at Cys-298. Rather
than activate, S-nitroso-glutathione (GS-NO) causes inhi-
bition of the enzyme by a mechanism that most likely in-
volves formation of a mixed disulfide. Electrospray mass
spectroscopic analysis suggests that the mixed disulfide
is formed between glutathione and Cys-298 [66]. These
results are consistent with other studies which showed
that formation of a mixed disulfide between glutathione
and AR (at position Cys-298) results in loss of enzyme
activity [63]. Results from animal studies agree with the
in vitro experiments carried out with purified recombi-
nant proteins. Treatment of rat aortic tissues with NO
donors, which generate S-nitroso-glutathione, leads to a
loss of AR activity and a marked reduction in sorbitol
synthesis [64, 67, 68].
As summarized above, several lines of evidence point to
Cys-298 as an important regulatory site on AR. When
complexed with NADP, AR is less susceptible to modi-
fication by several different agents, including glu-
tathione, NO and 4-hydroxy-2-nonenal (HNE). This 
suggests that the cysteine side chain is involved with sta-
bilizing the coenzyme in such a way that the reactive
thiol group becomes inaccessible. Due to tight binding

affinity, most endogenous AR will be complexed with
NADP(H) in vivo. Therefore, the enzyme should be 
susceptible to modification through Cys-298 only during
a catalytic cycle when nucleotide exchange occurs.
Therefore, endogenous regulators that act through 
Cys-298 should be most effective when substrate levels
rise to a sufficient level to stimulate catalytic turn-
over.

AR in metabolism and signaling

Current evidence suggests that AR contributes to meta-
bolic imbalances associated with diabetes and its compli-
cations in the eye and peripheral nervous system [69].
While it is generally accepted that AR-mediated patho-
genesis is dependent on chronically elevated ambient
hexose levels, such as in diabetes mellitus and galac-
tosemia, we still do not know what beneficial role(s) AR
fulfills in the cell when hexose levels are normal. AR
gene expression is widespread, as evidenced by the pre-
sence of gene transcripts in a large number of human 
tissue libraries constructed for analysis by expressed 
sequence tag (EST) or serial analysis of gene expression
(SAGE) techniques. Interested readers can browse to the
UniGene Cluster Hs.75313 Homo sapiens at http://www
.ncbi.nlm.nih.gov/UniGene/ for a current listing of com-
plementary DNA (cDNA) sources in which AR is repre-
sented. That AR gene expression is so broadly distributed
suggests that the enzyme might function physiologically
as a general housekeeping enzyme under normal condi-
tions. In addition, new evidence points to a potential role
for AR in cytokine-mediating signaling processes. The
following sections will summarize new information on
potential physiological roles for AR in euglycemia.

Osmotic regulation
The kidney is one of the richest tissue sources of AR, with
most of the enzyme localized in the medullary portion
[70], from which quantities of the enzyme have been iso-
lated for biochemical study [71–73]. Sorbitol is a non-
perturbing osmolyte in kidney inner medullary cells,
where its synthesis, along with other osmolytes such as
inositol, glycerophosphorylcholine and betaine, func-
tions to counterbalance the hyperosmotic extracellular
fluids during antidiuresis [74–76]. The functional conse-
quence of AR expression in kidney medulla was made
clear when it was discovered that exposure of a line of re-
nal papillary epithelial cells to increased extracellular os-
molarity stimulated an increase in intracellular sorbitol
[77]. Studies showed that AR gene expression in a variety
of different types of tissue culture cells, in addition to kid-
ney-derived cells, is strongly induced under hyperos-
motic conditions [78–81]. Transcriptional induction
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leads to an accumulation of enzyme protein and sorbitol
synthesis [82, 83]. To explore the relative importance of
AR-mediated sorbitol synthesis to osmoregulation, a
gene knockout approach has been taken. Kidneys of AR
knockout mice are morphologically normal; however,
these mice are unable to concentrate their urine to normal
levels [49, 70]. At this point, it is not clear why the ab-
sence of AR (and presumably its metabolic product sor-
bitol) leads to a defect in water resorption, as sorbitol
constitutes only ~2% of the total osmolality of the wild-
type mouse kidney [49]. Aida and co-workers have spec-
ulated that elevated serum and urinary levels of the diva-
lent cations calcium and magnesium observed in AR-null
mice may play a role, but a mechanism linking divalent
cations and diabetes insipidus is as yet undetermined
[70]. Other factors associated with water resorption, such
as response to the antidiuretic hormone arginine vaso-
pressin (AVP) or function of aquaporin 2, have been ruled
out as factors in the mechanism of the diabetes insipidus
phenotype [49]. It is interesting to note that while ablation
of the AR gene results in this defect in kidney function in
mice, no such phenotype has been reported when animal
models from other species (rat) are treated with ARIs.
This suggests either that ARIs are not sufficiently effec-
tive to reduce sorbitol levels enough to cause a defect in
urinary concentration, or that other mechanisms, not pre-
sent in the mouse kidney, are able to functionally com-
pensate for the loss of AR activity.

