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Retention of atherogenic lipoproteins in atherogenesis
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Abstract. Atherosclerosis is a multifactorial disease
whose pathogenesis is still unclear. Mounting evidence,
however, supports the concept that subendothelial reten-
tion of apoB100-containing lipoproteins is the initiating
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event in atherogenesis. Subsequently, a series of biologi-
cal responses to this retained material leads to specific
molecular and cellular processes that promote lesion for-
mation.
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The causal relationship between blood cholesterol and
atherosclerosis is no longer in doubt and numerous epi-
demiological studies have established that elevated levels
of low-density lipoprotein (LDL) and other apolipopro-
tein (apo)B-containing lipoproteins are linked to the inci-
dence of cardiovascular disease. Other risk factors for
cardiovascular disease can accelerate the atherosclerotic
process, but in the absence of dyslipidemias contribute
little to atherogenesis [1].
However, the mechanism(s) by which hypercholes-
terolemia induces the pathobiological changes that lead
to the disease remain unclear, and several hypotheses
have been articulated to explain the events that initiate
atherogenesis. The ‘response-to-injury’ hypothesis states
that endothelial injuries that are insufficient to cause
gross denudation but severe enough to cause functional
modifications are key to atherogenesis. A major hypoth-
esized change in endothelial function was increased per-
meability particularly to atherogenic lipoproteins [2]. The
‘oxidation’ hypothesis highlights the importance of oxi-
dized lipid as an important source of pathogenic sub-
stances [3]. Finally, the ‘response-to-retention’ hypothe-
sis invokes a critical role in atherogenesis for the reten-
tion of atherogenic lipoproteins by extracellular matrix
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molecules [1]. While these hypotheses are not mutually
exclusive, and may even be considered mutually compat-
ible with differences in emphasis, recent evidence
strongly supports the response-to-retention hypothesis.

The response-to-retention hypothesis

The response-to-retention hypothesis emphasizes the
causative role of dyslipoproteinemia in the development
of atherosclerosis and is based on pioneering work car-
ried out in the 1970s and 1980s [4–6]. The basis for the
hypothesis is that atherogenic lipoproteins that gain entry
to the subendothelial space are bound and retained
through ionic interactions between positively charged
residues on the atherogenic lipoproteins, and negatively
charged residues in the extracellular matrix molecules.
Of these extracellular matrix components, proteoglycans
in particular appear to play an important role [7]. Proteo-
glycans are macromolecules composed of a core protein
and complex, long-side-chain carbohydrates, called gly-
cosaminoglycans (GAGs), which consist of repeating dis-
accharide units, all bearing negatively charged, usually
sulfate or carboxylate, groups [7]. In vitro, LDLs bind
with high affinity to many proteoglycans found in the
artery wall, especially the chondroitin sulfate proteogly-
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can versican and the two small leucine-rich proteoglycans
decorin and biglycan, which are produced by smooth
muscle cells. Several growth factors as platelet-derived
growth factor (PDGF) and transforming-growth factor
(TGF) b increase both the net synthesis of proteoglycans
by smooth muscle cells, and the GAG chain length of the
proteoglycans [8, 9].
The consequence of the retention of atherogenic lipopro-
teins is not only a net accumulation of lipid, but also pro-
longed exposure to local oxidants and other non-oxida-
tive enzymes in the vessel wall. A growing body of evi-
dence supports an important effector role for variously
modified lipoproteins and their constituents in triggering
an inflammatory reaction that accelerates lesion develop-
ment [1].

