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Abstract. Fatty acid-binding proteins (FABPs) are mem-
bers of a superfamily of lipid-binding proteins, and occur
intracellularly in vertebrates and invertebrates. This
review presents recent findings on the diversity of these
FABPs and their proposed roles in fatty acid (FA) metab-
olism and other cellular processes. Special attention is
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paid to the structural features of the different mammalian
FABP types and the physiological role of these proteins in
FA transport, cell growth and differentiation, cellular sig-
nalling, gene transcription and cytoprotection. Addition-
ally, data on FABP knockout mice and the implication of
FABP in medicine are discussed.

Key words. Fatty acid-binding protein; fatty acid transfer; site-directed mutagenesis; gene transcription; cancer;
diagnostic marker; signal transduction.

Introduction

The uptake and biosynthesis of both water-soluble and
-insoluble metabolites is essential for every living cell.
The solubility and the translocation of hydrophobic
ligands is facilitated in intra- and extracellular fluids by
lipid-binding proteins. The structure of three families of
proteins which bind fatty acids (FAs), albumin, lipocalins
and fatty acid-binding proteins (FABPs) has been
described [1–3]. Many of the proteins of these families
bind FAs as their main ligand, but other proteins with
quite different structures also have affinity for FAs [e.g.
fetuin, adipose differentiation-related protein, heat shock
protein, caveolin 1, plasma membrane FABP, fatty acid
transporter (FAT), fatty acid transport protein (FATP),
glutathione S-transferase and sterol-carrier protein-2
[3–5]]. Together with lipocalins and avidins, the FABPs
form part of the superfamily of the calycins with a b
barrel structure [2].

The presence of cytoplasmic proteins that associate non-
covalently with FAs has been appreciated for almost three
decades [6]. Although molecular cloning and structural
studies have increased our knowledge of the evolutionary
and cellular diversity of FABPs, evidence for their physi-
ological role has been equivocal for many years. Only
recently have studies on knockout mice provided direct
proof for the importance of FABPs in the uptake and
transport of long-chain FAs and their interaction with
other transport systems and enzymes. Numerous reviews
on structural and functional aspects of the FABP family
have appeared over the last 10–15 years [7]. We will
focus mainly on recent data on the structure of FABPs,
their role in FA uptake and transport and their involve-
ment in the modulation of several cellular processes
including signal transduction, gene expression, growth
and differentiation.
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Family of FABPs

On a structural basis, the family of FABPs also involves the
retinoid-binding proteins [8]. These comprise three types
of cellular retinol-binding protein (CRBP) and two types of
cellular retinoic acid-binding protein (CRABP) which will
not be discussed here. The intracellular or cytoplasmic
FABPs form a group of at least nine distinct protein types.
They are 14- to 15-kDa proteins of 126–134 amino acids,
and are named after the first tissue of isolation or identifi-
cation (table 1). Some tissues contain several types, either
in different cell types (brain, kidney, stomach) or in the
same cell type (enterocyte). Heart (H-)FABP is the most
widely distributed FABP. It is found in heart, skeletal and
smooth muscle, mammary epithelial cells, aorta, distal
tubules of the kidney, lung, brain, placenta and ovary.
The members of the FABP family show an amino acid
sequence similarity of 22–73 % (fig. 1), but their three-
dimensional structures remain highly conserved. The
amino acid sequence of the human T-FABP is not known.
On the basis of the amino acid sequence, the family can be
divided into three groups: one containing H-FABP, brain
(B-)FABP, myelin (M-)FAB; adipocyte (A-)FABP and epi-
dermal (E-)FABP; a group containing ileal lipid-binding
protein (I-LBP) and liver (L-)FABP; and intestinal (I-)
FABP. I-LBP and L-FABP have a four-residue gap in the C-
terminal part that is conserved in the other FABP types.
This feature is probably related to their different binding
characteristics. L-FABP and I-LBP bind more bulky,
hydrophobic ligands, such as lysophospholipids, prosta-
glandins, bile acids, eicosanoids and some drugs [9–11].
Unlike L-FABP, which can bind two FAs simultaneously,
I-LBP has no affinity for FAs [12]. I-FABP differs from
both groups of FABP types in the conformation of its
bound ligand (bent instead of U shaped) [13, 14].

The more recent FABP members to be identified are
B-FABP and E-FABP. The human B-FABP amino acid
sequence shows 67 % homology with H-FABP, whereas
E-FABP is 48 % homologous with H-FABP. B-FABP is
exclusively expressed in the central nervous system
where its main function is possibly the binding and trans-
port of polyunsaturated FAs, like docosahexaenoic acid
(DHA). These FAs are essential during early postnatal
development when cellular differentiation, active synap-
togenesis and photoreceptor membrane biogenesis take
place [15–17]. E-FABP, also known as psoriasis-associ-
ated (PA-)FABP [18], keratinocyte FABP [19] or DA11
[20], was first recognized as a psoriasis-associated FABP,
one of the gene products whose expression is highly
upregulated in human psoriatic skin. Later, the same
protein was identified in many other normal tissues such
as adipocyte, tongue epithelia, lens, retina, testis, lung
and mammary gland [21–23]. The presence of one or
more disulphide bridges is a unique feature of E-FABP
that may be physiologically relevant [24, 25].
Phylogenetic analyses have shed light on the molecular
relationships between the members of the FABP family
and their evolution [reviewed in ref. 26]. The presence of
FABPs has been established in many non-mammalian
tissues, but the pattern of tissue expression is different
from mammals [7]. We will largely omit discussion of the
non-mammalian FABPs, since recent reviews have elab-
orated extensively on this subject [7, 26]. The occurrence
of a specific basic L-FABP in chicken, catfish and iguana
liver is remarkable. FABPs from the same mammalian
tissue of different species show greater amino acid simi-
larity and identity than observed between FABPs isolated
from different tissues from the same species [4, 9, 27].
Molecular information supports the hypothesis that

Table 1. Tissue occurrence of FABP types.

FABP type Abbreviation Tissue

Liver L liver, intestine, kidney, stomach

Intestinal I intestine, stomach

Heart H heart, kidney, skeletal muscle, aorta,
adrenals, placenta, brain, testes,
ovary, lung, mammary gland, stomach

Adipocyte A adipose tissue

Epidermal E skin, brain, lens, capillary 
endothelium, retina

Ileal IL Intestine, ovary, adrenals, stomach

Brain B brain 

Myelin M peripheral nervous system

Testicular T testis 

The indication of an FABP type in a tissue does not mean its pres-
ence in all cell types of that tissue; the FABP type may be limited to
specific cells or may be present at certain developmental stages.