Detoxification
While AR is thought to play a major role in the synthesis
of sorbitol as an osmolyte in the kidney medulla, its dis-
tribution among tissues unaffected by extracellular os-
motic stress suggests an alternate metabolic role. In addi-
tion, the marked hydrophobic nature of the active site is
unusual for an enzyme thought to be involved with me-
tabolism of aldo sugars. While the catalytic preference of
AR for hydrophobic substrates, and sensitivity to inhibi-
tion by fatty acids, was observed in early studies [37], ap-
proximately 3 decades passed before in vitro studies
showed that HNE was a probable endogenous substrate
[35, 84]. HNE is derived from the oxidation of arachi-
donic acid and in most cells is converted to a glutathione
conjugate. Remarkably, AR is able to reduce the free
aldehyde as well as its glutathione conjugate [85–87].
Recent studies have shown that AR is the major oxidore-
ductase responsible for conversion of HNE to HNE in the
heart [43, 88]. Other byproducts of oxidative stress, such
as methylglyoxal, which is a potent protein crosslinking
agent, and 3-deoxyglucosone [89], have been shown to be
excellent substrates for AR [36, 90]. These studies sug-
gest that AR could fulfill a role as an oxidative defense
protein. In addition to its ability to detoxify lipid-derived
aldehydes, AR may be involved in detoxification of envi-

ronmental toxins such as acrolein [91]. Treatment of tu-
mor cells with an ARI enhances the cytotoxic effects of
some anticancer drugs such as cisplatin and doxorubicin,
which suggests that AR is involved in the metabolic in-
activation of these drugs or their by products [92].
Grimshaw has offered compelling arguments that kinetic
and thermodynamic properties endow AR with unique
abilities to function as an NADPH-dependent AKR [93].
The large, accommodative active site cavity also makes
the enzyme suitable to react with a broad range of poten-
tially toxic aromatic and aliphatic aldehydes [16].

Protein kinase C activation
Mounting evidence suggests that AR interacts in some
way with signaling cascades involving protein kinase C
(PKC). Activation of the diacyl glycerol (DAG)-PKC
pathway is thought to be a key factor in the pathogenesis
of vascular complications of diabetes [94]. Cultured hu-
man kidney mesangial cells demonstrate elevated syn-
thesis of transforming growth factor (TGF-b) when ex-
posed to high glucose (33 mM). Treatment of human kid-
ney mesangial cells with epalrestat, a potent ARI,
prevents the glucose-induced activation of PKC. Direct
enzyme measurements showed that epalrestat prevented
the appearance of membrane-associated (activated) PKC
[95]. In a different experimental setting, Ramana et al.
[96] evaluated the effect of AR inhibition on tissue
necrosis factor (TNF-a)-mediated rat vascular smooth
muscle cells (VSMC) growth. They demonstrated that
induction of nuclear factor kappa B (NF-kB) by TNF-a
in the rat aorta can be blocked by ARIs. Blockade of 
NF-kB (inhibitor of NF-kB) activation was associated
with a reduction in Ik-Ba phosphorylation and a reduc-
tion in NF-kB translocation from cytoplasm to nucleus.
PKC activation, which occurs downstream of TNF-a re-
ceptor activation, was also blocked by ARIs. In concor-
dance with work carried out in mesangial cells, these re-
sults suggest that AR, either directly or through an enzy-
matic product, may be an obligatory requirement for
activation of PKC. Direct activation of PKC by the phor-
bol ester PMA was not inhibited by an ARI, indicating
that the inhibitory effect was taking place upstream of
PKC. This effect is not limited to vascular cells, as es-
sentially the same effects of AR ablation were observed
in a transformed lens epithelial cell line, HLE-B3 [97].
Possible interactions between PKC-b and the polyol
pathway were observed also in a study of rat aortic
smooth muscle cells. Glucose-induced cellular hyper-
proliferation and PKC-b activation were effectively in-
hibited by epalrestat and the PKC-b inhibitor LY333531
[98]. Intriguing new evidence suggests that AR itself
may be a direct substrate of PKC. Treatment of cells with
potent stimulators of PKC such as bryostatin-1 resulted
in phosphorylation of AR. Studies with recombinant AR
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demonstrated that the PKCa isoform was the most 
efficient, while bII and e isoforms were also able to
phosphorylate AR [99]. The functional consequences of
AR phosphorylation are not yet known. 