Direct interactions between apoB and GAGs

The interaction between LDL and proteoglycans involves
positively charged amino acids in apoB100, the protein
moiety of LDL, that bind ionically with the negatively
charged GAGs on the proteoglycans [1]. Several labora-
tories have contributed to the identification of eight clus-
ters of positively charged amino acids in apoB100
[10–12]. However, these clusters were identified in
delipidated fragments of apoB100 in the presence of urea
or with short synthetic apoB peptides. Thus, which of the
GAG-binding sites are functional when apoB is associ-
ated with lipids (e.g., when it is incorporated into LDL)
was not clear. To identify the main proteoglycan-binding
site in apoB100, specific mutations were introduced into
the human apoB100 gene and transgenic mice expressing
mutant forms of human recombinant LDL were gener-
ated. The recombinant LDLs were isolated, characterized,
and tested for their ability to bind to proteoglycans [13].
These studies identified site B (i.e., residues 3359–3369)
as the proteoglycan-binding site of apoB100, and showed
that positively charged arginine and lysine residues of site
B are critical for binding to proteoglycans. Interestingly,
site B coincides with the LDL-receptor-binding site of
LDL [14]. However, the proteoglycan-binding activity
and the LDL receptor binding can be discriminated and a
single lysine to glutamic acid substitution at residue 3363
impairs the ability of apoB100 to bind to extracellular
vascular proteoglycans, but not the LDL receptor [13]. 
The conformation of apoB100 on the surface of the LDL
particle is dependent on the composition of the core
lipids, the surface phospholipid content, and the diameter
of the lipoprotein particle. Thus, other binding sites than
site B may become functional in modified LDL. Paana-
nen and Kovanen [15] noted that proteolysis of apoB100
strengthened the binding of LDL to proteoglycans, sug-
gesting the exposure of buried GAG-binding sites. Like-
wise, LDLs modified by treatment with secretory group

IIA phospholipase A2 (sPLA2), a strong independent risk
factor for coronary heart disease [16], bind more avidly
than unmodified LDLs to proteoglycans [17]. Camejo
and coworkers originally suggested that site A (residues
3148–3158) may become functional in modified forms
of LDL [18]. Recent results have confirmed this and
shown that site A acts cooperatively with site B in the as-
sociation with proteoglycans in LDL modified with
sPLA2 [C. Flood, M. Gustafsson and J. Borén, unpub-
lished observation]. The results also showed that the
triglyceride content of LDL influences the conformation
of apoB and decreases the affinity for GAGs. This mech-
anism is likely mediated by a conformational change of
site B and is, in contrast to sPLA2-modified LDL, inde-
pendent of site A.
ApoB exists in two forms, apoB100 and apoB48.
ApoB100 consists of 4536 amino acids, while apoB48
corresponds to the amino-terminal 48% of apoB100.
The editing process that converts apoB100 mRNA to
apoB48 mRNA and the expression patterns of the two
proteins are well established [19]. In humans, apoB100
is expressed in the liver, forming very low density
lipoprotein (VLDL), while apoB48 is synthesized in the
intestine, forming chylomicrons. Several species (e.g.,
rodents) express apoB48 also in the liver where it as-
sembles VLDL. 
The finding that site B lies in the carboxyl-terminal half
of apoB100 and is absent in apoB48 presented a paradox
because elegant studies using gene-targeted mice ex-
pressing only apoB48 or only apoB100 have shown that
apoB100- and apoB48-containing lipoproteins are
equally atherogenic [20]. Furthermore, apoE-deficient
mice, which are the most widely used experimental
model of atherosclerosis because of their ability to spon-
taneously produce atherosclerotic lesions [21], contain
mainly apoB48-containing lipoproteins. This paradox
was recently solved by showing that the proteoglycan-
binding site of apoB48 (i.e., site B-Ib at residues 84–94)
is located in the amino terminus of apoB, and that it is
masked by the carboxyl terminus of apoB100 in
apoB100-containing LDL (fig. 1) [22]. Thus, it is ex-
posed and functional in apoB48 but masked and non-
functional in apoB100-containing LDL. The presence of
a proteoglycan-binding site in the amino-terminal region
of apoB is consistent with the response-to-retention hy-
pothesis and provides a possible explanation for the dual
atherogenicity of apoB48- and apoB100-containing
lipoproteins. 
The size of lipoprotein particles is linked to their ability to
penetrate arterial tissue via transcytosis. Human LDLs of
normal size (i.e., 25–30 nm) transverse the endothelium
efficiently, whereas lipoproteins greater than 70 nm can-
not do so because of the size limitation of transcytotic
vesicles [23]. Thus, fewer apoB48-containing chylomi-
cron remnants are retained within the intima, than the