Figure 1. Alignment of amino acid sequences of the members of
the FABP family. All sequences are for human proteins. Positions of
well-conserved amino acids (identical residues present in at least
five molecules) are in bold. For human T-FABP, the sequence is un-
known (LBP, liquid-binding protein).
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FABPs have developed distinct binding sites in order to
perform specific functions within the different tissues in
which they are expressed. 

Gene structure and regulation of expression

Screening of genomic libraries with specific cDNAs
identified the genes of eight FABP types (fig. 2). The
T-FABP gene structure is not known for any species. The
overall organisation of the genes is identical: four exons
and three introns for all members of the FABP family,
FABPs, CRBPs and CRABPs. The exon/intron positions
are similar in all genes, but the intron length is variable.
The CRBP-encoding genes have relatively large introns
(not shown). Several cis-acting elements in the 5¢ pro-
moter region and various trans-acting nuclear factors that
may influence transcription have been identified. The
structure and regulation of most FABP genes have been
reviewed [4, 28]. The structure of the H-FABP gene has
been elucidated for mouse [29], rat [30], human [31] and
pig [32]. The M-FABP gene has been described in human
[33] and mouse [34], the I-FABP gene in human [35], the
L-FABP gene in rat [36], the A-FABP gene in mouse [37],
the E-FABP gene in mouse [38, 39], and the B-FABP
gene also in mouse. The I-LBP gene has been elucidated
for mouse [40] and rabbit [41]. Recently, a concise
promoter region of the H-FABP gene was found which
dictates tissue-appropriate expression [42]. A bile acid-
responsive element was identified in the I-LBP gene [43]
and a repeated heptad sequence with suppressor and
activator functions in the L-FABP gene [44].
Chromosomal mapping of the FABP genes (FABP1–9)
shows a dispersed pattern of loci among the genomes
(table 2). Within the different species, the genes are
located on different but comparable chromosomes. Syn-
teny exists between the regions in which the H-FABP-en-
coding genes are located [29, 32, 45, 46]. The A-FABP-
and I-LBP-encoding genes (FABP4 and FABP6) are also
located in chromosomal segments with a syntenic origin

[47–50]. The human and mouse A-FABP, M-FABP and
E-FABP genes are mapped on the same chromosome,
A-FABP and M-FABP even in the same subregion
(8q21.3–q22.1) [33, 50].
Polymorphisms of the FABP genes have been detected in
human, cattle, pig and mouse (table 3). One of the poly-
morphisms appeared to cause a structural and physiologi-
cal defect. Substitution of Thr54 by Ala in exon 2 of the hu-
man I-FABP (FABP2) gene in the Pima Indian population
appeared to be associated with an increase in body mass in-
dex, percent body fat and non-insulin-dependent diabetes
mellitus (NIDDM) [51]. The threonine-containing protein
had a twofold greater affinity for long-chain FAs and the
Thr/Thr and Thr/Ala individuals had increased fat oxida-

Figure 2. Comparison of the structures of FABP genes. E, exon; I,
intron; UTR, untranslated regions of exon 1 and exon 4. The numbers
in the boxes indicate the number of amino acids encoded within each
exon. The intron lengths are in kilobase pairs, the exon lengths in
base pairs. The gene structures were derived from refs 31, 33, 35, 36,
40, 37, 38 and 218.

Table 2. Chromosomal location of genes of members of the FABP family.

FABP type Human gene Mouse gene Chromosome (region)

Human Mouse Rat Pig

Liver FABP FABP1 Fabp1 2(p11) 6 4 –
Intestinal FABP FABP2 Fabpi 4(q28–q31) 3 2 –
Heart FABP FABP3 Fabph 1(p32–p33) 4 5q36 6
Adipocyte FABP FABP4/AP2 Fabpa/Ap2/Albp 8(q21) 3 - 4
Epidermal FABP FABP5/KLBP Fabpe/Klbp/Mal1 8 3(3A1-3) - –
Ileal FABP FABP6/ILBP Ilbp 5(q23–q35) 11 - –
Brain FABP FABP7 Fabpb 6(q22–q23) 10 - –
Myelin FABP FABP8/PMP2 Fabpm/Pmp2 8(q21.3–q22.1) 3 - –

All human, mouse and rat gene locations have been retrieved from the human genome database (GDB), mouse genome database (MGD)
and rat genome database (RGD), respectively. The pig gene assignments are described by Gerbens et al. [32, 296]
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tion rates in vivo and showed insulin resistance compared
to Ala/Ala individuals [51, 52]. Caco-2 cells transfected
with Thr54 I-FABP-encoding cDNA showed higher long-
chain FA transport and triacylglycerol secretion than cells
expressing Ala54 I-FABP cDNA [53]. In general, this
polymorphism was shown to exert an effect on energy me-
tabolism [reviewed in ref. 54]. Ethnic differences may
partly account for the disparate findings on the Ala54Thr
polymorphism [55–59].
Two isoforms of bovine H-FABP were reported, with Asp
or Asn at position 98 [60]. The heterogeneity was caused
by distinct mRNA species [61], but whether this is due to
different genes, alternative splicing or RNA editing is not
yet clear. Phelan et al. [31] reported a Lys53Arg substitu-
tion in human H-FABP which had a low frequency in a
Swedish population and showed no association with
breast cancer incidence.
Data on the presence of isoforms of L-FABP are conflict-
ing. On the one hand, L-FABP was suggested not to exist
as isoforms but that the two fractions of rat L-FABP iso-
lated after proteolytic cleavage represent native conform-
ers [62]. On the other hand, two isoforms differing both
in structure and ligand binding were detected by circular
dichroism, time-resolved fluorescence spectroscopy and
binding/displacement of fluorescent ligands [63, 64]. The
two isoforms (I and II) differ at residue 105, being Asn in
the former and Asp in the latter [64]. Isoform II probably
has a more open conformation than isoform I, thus al-
lowing the binding of a greater variety of ligands. These
characteristics suggest that rat L-FABP isoforms may ac-
complish different functions, similar to the distinct L-
FABP types in non-mammalian species [64, 65]. Three
charged isoforms of rat L-FABP were attributed to modi-
fications or mutations of Cys69 [66]. Besides single
amino acid substitutions, the different isoforms of L-

FABP may also be explained by bound ligands, protein
conformation or post-translational S-thiolation and/or
acetylation [reviewed in ref. 67]. 