Genetic complexity of AR and related enzymes

Multiplicity of AKR1B genes
Nucleotide sequencing of complementary DNA libraries
and clones constructed from human, rat and mouse tis-
sues have provided direct evidence that the AKR1B sub-
family of AKRs contains several proteins with very high
structural similarity to AR. A list of the genes and their
corresponding GenBank accession numbers are shown in
table 1. Two human AKR1B genes, encoding AR
(AKR1B1) and small intestine reductase/AR-like protein
1 (AKR1B10), are located within about 68 kilobases of
each other in opposite orientations on chromosome 7q35.
Each gene is organized into 10 exons, with the AR gene
covering 17.1 kilobases and the HSIR/ARL-1 gene 
covering almost 14 kilobases (fig. 3). Similarly, the 
two rat AKR1B genes, AR and AR-like protein, are lo-
cated on chromosome 4. The mouse genome contains
three transcriptionally active AKR1B genes: AR, FR-1
and MVDP. They are tandemly arrayed on chromosome 6
in a region syntentic to human chromosome 7q35 (fig. 3).
Primary structures of the selected AKR1B polypeptides
are shown in figure 4. It can be readily appreciated 
that within a given species, there is a high degree of
amino acid identity over most of the sequence. Major ob-
servations that led to the identification of the newly rec-
ognized AKR1B genes are summarized in the following
sections.

FR-1
Winkles was the first to recognize that expression of
some AKRs can be induced by mitogens [100]. Differen-
tial display analysis of murine fibroblasts following treat-
ment with fibroblast growth factor-1 identified an anony-
mous transcript that was upregulated with delayed-early
kinetics. Full-length cDNA clones corresponding to this
transcript showed a high degree of similarity to AR (see
fig. 4). The encoded protein, designated FR-1 (FGF reg-
ulated 1), is 70% identical to human AR. Mitogen-induc-
tion of FR-1 gene expression required de novo protein
synthesis, which indicates that immediate early proteins
are required for transcriptional induction and/or tran-
script stabilization. The time course of FR-1 protein ac-
cumulation in growth factor-stimulated fibroblasts was
somewhat delayed, indicating that the protein may be as-
sociated with cell cycle progression [101]. FR-1 gene
transcripts were readily detected in many adult tissues by
Northern blot or RNase protection experiments; these in-
cluded heart, ovary and testis [100, 102]. Liver-specific
FR-1 expression levels showed marked developmental
regulation, as high levels were observed in the newborn
liver, while no transcripts were detected in the adult. Un-
like AR, the FR-1 gene is not induced by hyperosmolar-
ity [101]; this is not surprising since the FR-1 promoter
region does not contain one or more osmotic response el-
ements (OREs) like those found associated with the AR
gene [103, 104]. To date, surprisingly little is known
about transcriptional regulation of the FR-1 gene, and 
in particular what elements of the mitogen signaling 
cascade interact with the FR-1 gene promoter to effect
upregulation of gene transcription and/or messenger
RNA (mRNA) stabilization.
Kinetic study of FR-1 demonstrated that the encoded pro-
tein is a functional AKR [105]. Like AR, FR-1 was found
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Table 1. Entrez accession numbers for AKR1B subfamily members.