its apo(a) component or its apoB100 component [29]. In
vitro studies have shown that Lp(a) binds to several ex-
tracellular matrix proteins, including fibrin, collagen,
laminin, fibronectin, and proteoglycans [30]. Even
though fibrin interacts with high affinity with the apo(a)
moiety of Lp(a), proteoglycans seem to be the most im-
portant extracellular matrix component for binding of
Lp(a) [30].
In addition to apolipoprotein, several lipases have been
shown to mediate ‘bridging’between lipoproteins and he-
parin sulfate proteoglycans (HSPGs) on the cell surface,
which results in increased cellular uptake and degrada-
tion of lipoproteins. Lipoprotein lipase (LPL) which is se-
creted by smooth muscle cells and macrophages in ather-
osclerotic lesions [31], has been shown to act as a bridge
between GAG and extensively oxidized LDL, which are
sufficiently depleted of positive charges to inhibit direct
binding to GAG [32, 33]. The bridging function of LPL
does not require a catalytically active enzyme [34]. He-
patic lipase which is synthesized by mouse and human
macrophages [35], and endothelial lipase which is syn-
thesized by endothelial cells [36] are also effective in fa-
cilitating lipoprotein bridging and both have been pro-
posed to have important roles in the pathogenesis of ath-
erosclerosis. The retention of atherogenic lipoproteins
may well be initially governed by binding of apoB100
and/or apoE to GAG, but shifting to lipase-mediated
binding when macrophages infiltrate the intima and se-
crete LPL [33]. 

In vivo evidence supporting the response-to-retention
hypothesis

Atherogenesis is a complex process, thus presenting dif-
ficulties for experimentally dissecting the chronology of
the processes involved and generating in vivo evidence
supporting the response-to-retention hypothesis. Sequen-
tial studies by several laboratories provided the first in-
sights into the relative association of lipoproteins with ar-
terial tissue [37–41]. Of particular importance are the
landmark studies by Schwenke and Carew that indicated
that trapping and retention of lipoproteins is the initiating
event in atherosclerosis [42, 43]. These studies showed in
vivo that the early prelesional accumulation of athero-
genic lipoproteins within the arterial wall is focally con-
centrated in sites that are known to be prone to the later
development of atherosclerotic lesions. However, the
rates of lipoprotein entry into prelesional susceptible ver-
sus resistant sites were not different. This finding indi-
cated that retention, not enhanced endothelial permeabil-
ity to lipoprotein influx, is the key pathological event in
atherogenesis.
The technological advances during the past decade and
the power of mouse genetics recently enabled directly
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smaller apoB100-containing LDLs. However, a greater
number of retained particles does not necessarily translate
to greater cholesterol mass, since chylomicron remnants
contain approximately 40 times more cholesterol per par-
ticle than do apoB100-containing LDL particles [23].

Indirect interactions of LDL to the extracellular
matrix

In addition to apoB, other protein components of lipopro-
teins are also implicated in binding to proteoglycans.
ApoE, a component of VLDL remnants and lower-den-
sity fractions of high-density lipoproteins (HDLs), can
bind to the negatively charged GAG chains of several pro-
teoglycans [24]. In particular, apoE has been shown to
colocalize with biglycan in human atherosclerotic lesions
[25]. The HDL protein, apoA-I, is also present in human
[25] and mouse [26] lesions. ApoA-I has been shown to
modulate lipoprotein binding to proteoglycans and recent
results indicate that it regulates hepatic lipase activity by
binding to sites on the proteoglycans and dislodging the
bound hepatic lipase [27]. High circulating apoC-III lev-
els are associated with increased atherosclerosis risk, and
very recent data also show that the apoC-III content of
apoB-containing lipoproteins is associated with in-
creased binding to the vascular proteoglycan biglycan de-
spite the fact that apoC-III does not bind biglycan di-
rectly. The enhanced biglycan binding may result from a
conformational change associated with increased apo C-
III content by which apoB and/or apoE become more ac-
cessible to proteoglycans [28]. A high plasma lipoprotein
(a) [Lp(a)] level is closely related to coronary heart dis-
ease and Lp(a) is avidly retained in the artery wall be-
cause it can bind to the extracellular matrix through either