Structure of FABPs

Crystallography [14, 24, 68–72] and/or nuclear magnetic
resonance (NMR) [73–77] studies have revealed the ter-
tiary structure of I-FABP, H-FABP, A-FABP, M-FABP,
L-FABP, E-FABP, B-FABP, L-FABP and I-LBP. Figure 3
shows the structure of H-FABP, I-FABP and L-FABP.
Structural properties of H-FABP, A-FABP and L-FABP
have been reviewed recently [78–80]. All FABP types
show similar structural features. They are composed of
ten antiparallel b strands (bA-bJ) that form a b barrel.
The bound ligand is found within the barrel in a central
internal water-filled cavity. The interior of the cavity is
determined by the sidechains of both hydrophobic and
polar amino acids, and is variable between the different
FABP types. These buried amino acids probably deter-
mine the volume of the cavity and the binding specificity.
Internal water molecules within the cavity are assumed to
contribute to the protein stability. Certain internal water
molecules are well ordered and highly conserved in
homologous proteins. In FABPs, these water molecules
function in the displacement of FA and maintain the elec-
trostatic interactions inside the binding cavity. Holo
H-FABP contains at least 13 ordered water molecules
[81]. I-FABP was recently reported to have a cluster of
internal water molecules located within its FA-binding
cavity (~20 in the apo and 6–8 in the holo form), and a
single ‘structural’ internal water molecule (w135) located
in a pocket close to the external surface [82]. The latter
water molecule is present in the wedge formed by the
loop between bD and bE and the peptide group of Trp82
and forms three H bonds with the protein backbone. 
The overall tertiary structures of M-FABP, I-FABP,
A-FABP and H-FABP types are very similar (fig. 3) [13].
The apo and holo structure are comparable for I-FABP
and A-FABP based on their X-ray diffraction analysis
[68, 70]. The FA is bound in a bent conformation in
I-FABP. The three-dimensional structure of human
H-FABP with bound FA was resolved and refined by X-
ray diffraction to 2.1-Å resolution [69]. The FA appeared
to bind in a U-shaped conformation. The carboxylate
group of the FA binds within the protein cavity and inter-
acts with the side chains of Tyr128 and Arg126 and
several ordered water molecules. In this network of
hydrogen bonds, Arg106 and Thr40 are indirectly in-
volved in FA binding. The inner cavity of H-FABP is con-
nected to the external solvent through a small opening,
formed by side chains of Val25, Thr29, Phe57, Lys58,
Ala75 and Asp76. A positive charge on the edge of the
opening (Lys58) has been postulated to be the driving

Table 3. Natural occurring polymorphisms identified in FABP
genes.

FABP type Gene Species Polymorphism Position Reference

I-FABP FABP2 human [TTA]n repeat intron 2 297
Ala54Thr exon 2 51
A ´ C exon 4 298
G ´ A 3¢ UTR

cattle TaqI RFLP unknown 299

H-FABP FABP3 pig HaeIII RFLP intron 2 32
HinfI RFLP 5¢ UTR
MspI RFLP intron 2
G[T]6 intron 2 300

cattle duplication exon 3 61
human Asn98Asp exon 2 31

Lys53Arg intron 3 301
[CA]n repeat

A-FABP FABP4 pig [CA]n repeat intron 1 296

M-FABP FABP8 mouse [CA]n repeat 3¢ UTR marker
D3Mit130
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force that attracts the negatively charged FA [81]. A sec-
ond gap is present between strands bD and bE. Internal
solvent molecules are thought to exit the protein via this
second gap when a FA ligand enters the portal. However,
this area does not represent a real opening, since the space
is filled with solvent molecules. Dynamic simulation led
to the hypothesis that this region could undergo a zip-like
movement to widen the first, small aperture [83, 84]. This
movement would not disrupt the hydrogen-bonding net-
work of the barrel. 

Although high-resolution X-ray studies on complexes of
H-FABP with oleate, elaidate and stearate showed that
these FAs are bound in a similar fashion [81], the recently
published solution structure of human H-FABP [77] sug-
gests a selected-fit mechanism in FA binding, depending
on the chain length of the ligand. This behaviour appears
to be especially pronounced in H-FABP, possibly due to
its more rigid backbone structure compared with other
FABP types. 
The structure of M-FABP (P2) is highly comparable with
the structures of H-FABP and A-FABP [71, 85]. Although
M-FABP contains two cysteine residues, no disulphide
bridge is present. M-FABP is able to bind both FAs and
retinoids according to Uyemura et al. [86], but this result
could not be confirmed [87].
Recently, the crystal structures of E-FABP [24] and
B-FABP [74] became available. Although these FABP
types are very similar to H-FABP, M-FABP and A-FABP,
they both display unique features. Human E-FABP
contains six cysteine residues. A disulfide bridge is
formed between Cys120 and Cys127, which contributes
to the stability of the protein. The presence of cysteine
pairs in E-FABP may also function to relieve oxidative
stress in the epidermis and other tissues by thiol-disul-
phide interchange reaction [25]. Mouse B-FABP is
capable of binding DHA [88]. The three-dimensional
structure of B-FABP in complex with oleate shows that
the hydrocarbon tail assumes a U-shaped conformation
(as in H-FABP, A-FABP and M-FABP) whereas in the
complex with DHA, the hydrocarbon tail adopts a helical
conformation. The binding specificity of B-FABP
appears to be the result of the non-conserved amino acid
Phe104, which interacts with double bonds present in the
lipid hydrocarbon tail [72]. Richieri et al. [89] observed,
however, a weaker affinity of human B-FABP for poly-
unsaturated FAs than for saturated and monounsaturated
FAs.
The three-dimensional structure of porcine I-LBP was
resolved by high-resolution NMR and appeared similar to
other FABP types but highly flexible, with a relatively
weak hydrogen-bonding network [76]. NMR data support
the hypothesis that the shortened b strands G and H found
only in I-LBP and L-FABP produce a wider opening [90].
This flexibility probably allows a bile acid, which is larger
and more rigid than an FA, to enter the internal protein
cavity. Recently, the solution structure of I-LBP in com-
plex with glycocholate was resolved [76]. The bile acid
appeared to be bound inside the protein, with the steroid
moiety penetrating deep into the water-accessible internal
cavity. The carboxylate tail of the ligand protrudes from
the proposed bile acid portal into the surrounding aqueous
solution. The non-polar face of the steroid moiety interacts
with the hydrophobic residues of b strands C, D and E. 
The polar face makes contact with the side chains of
Tyr97, His99, Glu110 and Arg121 of bH, I and J.