AKR Common name Species Protein Genomic Genbank RNA
nomen-
clature

1B1 aldose reductase human NP_001619 NT_007933 BC000260 NM_001628
1B3 aldose reductase mouse NP_033788 NT_039341 BC021655 NM_009658
1B4 aldose reductase rat NP_036630 NW_043747 M60322 NM_012498
1B5 aldose reductase bovine AAA30370 M31463 M31463
1B7 major vas deferens mouse NP_033861 NT_039341 J05663 NM_009731

protein (MVDP)
1B8 fibroblast growth mouse NP_032038 NT_039341 U04204 NM_008012

factor induced-1
(FR-1)

1B9 chinese hamster hamster AAC53199 Not available U81045 CGU81045
ovary reductase

1B10 small intestine re- human NP_064695 NT_007933 BC008837 NM_020299
ductase/aldose re-
ductase-like protein 1

1B13 aldose reductase- rat NP_775159 NW_043747 AJ277957 NM_173136
like protein 1
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Figure 3. Structural organization of genes encoding selected AKR1B subfamily members. Filled boxes are coding regions within exons.
Unfilled portions are noncoding exon sequences.

Figure 4. Alignment of AKR1B primary structures. Amino acid identities are highlighted. (A) Human AKR1B1 (AR) and AKR1B10
(small intestine reductase/AR-like protein 1]; (B) mouse AKR1B3 (AR), AKR1B7 (MVDP, major vas deferens protein), AKR1B8 (FR-1,
FGF regulated-1). 



to catalyze the NADPH-dependent reduction of a variety
of aliphatic and aromatic aldehydes, including the reac-
tive lipid-derived aldehyde, HNE. FR-1 had negligible re-
activity with aldoses and sugar ketoses, indicating that
these compounds are unlikely to be in vivo substrates. Al-
though FR-1 differs from AR in ability to produce poly-
ols, the enzymes share sensitivity to inhibition by some
ARIs. FR-1 is sensitive to the carboxylic acid inhibitors
tolrestat and zopolrestat, as evidenced by IC50 values of
approximately 134 nM and 71 nM, respectively [105]. 
Given their similarities in primary structure but differ-
ences in ability to reduce aldoses, it was of interest to de-
termine the three-dimensional structure of the FR-1
holoenzyme in hopes of identifying a structural basis for
the measurable differences in substrate specificity. The
structure of FR-1 in complex with NADPH and zopolre-
stat revealed striking similarity to the human AR holoen-
zyme-inhibitor complex, particularly in terms of the bind-
ing interactions that stabilize the inhibitor at the enzyme
active site [25, 50]. While the overall architecture and hy-
drophobicity of the active site cavity are well conserved
between the AR and FR-1 ternary complexes, differences
in the position of a segment of residues at the carboxy ter-
minus creates a slightly larger opening which could po-
tentially accommodate larger substrates. This portion of
the carboxy-terminal region appears to be the most diver-
gent among AKR1B subfamily members. However, there
is as yet no evidence that differences in substrate speci-
ficity among individual enzymes is conferred by this re-
gion. Due to the lack of reactivity measured with glucose
or galactose, it seems unlikely that FR-1, acting as an AR,
could contribute to the pathogenesis of diabetic complica-
tions through synthesis of polyols. Clearly, the favorable
kinetic constants with lipid-derived aldehydes indicate
that FR-1 could function as an oxidative defense enzyme
[105]. In addition, the high level of FR-1 expression in the
adrenal gland, testis and ovary suggests that the protein
could be involved with other metabolic pathways which
are yet to be identified [102].

MVDP
Epithelial cells that line the vas deferens secrete an as-
sortment of proteins that serve to enhance the survival of
sperm. In a search for androgen-dependent vas deferens
proteins, Taragnat and co-workers found a major protein
species, designated the major vas deferens protein
(MVDP), that accounts for over 40% of soluble protein in
the vas deferens luminal fluid [106]. cDNA cloning stud-
ies revealed that MVDP is a 316-amino acid polypeptide
with 82% sequence identity to FR-1 (fig. 4) and 70%
identity to human AR [107].
Expression of MVDP in epithelial cells of the vas defer-
ens appears to be highly restricted by species, as tran-
scripts in rat, rabbit and human vas deferens are not de-