Figure 1. Schematic of the proteoglycan-binding sites of apoB100
and apoB48. The first 89% of apoB100 enwraps the LDL particle
like a belt, and the carboxyl-terminal 11% constitutes a ‘bow’ that
crosses over the belt. The proteoglycan-binding site in apoB100 is
located in the carboxyl-terminal half of apoB100 (site B), and is ab-
sent in apoB48. The proteoglycan-binding site in apoB48 (site B-Ib)
is located in the amino-terminus of apoB, and is ‘masked’ by the
carboxyl terminus of apoB100. The projection of apoB on the
‘back’ of the lipoprotein particles has been simplified.
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testing of the response-to-retention hypothesis and inves-
tigation of the biological significance of the interaction
between apoB100 and artery wall proteoglycans in
atherogenesis. The key for these studies was the genera-
tion of transgenic mice expressing recombinant human
wild-type LDL with normal proteoglycan binding, or ge-
netically engineered LDL that fails to bind proteoglycans
(i.e., proteoglycan-binding-defective LDL). The mice
were fed a Western diet for 20 weeks and the extent of the
vessel wall covered by atherosclerotic lesions was quan-
titated (fig. 2). The results showed convincingly that mice
expressing LDL that is defective in proteoglycan binding
had greatly reduced atherogenesis, and that the decreased
atherosclerotic potential of this LDL was indeed due to its
ability to interact with artery wall proteoglycans. This
study provides the first direct experimental evidence that
binding of LDL to artery wall proteoglycans is an early
step in atherogenesis [44]. 

Why do humans develop coronary heart disease?

Humans have higher plasma LDL cholesterol than most
other mammalian species, and a propensity of sponta-
neously developing atherosclerosis and coronary heart dis-
ease [45]. The mean LDL level in lower animals averages
32 mg/dl (0.8 mmol/l) [46] and atherosclerosisdoes not de-
velop when serum cholesterol concentrations are below 80
mg/dl (2.1 mmol/l) [1]. A feasible explanation for this dif-
ference is that humans during evolution were exposed to
wide fluctuations in the food supply, promoting the selec-
tion of DNA sequences that enhance the utilization of di-
etary nutrients. Our genome has had insufficient time to
adapt to the dietary abundance and physical inactivity of
the modern era. Consequently, diseases of dietary excess
such as atherosclerosis and diabetes have become the ma-
jor cause of death and disability in the Western world. 
A tentative hypothesis is that an enhanced recruitment of
LDL by endothelial cell surface HSPGs during evolution

enhanced the utilization of dietary nutrients by facilitat-
ing the interaction of LDL with other molecules, such as
LPLs or apoE, which could then mediate uptake or degra-
dationof LDL via the lipoprotein-receptor-related protein
or other pathways. However, with high plasma levels of
atherogenic lipoproteins, the same mechanism leads to
the initiation of atherosclerosis. 

Therapies for reducing arterial retention of
atherogenic lipoproteins

In addition to reducing the concentration of proathero-
genic lipoproteins in plasma, interventions that reduce
the interaction between atherogenic lipoproteins and the
extracellular matrix may be beneficial in attenuating ar-
terial cholesterol accumulation. Two suggested possibili-
ties have recently been proposed. These are the block-
ing/prevention of GAG elongation on proteoglycans [47,
48] and the potential of small oligosaccharides to prevent
interaction between LDL and proteoglycans [49], as po-
tential therapeutic targets for intervention in the patho-
logical process of binding and retention of lipoproteins
within the vascular wall. 

Summary

Atherosclerosis is a multifactorial disease whose patho-
genesis is still unclear. Mounting evidence, however, sup-
ports the concept that subendothelial retention of
apoB100-containing lipoproteins is the initiating event in
atherogenesis. Retained lipoproteins can directly or indi-
rectly provoke all known features of early lesions and, by
stimulating local synthesis of proteoglycans, can further
accelerate retention and aggregation. Thus, atherosclero-
sis is initiated by subendothelial retention of atherogenic
lipoproteins.
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