Figure 3. Graphical representation of the three-dimensional back-
bone structures of FABPs. Panels show H-FABP, I-FABP and L-
FABP with a bound oleate molecule. Oleic acid is represented as a
space-filling model in red (carboxylate group) and white. Figures
were produced using GRASP (C. Lücke, Frankfurt, Germany).



alignment are putative targets for mutagenesis. Target
amino acids are chosen on the basis of the putative
importance of their side chains in FA binding or for the
maintenance of protein conformation, based on the eluci-
dated three-dimensional structure. 
Various single amino acid mutants of different FABP
types have been studied for ligand specificity and affin-
ity, and protein stability. The highly conserved Arg126
residue appeared to be important for binding affinity and
ligand specificity of A-FABP, since mutation to Gln
caused a strong decrease in affinity for cis-parinaric acid
[97]. Mutation of Arg106, Arg126 or Tyr128 markedly af-
fected FA binding and conformational stability of
H-FABP [98]. Replacement of Arg106 by Gln in rat
I-FABP caused a 20-fold increase in the dissociation
constant for oleic acid with a 6-fold decrease of the en-
thalpic contribution to the free energy of binding [99].
For rat L-FABP also, mutation of Arg122 indicated a
major role of this amino acid in ligand binding and struc-
tural integrity [11, 91]. 
Hydrophobic amino acid residues are thought to play a role
in ligand affinity and/or specificity by forming Van der
Waals contacts with the acyl chain of the bound FA. Amino
acid residues Phe16 and Phe57 of H-FABP are both lo-
cated near the putative FA entry site and make Van der
Waals contacts with the bound ligand. The phenyl ring of
Phe16 may form a key determinant in FA specificity and
affinity of H-FABP [69], since it may change its orientation
upon ligand binding [13]. The importance of Phe16 in lig-
and binding was confirmed by studies on H-FABP mutants
[98, 100]. Results of mutations of Phe57 in B-FABP and
H-FABP indicate that this residue is not a major contribu-
tor to the FABP/ligand interaction [88, 98]. In A-FABP,
however, Phe57 appeared critical for the formation of the
FA/A-FABP complex and the stability of the protein, but
was not involved in determination of selectivity for ligands
[101, 102]. Phe57 displayed a greater mobility in A-FABP
relative to H-FABP [103]. Mutation of Gly33 of B-FABP,
which is adjacent to the opening of the binding pocket, to
a bulkier amino acid could prevent access of the ligand to
the binding pocket by partially occupying the volume nor-
mally used by the ligand [88]. 
All members of the FABP family contain nine turns, eight
of which are between antiparallel b strands. Seven of these
turns contain a glycine residue. The turn between b strands
D and E is of particular interest, since no hydrogen bonds
are present between the main chain atoms of these two
strands. A series of single, double and triple mutations
within this turn in I-FABP resulted in a large decrease in
oleic acid binding and loss of stability [104]. These data
indicate that this region may be involved in the last stage of
the protein-folding process. I-FABP mutants that lack
Leu64 appeared to have a lower conformational stability
and a high rate of refolding [104]. Systematic mutation of
the glycine residues located in the turns between the b
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The crystal structure of rat recombinant L-FABP in the
presence of oleic acid was completed to 2.3-Å resolution
[14]. Two FA molecules are bound within the central cavity
(fig. 3). The carboxylate of one FA interacts with Arg122
and is shielded from free solvent. It has an overall bent con-
formation. The more solvent exposed carboxylate of the
other FA is located near the helix-turn-helix that caps one
end of the b barrel, while the acyl chain lies in the interior.
The primary and secondary oleate-binding sites appear to
be totally interdependent, mainly because favourable hy-
drophobic interactions form between both aliphatic chains.
As in other FABP types, Arg122 appeared to be important
for the binding of the first FA [11, 91]. Serine residues at
positions 39 and 124 also play a role in ligand binding.
Structural data on L-FABP confirm the presence of bG and
bH strands shorter than the average for the FABP family.
The decreased number of intra-main chain hydrogen bonds
girding the portal region suggests a greater degree of pos-
sible motion in L-FABP. 
All FABP structures determinated to date by NMR or crys-
tallography showed two a-helical regions [13]. To investi-
gate the structural and functional role of this conserved
helical domain of FABPs, a helix-less variant of rat I-FABP
was engineered by deleting residues 15–31 and inserting a
Ser-Gly linker after residue 14 [92]. Circular dichroism
measurements and NMR spectra indicated that this 
I-FABP variant (named I-FABP HL) has a high b sheet
content and a b clam topology similar to that of the wild-
type protein [92]. Triple-resonance three-dimensional
NMR revealed that the backbone conformation of I-FABP
HL is nearly superimposable with the b sheet domain 
of wild-type I-FABP, and that deletion of the a-helical
domain creates a very large opening that connects the
interior cavity with the exterior solvent [93]. I-FABP HL
was less stable to guanidine treatment than wild-type 
I-FABP. The FA-protein interactions of I-FABP HL were
similar to those of the wild-type I-FABP at the carboxylate
end of the FA, but not at the methyl end. Ligand association
rates for the helix-less variant and the wild-type protein
were comparable, but the dissociation rate was 16-fold
lower for the wild-type protein [94]. These data indicate
that the a helices of I-FABP are not required to maintain
the integrity of the FA-binding cavity but may serve to reg-
ulate the affinity of FA binding. FA transfer studies showed
that in the absence of the a-helical domain, effective colli-
sional transfer of FA to phospholipid membranes does 
not occur, indicating that the a-helical region of FABP is
essential for interaction with membranes [95, 96].

Structure-function relationship of FABPs

Site-directed mutagenesis has been used to study more
systematically the structure-function relationship of
FABPs. Conserved residues in the amino acid sequence



strands of I-FABP showed that mutations in any of the
three turns connecting the last four C-terminal strands slow
the folding and decrease stability, whereas for most of the
other turn mutations, no apparent correlation was observed
between stability and refolding rates [105]. The a helices
of I-FABP are not required to maintain the integrity of the
binding cavity, since a helix-less variant of I-FABP showed
similar b sheet and b clam topology and FA-binding char-
acteristics as the wild-type protein [92, 94].
Acetylation and substitution of external lysine residues of
H-FABP and A-FABP located on the b2 turn and helices
aI and aII did not change the binding affinity for FA, but
changed the transfer rate of 2-(9-anthroyloxy)palmitate
(2-AP) to phospholipid membranes [106–108]. A lysine
to isoleucine mutation in the non-portal bA strand of
A-FABP also decreased the 2-AP transfer rate, suggest-
ing that not only the portal region but also other distinct
regions are involved in electrostatical interactions
between FABPs and membranes [108].
Studies on mutants of I-FABP and A-FABP revealed
binding affinities ranging from about 200-fold smaller to
30-fold larger than the wild-type proteins [109, 110].
Reduced rates of binding were generally, but not exclu-
sively, associated with sites within the portal region
[110]. In A-FABP, Ala substitutions for Arg106 and
Arg126, which interact with the FA carboxylate, reduced
affinities by about 100-fold, but in I-FABP, R106A has a
30-fold higher affinity. An explanation for the latter is
that the loss in enthalpy due to the elimination of the
favourable interaction between the FA carboxylate and
Arg106 is compensated for by an increase in entropy
[109, 110]. Enthalpy and entropy measurements appear
to provide more insight about the FA-FABP interaction
than affinity measurements alone [111].