tectable by Northern blotting [108]. MVDP gene tran-
scripts are also found at high levels in the zona fascicu-
lata of the mouse adrenal cortex [102, 109], suggesting a
possible physiological role in steroidogenic tissues [109].
Using a sensitive RNase protection assay, Lau and co-
workers found moderate levels of MVDP transcripts in
the mouse intestine and eye, but these were far lower than
in the adrenal and vas deferens [102].
Since the zona fasciculata is the major site of corticos-
teroid synthesis in the adrenal gland, it is interesting to
speculate on whether MVDP could participate in steroid
biosynthesis or its regulation. Evidence in favor of this
possibility was provided by recent studies which showed
that MVDP, besides having a generally broad specificity
toward aldehyde-containing substrates, efficiently re-
duces the aldehyde group of isocaproaldehyde, which is a
toxic byproduct of steroid biosynthesis [109]. By differ-
entially controlling AR and MVDP gene expression 
levels in adrenocortical Y1 cells, Martinez and co-
workers demonstrated that MVDP and not AR is the 
major reductase for isocaproaldehyde and HNE [109]. 
While the primary structures of AR and MVDP are
highly conserved, some functional properties of the en-
zymes are quite distinct. For example, MVDP shows less
preference than AR or FR-1 for NADPH over NADH as
the reducing cofactor. Nonetheless, the catalytic effi-
ciency of MVDP, using aldehydes from several structural
classes, is higher with NADPH than with NADH [109].
Using isocaproaldehyde as substrate, MVDP is less sen-
sitive than AR to several ARIs, including sorbinil, imiris-
tat and tolrestat [40, 109]. Further study will be necessary
to determine whether this is a general trend or whether
the relatively diminished inhibitor sensitivity is substrate
dependent. MVDP is essentially inactive with glucose
and galactose, which indicates that it does not function as
a source of polyol synthesis in vivo.
Expression of MVDP is strongly influenced by androgens.
Castration causes a marked reduction in the abundance of
this protein, but postsurgical treatment with testosterone
brings about recovery to normal levels. Run on transcrip-
tion experiments showed that androgen-regulated changes
in MVDP levels are controlled at the level of gene tran-
scription [110]. To get at functional elements in the
MVDP promoter, transgenic studies using MVDP pro-
moter constructs driving chloramphenicol acetyltrans-
ferase (CAT) expression were carried out. The region at
–1804 to –510 (relative to the transcription start site) is
necessary for expression in vas deferens, whereas the re-
gion spanning –510 to +41 is necessary for adrenal ex-
pression [109, 111]. Significantly, CAT expression levels
were markedly increased when the transgene construct in-
cluded sequences derived from an intragenic region span-
ning introns 1 and 2 and exon 2. Thus, an intragenic en-
hancer is required for full transcriptional response. Of two
probable androgen response elements (AREs) contained
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within the –1804/+41 promoter region, only the proximal
ARE located in the –510 to +41 region is responsible for
androgen responsiveness in the adrenal gland. Studies 
using transient transfections showed that mutation of the
proximal ARE abolished androgen induction [112]. 

HSIR/ALR-1
Identification of AR-like genes, such as FR-1 [100],
MVDP [107] and CHO reductase [113], in the mouse and
guinea pig, respectively, stimulated a search for ortholo-
gous genes in human tissues. One such gene, designated
human small intestine reductase (HSIR), was identified
by polymerase chain reaction (PCR) amplification from
multiple tissue sources. Sequence alignment showed that
the primary structure of HSIR (AKR1B10) is remarkably
similar to human AR, with 70% sequence identity. Based
on a blot analysis of multiple tissue RNAs, gene tran-
script levels of HSIR closely parallel those of AR, with a
particular abundance being found in the adrenal gland
[114]. Independently, Cao and co-workers found an al-
lelic variant of the same gene in a low-stringency hy-
bridization screen of cDNA library constructed from hu-
man hepatocellular carcinoma tissue [115]. Designated
AR-like protein 1 (ALR-1), the gene product is essen-
tially identical to HSIR. Northern blotting studies showed
high transcript levels in small intestine and colon, with
substantial but relatively lower levels in adult liver and
thymus (the adrenal gland was not examined). Preliminary
kinetic studies showed that HSIR/ALR-1 (AKR1B10) is
similar to AR in its utilization of a broad range of aldehyde
substrates, including aromatic and aliphatic aldehydes and
sensitivity to some ARIs [42, 115].