FA uptake and transport

Most eukaryotic cells are capable of taking up long-chain
FAs to be used for a variety of cellular processes. Extra-
cellularly (in the blood), FAs are transported mainly in
complexes with albumin which has three high-affinity
binding sites [1]. FA uptake by the eukaryotic cell may
occur both by passive diffusion and by protein-mediated
binding and translocation mechanisms. Diffusion of FAs
across the plasma membrane is a fast process, also called
‘flip-flop’ [112–114]. It is driven by an inwardly directed
FA gradient, with an extracellular FA concentration in
10- to 20-fold excess over the intracellular content
[115, 116]. 
Hamilton and Kamp [117] suggest plasma membrane FA
transporters function indirectly by increasing the FA par-
titioning into the membrane or sequestering FA to a mem-
brane-bound enzyme, thereby enhancing metabolism
[117]. Recently, Stump et al. [118] found that oleic acid
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uptake by rat adipocytes is the sum of saturable (facili-
tated) and linear (flip-flop) processes. Over 90 % of the
transport occurs via the saturable pathway when the oleic
acid bovine serum albumin (BSA) ratio is within the
physiological range. In contrast to data reported by
Hamilton and Kamp [117], they found that rate constants
for saturable transmembrane influx were faster than those
for non-saturable uptake. The discrepancies between the
data of the different groups are possibly due to the differ-
ent methods used (tracer kinetic studies versus intravesic-
ular acidification rate measurements). 
Protein-facilitated FA uptake has been shown in cardiac
myocytes [119, 120], adipocytes [121, 122] and hepato-
cytes [123, 124]. Several membrane-associated FA trans-
porters have been identified during the last decade [5].
Plasma membrane FABP (FABPPM, [125]), FAT (CD36,
[126]) and FATP [127] act as long-chain FA transporters
[128]. 
Intracellularly, FAs are bound by FABPs, which are con-
sidered to be important carriers for intracellular FAs.
They increase FA solubility and facilitate transport of FA
from the plasma membrane to sites of FA oxidation (mi-
tochondria, peroxisomes), to sites of FA esterification
into triacylglycerols (TGs) or phospholipids, or to the
nucleus, possibly for regulatory functions (fig. 4). Sev-
eral studies have demonstrated FA transfer between
FABPs and membranes by use of radiolabelled or fluo-
rescent FAs, or by NMR [3, 4, 129–131]. In hepatocytes
and adipocytes, uptake of photoactivatable radiolabelled
FAs was accompanied by labelling of FABPs [132, 133]. 
FA transfer by FABPs has been studied with the help of
fluorescent anthroyloxy-labelled fatty acids (AOFAs) and
phospholipid vesicles [131]. AOFA transfer from different
FABP types to phospholipid membranes occurs by dis-
tinct mechanisms [reviewed in ref. 134]). AOFAs are

Figure 4. Schematic representation of the role of FABPs in FA up-
take and intracellular FA trafficking. FA, fatty acid; VLDL, very
low density lipoprotein; chylos, chylomicrons; LPL, lipoprotein li-
pase; ECF, extracellular fluid; M, membrane-associated FA trans-
port protein; ER, endoplasmic reticulum; FAAR, fatty acid-acti-
vated receptor; FARE, fatty acid-responsive element. FABP can
also be present in the nucleus (see text).



with the concentration of I-FABP, in agreement with the
data of Storch et al. [131].
Experimental data of different investigators led to para-
doxical conclusions about intermembrane FA transport
by L-FABP. Most studies support a diffusional mecha-
nism of FA transfer [143–147]. Other investigators have
shown that the binding of L-FABP to anionic lipid
vesicles results in ligand (DAUDA) release, consistent
with a collisional transport mechanism [148]. The de-
crease of the rate of intermembrane 12-AS transfer with
increasing FABP concentration supports, however, a pre-
dominantly diffusional mechanism of L-FABP-mediated
transport [143]. FRAP analyses with NBD-stearate sup-
port the concept that BSA and L-FABP enhance FA dif-
fusion [138], while vesicle transfer studies with 12-AS
indicate that BSA and L-FABP inhibit intermembrane FA
translocation [143]. These contrasting observations may
be due to the fact that both NBD-stearate and 12-AS
carry a different attached fluorescent group which may
alter the physical properties of the FA molecule. Another
explanation is that FRAP analyses do not distinguish be-
tween membrane- and protein-bound ligands and
wrongly assume steady-state conditions [143].
In a study of FA transfer from immobilized liposomes to
rat liver or heart mitochondria, FABPs stimulate transfer
but no preference for any FABP type was observed [149].
The transfer rate was higher from positively charged
liposomes than from neutral or negatively charged lipo-
somes. I-LBP did not transfer FA. The significance of
intracellular bile acid-binding proteins for bile acid trans-
port remains to be established [150]. I-LBP appears to
bind preferentially conjugated bile acids in contrast to
L-FABP [12, 151]. A correlation was found between the
presence of L-FABP in bile and both bile flow and bile
acid release [152].

Function of FABPs in modulation of signal 
transduction and gene transcription

FAs, their CoA and carnitine esters and other lipid medi-
ators, such as eicosanoids and lysophospholipids, may
directly or indirectly influence various cellular processes
by their interactions with enzymes, membranes, ion
channels, receptors or genes [3, 129, 153–155]. By mod-
ulation of the concentrations of unesterified FA and their
derivatives, FABPs have an indirect effect on these para-
meters. Besides FAs, L-FABP also binds lysophospho-
lipids and eicosanoids [9]. H-FABP was recently shown
to bind cytochrome P450 monooxygenase and lipoxyge-
nase pathway products [156]. Distinct FABPs may differ-
entially affect processes that can be influenced by FAs.
Examples of such processes are given below.
FAs (in particular unsaturated FAs) are able to act as sec-
ond messengers involved in the transduction of external
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transferred from I-FABP, H-FABP and A-FABP by colli-
sional interaction with an acceptor membrane, since their
rate of transfer increases linearly with the concentration of
acceptor vesicles. In contrast, L-FABP transfers AOFA to
membranes in an aqueous diffusional manner involving an
initial and obligatory release of ligand to the aqueous
environment. The transfer rates differ markedly between
different FABP types. With 12-(9-anthroyloxy)oleic acid,
the transfer rate is A-FABP > H-FABP >> I-FABP >> L-
FABP [131]. When membranes contain anionic phospho-
lipids, the AOFA transfer rate from H-FABP and A-FABP
increases, suggesting that positively charged amino acid
residues on the FABP surface are involved in the inter-
action between FABP and membrane. The interaction
between A-FABP and membranes appeared to be electro-
static, since binding was dependent on the molar concen-
tration of anionic phospholipid, and decreased when
acetylated A-FABP was used [135]. When surface lysine
residues of H-FABP and A-FABP were neutralized by
acetylation, the transfer rate decreased markedly and the
transfer mechanism changed to aqueous diffusion instead
of collisional interaction [106, 107, 136]. Mutation of
single lysine residues showed that the helix-turn-helix do-
main, and especially Lys21 in H-FABP and A-FABP, is
critical for interaction with anionic acceptor membranes
[107, 108]. Deletion of the a-helical domain of I-FABP
altered the regulation of AOFA transfer to acceptor mem-
branes, making the normally collision-mediated process
more characteristically diffusion mediated [95]. Transfer
of AOFA from phospholipid membranes to different
FABP types also appeared to occur by different mecha-
nisms. As with transfer from FABP to membranes, the
process is diffusion mediated for L-FABP and collisional
for I-FABP [137].
The technique of fluorescence recovery after photo-
bleaching (FRAP) was used to measure the intracellular
transport of a fluorescent fatty acid [12-N-methyl-
(7-nitrobenzo-2-oxa-1,3, diazol)aminostearate; NBD-stea-
rate] [138, 139]. Cytoplasmic transport of NBD-stearate
could be inhibited by a-bromo-palmitate [138]. Transfec-
tion of L-cell fibroblasts with L-FABP or I-FABP cDNA
increased NBD-stearate uptake and cytoplasmic trans-
port [139]. The latter appeared to be dependent on FABP
concentration and binding activity [140, 141], which is
consistent with the proposition that binding proteins
enhance diffusive transport by reducing ligand binding to
immobile intracellular membranes [142]. Recently, a
kinetic model of intermembrane ligand transport was de-
veloped in which diffusional transfer of ligand between
membrane and protein is assumed [143]. This model was
tested by using the stopped-flow technique to monitor
transfer of 12-anthroyloxy stearate (12-AS) between
model membrane vesicles. The 12-AS transfer rate was
shown to decline asymptotically with increasing concen-
trations of BSA or L-FABP and was linearly correlated



signals because their concentrations are rapidly and
transiently altered in response to the binding of specific
agonists to plasma membrane receptors. They may sub-
stitute for the classical second messengers of the inositide
phospholipid and the cyclic AMP signal transduction
pathways [153–155]. FAs inhibit growth factor-induced
diacylglycerol kinase a activation in vascular smooth
muscle cells and increased levels of FAs may contribute
to chronic protein kinase C activation associated with
diabetes [157]. Very recently, Collett and co-workers
[158] showed that n-6 and n-3 polyunsaturated FAs dif-
ferentially modulate oncogenic Ras activation in colono-
cytes. FA, especially polyunsaturated FAs, such as arachi-
donic acid and linoleic acid, directly regulate Na+, K+,
Ca2+ and Cl– ion channels [159–163]. 
FAs play a role in the transcription of genes, especially
those genes which encode proteins involved in lipid
metabolism, e.g. acyl-CoA synthase [164], acyl-CoA ox-
idase [165, 166], stearoyl-CoA desaturase [165, 167] and
carnitine-palmitoyl transferase [168]. The transcription
of FABP and FATP genes is also promoted by FAs
[164, 169–174]. Recently, FA regulation of gene tran-
scription was reviewed by Duplus et al. [175]. In mam-
mals, the expression of many genes has been shown to be
modulated by FAs in a positive or negative manner. The
control of hepatic lipogenic enzymes is an example of
negative regulation. Clarke and Jump [165] reported that
polyunsaturated FAs of the n-6 and n-3 families, in con-
trast to saturated and monounsaturated FAs, inhibit tran-
scription of a number of hepatic lipogenic and glycolytic
genes by a mechanism that does not involve peroxisome
proliferator-activated receptors (PPARs), a subfamily of
the nuclear hormone receptors [176–180]. Up to now,
three types of PPAR have been described: PPARa,
PPARb [also known as FA-activated receptor (FAAR) or
PPARd] and PPARg. Their differential tissue distribution
suggests that they have specific roles in different organs.
PPARa is predominantly expressed in the liver and brown
adipose tissue and plays an important role in FA catabo-
lism [181]. PPARg is highly expressed in adipocytes
where it is involved in the regulation of adipose differen-
tiation and adipogenesis [182]. PPARd or FAAR displays
a high level of expression in lipid-metabolizing tissues,
such as adipose tissue, small intestine, heart and skeletal
muscle and could regulate the expression of genes im-
plicated in FA uptake and activation [183]. It also medi-
ates the effects of long-chain FAs on post-confluent cell
proliferation [184]. Naturally occurring (FAs, leuko-
trienes, prostaglandins) and synthetic (fibrates, glita-
zones) molecules that are ligands for these nuclear
receptors control the transcriptional activity of PPARs
[185, 186]. 
Intriguingly, the expression of FABPs is regulated by FAs
and other PPAR ligands. Wy14,643 (a synthetic activator
of PPARa) induces L-FABP, I-FABP and H-FABP
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mRNA in the respective mouse tissues [187]. Wy14,643
was also shown to enhance the binding activity of
PPARa/RXRa to peroxisome proliterator responsive
elements of acyl CoA oxidase and L-FABP genes [188].
Activation of PPARd by FA induced transcription of
genes encoding FAT, A-FABP and PPARg in 3T3C2
fibroblasts, resulting in lipid accumulation and adipo-
cyte differentiation [189]. FAs are involved as signal-
transducing molecules in the differentiation of preadi-
pose to adipose cells and induce A-FABP expression
[169–171, 190]. A sunflower oil-enriched diet specifi-
cally increased L-FABP mRNA and protein in duodenum
and proximal jejunum, but did not affect I-FABP levels
[191]. Targeted disruption of the gene encoding PPARa
fully abolished the hepatic induction by fibrates of the
gene encoding L-FABP [181]. Interestingly, analysis of
long-chain FA- and fibrate-mediated effects on L-FABP
mRNA levels in wild-type and PPARa null mice showed
that PPARa in the intestine does not constitute a domi-
nant regulator of L-FABP gene expression [192]. Instead,
PPARd can act as a fibrate/FA-activated receptor, and L-
FABP is a PPARd target gene in the small intestine [192].
Bile components appear to regulate I-LBP expression in
the ileum [193].
FABPs have been detected in the nucleus of hepatocytes
[194, 195], heart myocytes [196], locust myocytes [197]
and astrocytes [198]. Recently, the role of L-FABP in FA
transport to the nucleus was examined using fluorescein-
conjugated L-FABP [199]. L-FABP appeared to interact
directly with rat liver nuclei in a specific, ligand-depen-
dent manner. An interaction was observed between L-
FABP and a 33-kDa nuclear protein, which was enhanced
in the presence of oleic acid. These data indicate that
L-FABP is involved in communicating the state of FA
metabolism from the cytosol to the nucleus through an in-
teraction with lipid mediators that are involved in nuclear
signal transduction [199]. A direct role for L-FABP in the
regulation of gene expression was reported by Wolfrum et
al. [200]. They found co-localization of L-FABP and
PPARa in the nucleus of mouse primary hepatocytes.
L-FABP interacted with PPARa and PPARg but not with
PPARb and RXRa by protein-protein contacts. With all
ligands applied, a strict correlation of PPARa and PPARg
transactivation with intracellular concentration of L-FABP
was observed. Together these findings strongly suggest
nucleus-directed signalling by FA and hypolipidemic
drugs where L-FABP may act as a cytosolic gateway for
these PPARa and PPARg agonists [200].