Tumor-associated AKRs
AR-like proteins are becoming increasingly recognized
as tumor-associated proteins [116–119]. Comparison of
normal and hepatocellular carcinoma-derived proteins
by two-dimensional electrophoresis revealed a rat AR-
like protein (rALP-1) that was significantly elevated 
in carcinomas induced by the nitroso compounds MNU
(N-methyl-N-nitrosourea), DENA (diethylnitrosamine)
and NNM (N-nitrosomorpholine) but not in NAF
(nafenopin). Sequence analysis and expression studies
using the rALP-1 cRNA (complementary RNA) demon-
strated nonidentity with rat lens AR (AKR1B4). How-
ever, sequence analysis alone was not sufficient to estab-
lish whether rALP-1 is orthologous to other characterized
mammalian AR-like proteins such as MVDP (AKR1B7),
FR-1 (AKR1B8) or HSIR/HARL-1 (AKR1B10) [117].
Enhanced expression of rat AR (AKR1B4) in normal fe-
tal liver and adult liver tumors but not in normal adult
liver is consistent with the notion that genes expressed in
hepatocellular carcinomas reflect a profile characteristic

of fetal liver. In a screen of human liver tumor samples,
Cao and co-workers identified a human AR-like protein,
designated ARL-1, that appears to be orthologous to
rALP-1 from Zeindl-Eberhart’s studies in rat [115].
Based on Northern blot analysis, the human ARL-1
(AKR1B10) was found to be abundantly expressed in
~54% of 24 tumor samples examined, whereas AR
(AKR1B1) was upregulated in about 30%. Scuric and
co-workers also identified this gene in a differential dis-
play study of upregulated genes in human hepatocellular
carcinoma [120]. 
Recent studies suggest that AR or possibly closely related
enzymes of the AKR1B subgroup may influence the ef-
fectiveness of chemotherapeutic drugs. Hyndman and
Flynn identified HSIR (AKR1B10) as the apparent hu-
man ortholog to a reductase previously identified in CHO
as a factor responsible for resistance to a cytotoxic alde-
hyde [121, 122]. Transcripts for AR and HSIR/ARL-1 
are frequently elevated in transformed cell lines derived
from a variety of tissues. However, transcripts from
HSIR/ARL-1 appear to be more frequently induced in
comparison with AR. 
The cytotoxic response of HeLa cells to doxorubicin and
cisplatin appears to be modulated in part by AR [123].
Activation of the extracellular signal-regulated kinase
(ERK) pathway, which is an early event characteristic of
HeLa cells stimulated to undergo apoptosis following
treatment with doxorubicin or cisplatin, was enhanced
when cells were co-treated with the ARI EBPC [ethyl-
1-benzyl-3-hydroxy-2(5H)-oxopyrrole-4-carboxylate].
Thus, AR inhibition enhanced ERK activation and resulted
in a more pronounced cytotoxic response to these
chemotherapeutic drugs. Studies with an MEK inhibitor
showed that the ARI effect was upstream of ERK. While
the role of AR in this process is not yet clear, the authors
speculate that the enzyme might impact on the metabolism
or transport of doxorubicin or cisplatin. Similar to the case
with CHO reductase-mediated resistance to aldehyde cyto-
toxicity, a correlation between drug sensitivity and AR
gene expression in liver tumors provides strong evidence
for a direct effect of AR on drug resistance [116]. Cells in-
duced to overexpress AR are more resistant to the cytotoxic
effects of daunorubicin in comparison with control cells or
with induced cells simultaneously treated with an AR in-
hibitor [124]. While studies have not conclusively shown
whether this effect is due to the effects of one or more
AKRs that share sensitivity to ARIs, the evidence clearly
points to a potential role for this group of enzymes in reg-
ulating the effectiveness of some chemotherapeutic agents. 

Conclusion and perspective

Diabetes mellitus is recognized as a leading cause of new
cases of blindness, and is associated with increased risk
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for painful neuropathy, heart disease and kidney failure.
Many theories have been advanced to explain mecha-
nisms leading to diabetic complications, including accel-
erated protein glycation, altered signaling involving
PKC, excessive oxidative stress and stimulation of glu-
cose metabolism by the polyol pathway. While it is highly
unlikely that any one mechanism can explain pathogene-
sis associated with chronic hyperglycemia, a better un-
derstanding of each potential point of imbalance is likely
to uncover possible entry points for therapeutic interven-
tion. Drugs designed for a precise purpose often produce
unintended effects, and ARIs are probably no exception.
The challenge is to learn from experience by gaining a
better understanding of the playing field: What pathways
are the unexpected targets of ARIs, and do they offer new
strategies for intervention? 
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