Data from FABP knockout mice

The generation of knockout mice a couple of years ago
was an important step forward in understanding the phys-
iological role of FABPs. Table 4 gives an overview of
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FABP knockouts generated to date and their phenotypical
and physiological characteristics. Mice lacking H-FABP
exhibit a severe defect in peripheral long-chain FA uti-
lization. The heart is unable to take up efficiently plasma
long-chain FAs which are normally its main fuel, and
switches to glucose usage [201]. H-FABP deficiency is
only incompletely compensated, causing acute exercise
intolerance and, at old age, a localized cardiac hypertro-
phy [201]. Furthermore, in resting and contracting car-
diac myocytes from H-FABP null mice, both uptake and
oxidation of palmitate are markedly reduced [202]. In
resting H-FABP-deficient cardiac myocytes, glucose ox-
idation is increased by 80%. Taken together, these find-
ings provide evidence that H-FABP plays a crucial role in
the uptake and oxidation of long-chain FAs, in fuel selec-
tion and in metabolic homeostasis.
Mice lacking A-FABP (or aP2) are healthy, develop
apparently normal adipose tissue, and exhibit only minor
alterations in their steady-state lipid metabolism [203].
This lack of significant effect of A-FABP deficiency was
potentially the consequence of the compensatory upregu-
lation E-FABP mRNA [204, 205], which is otherwise
present at only low levels in adipose tissue [19]. There
was no difference in the rate of FA influx or esterification
in adipocytes of wild-type and A-FABP null mice, but
basal lipolysis was approximately 40% decreased in
A-FABP null mice [204]. A-FABP null mice with in-
duced obesity failed to express tumour necrosis factor-a
in adipose tissue and were significantly protected from
hyperinsulinemia and insulin resistance compared with
wild-type mice, suggesting that adipocyte FA metabolism
is a critical component of the mechanisms leading to sys-
temic insulin resistance in obesity [203, 205]. The role of

A-FABP in pathogenesis of type 2 diabetes may involve
the regulation of hyperinsulinaemia and insulin resis-
tance through its impact on both lipolysis and insulin se-
cretion [206]. Experiments with obese A-FABP null mice
indicated that A-FABP deficiency not only improves
peripheral insulin resistance but also preserves pancreatic
b cell function and has beneficial effects on lipid metabo-
lism [207]. Recently, the expression of A-FABP in
macrophages was demonstrated [208]. A-FABP appeared
to play a significant role in the biological responses of
macrophages, and contributes to the development of
atherosclerosis. Apolipoprotein E-deficient mice also
deficient for A-FABP showed protection from atheroscle-
rosis, and A-FABP-deficient macrophages exhibited
alterations in inflammatory cytokine production and a
reduced ability to accumulate cholesterol esters when
exposed to modified lipoproteins [208]. Oxidized low-
density lipoprotein appears to induce the expression of
A-FABP mRNA and protein in human macrophages
[209]. These data indicate distinct actions of A-FABP in
adipocytes and macrophages and could provide a new
therapeutic target for the prevention of atherosclerosis.
I-FABP null mice were used to study the role of I-FABP
in the uptake of dietary FAs [210]. I-FABP null mice ap-
peared viable but display alterations in body weight and
are hyperinsulinemic. Male I-FABP null mice had ele-
vated plasma triacylglycerols and weighed more regard-
less of the dietary fat content. In contrast, female I-FABP
null mice gained less weight in response to a high fat diet.
These findings led to the idea that I-FABP is not essential
for dietary fat absorption but may rather function as a
lipid-sensing component of energy homeostasis that
alters body weight gain in a gender-specific fashion
[210]. I-LBP knockout mice showed the same phenotype
and bile acid pool size as wild-type mice [211].
E-FABP-deficient mice were viable and showed no
macroscopical aberrations compared to wild-type mice,
but H-FABP gene expression was upregulated and may
compensate for the lack of E-FABP [212]. The basal
transepidermal water loss of the E-FABP null mice was,
however, decreased compared to wild-type mice, and
these animals were not able to recover this loss when the
lipid barrier was disrupted. These results indicate that
E-FABP may be involved in the formation of the water
permeability barrier of the skin.

Expression of FABPs and their role in growth,
differentiation and cytoprotection

The expression of FABP mRNA and the synthesis of
FABPs are dependent on cell differentiation and post-
natal development for various FABP types in different
tissues [4, 213], e.g. I-FABP and L-FABP in intestine
[214], L-FABP in liver [215] and H-FABP in various

Table 4. Effects of FABP loss in knockout mice.

Knockout Characteristics Reference

H-FABP exercise intolerance 201
localized cardiac hypertrophy
reduced oleate/palmitate uptake 202
increased glucose oxidation

A-FABP normal phenotype (compensation 203
by E-FABP)
protection from insulin resistance 205
at induced obesity
altered cytokine production and less 208
accumulation of cholesterol in 
macrophages

I-FABP normal phenotype 210
hyperinsulinaemia
gender-specific body weight gain 210

I-LBP normal phenotype 211
normal bile acid pool size

E-FABP normal phenotype 212
upregulation of H-FABP
altered water permeability of the skin



tissues [216]. For brain, more recent data are available
[reviewed in ref. 17]). The brain contains three different
types of FABP: H-FABP [47], B-FABP [217, 218] and
E-FABP [20, 219]. The genes for these brain FABP types
show a spatiotemporally differential expression in devel-
oping and mature brain [219, 220]. The expression of
H-FABP becomes evident in rat brain after birth, with a
gradual increase, and is confined to the grey matter, sug-
gesting that its mRNA is neuron specific [220]. In mouse
brain, H-FABP levels are detectable after fetal day 19 and
increase until post-natal day 14, but become lower in the
adult brain [221]. In contrast to H-FABP, the expression
of B-FABP and E-FABP is dominant in the pre-natal and
peri-natal mouse and rat brain [219, 220]. E-FABP
mRNA and protein are expressed at high levels during
neurogenesis, neuronal migration and terminal differenti-
ation of neurons [219, 222].
Hormones and physiological changes have a particular
effect on the expression of L-FABP [9, 213, 223]. The
H-FABP content of heart was markedly changed by exer-
cise and testosterone [129, 213]. Bacterial lipopolysac-
charide downregulated H-FABP in rat heart and muscle
and L-FABP in liver; cytokines only downregulated L-
FABP in liver [224]. In contrast to L-FABP, I-FABP ex-
pression is limited to fully differentiated human Caco-2
cells and can be more easily regulated by lipids, hor-
mones and cytokines [225].
Members of the FABP family also appear to be connected
with the modulation of cell growth. L-FABP modulates the
mitogenesis of liver and hepatoma cells [215].
L-FABP cDNA transfection of hepatoma cells increased
the efficacy of the utilization of unsaturated FAs, espe-
cially linoleic acid, leading to a higher proliferation rate
[226]. Furthermore, maintenance of membrane integrity
and preservation of morphology were promoted in
L-FABP cDNA-transfected hepatoma cells, although
others found an increase in plasma membrane fluidity in L-
FABP cDNA-transfected L-cell fibroblasts [227]. Two
classes of carcinogenic peroxisome proliferators are acti-
vated by L-FABP, resulting in cell multiplication in
hepatoma cells [228]. L-FABP expression in rat enzyme-
altered foci is determined by the initiating carcinogenic
regime [229]. Embryonic stem cells transfected with
cDNA encoding L-FABP showed morphological changes,
a reduced level of stage-specific embryonic antigen-1, and
localization of L-FABP in both the cytosol and the nucleus
[230]. These findings suggest that L-FABP may play a role
in regulating embryonic stem cell differentiation by acting
in the nucleus as well as the cytoplasm.
Other FABP types have also been implicated in some
cases in the regulation of growth and differentiation.
Bovine mammary-derived growth inhibitor (MDGI),
which was identified as a mixture of H-FABP and A-
FABP [231], and H-FABP caused specific growth inhibi-
tion and terminal differentiation of mammary epithelial

cells [232, 233]. H-FABP cDNA transfection caused a
modest anti-proliferative activity in human breast cancer
cells [234]. In addition, in vivo tumorigenicity of trans-
fectants expressing H-FABP was reduced [234]. Of inter-
est is that human H-FABP was mapped to chromosome
1p33–p35, a common region of loss in sporadic breast
cancer [31]. Furthermore, MDGI appeared to be a potent
inhibitor of bovine, mouse and human mammary epithe-
lial proliferation in cell and organ culture [233, 235, 236].
Evidence for decreased H-FABP expression was found in
human breast cancer [234]. MDGI-derived peptide P108
inhibits tumour growth of breast cancer cell lines in nude
mice [237]. Together, these observations led H-FABP to
be considered a tumour suppressor [reviewed in ref.
238]). Differentiation-promoting effects of MDGI/H-
FABP were observed in pluripotent mouse embryonic
stem cells [239], mammary epithelial cells [233] and car-
diac myocytes [240]. Expression of bovine H-FABP in
yeast caused inhibition of growth [241], but L6 muscle
cells transfected with H-FABP cDNA did not show
changes in growth or differentiation compared to mock-
transfected cells [242]. Interestingly, the expression of H-
FABP in C 2C12 muscle cells appeared to be differentia-
tion dependent [243]. Cultured human and rat muscle
cells also showed an increase in H-FABP at differentia-
tion [242, 244]. The increasing H-FABP content upon
differentiation may relate to increasing FA oxidation that
has been reported for differentiated L6 cells [245]. Trans-
fection of L6 cells with A-FABP cDNA increased the pro-
liferation rate and blocked the fusion of these cells,
simultaneous with changes in their phospholipid compo-
sition [242]. Transfection of MDCK cells with either
H-FABP, L-FABP or A-FABP cDNA did not influence
proliferation [246]. Some FABP types inhibited cell-free
protein synthesis in a reticulocyte lysate, whereas others
had no effect [247]. The inhibition was not influenced by
delipidation, and for H-FABP mutants was not related to
their affinity for FAs.
In some cases, FABPs could be used as tumour markers
(table 5). The development of liver and gut cancer appears
to be related to changes in FABP content. The FABP con-
tent decreases with further dedifferentiation and progres-
sion of the tumour. Generally, the level of L-FABP and I-
FABP decreased in rat and human colon carcinoma
[248, 249]. In human hepatic tumours and rat hepatoma,
the L-FABP staining decreased and showed mosaicism
[250, 251]. Furthermore, L-FABP expression is suitable
for use as a new pre-surgical prognostic marker for
patients undergoing hepatic surgery for colorectal cancer
metastases [252].
A-FABP synthesis was only detected in lipoblasts in
lipoblastoma and liposarcoma, but not in other benign
adipose tissue tumours and malignant connective tissue
or epithelial tumours [253]. In contrast, A-FABP expres-
sion by normal bladder urothelium was lost at various
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stages of carcinoma progression [254]. In addition, low-
grade tumours contained more A-FABP than their high-
grade counterparts. Protein abundancy and mRNA levels
of A-FABP correlate in non-invasive and invasive bladder
transitional cell carcinomas, and the loss of A-FABP was
not compensated by an increase in E-FABP, as is the case
in A-FABP knockout mice [255].
B-FABP expression correlates with glial fibrillary acidic
protein (GFAP) in a subset of human malignant glioma
cell lines [256]. Its expression is regulated by differential
phosphorylation of nuclear factor I (NFI), which is able
to bind to two NFI-binding sites in the B-FABP gene
[257]. E-FABP expression is increased in drug-resistant
human adenocarcinoma of the pancreas and was sug-
gested to be part of a mechanism of sequestration or re-
moval of cytotoxic drugs [258]. The E-FABP gene is
overexpressed in most human prostate carcinomas and
some squamous carcinomas of the bladder and skin
[259–261]. The increased E-FABP expression may be
involved in the malignant dissemination of some human
cancers, and the E-FABP gene is suggested to be a
metastasis-inducing gene [261]. Studies on rat mam-
mary epithelial cells (Rama 37 cells) demonstrated that
E-FABP induces metastasis by up-regulating the expres-
sion of the vascular endothelial growth factor gene,
which is one of the most potent stimulating factors for
angiogenesis [262].
The presence of FABPs has also been suggested to pro-
vide protection against high intracellular FA concentra-
tions and to prevent their toxic effect on membranes and
cells [9]. H-FABP was suggested to bind FAs accumulat-
ing under pathophysiological circumstances [263].
H-FABP could also protect the heart by scavenging free
radicals [264] and by inhibiting a b-adrenergic response
as observed in cultured neonatal rat heart cells [265]. The

presence of FABPs would enable a more rapid exchange
of FAs among subcellular and intercellular sites, to coun-
teract local FA accumulation [266]. Overexpression of
E-FABP in chemoresistant pancreatic cancer cell lines
was suggested to be part of a mechanism of sequestration
or removal of cytotoxic drugs [258]. No significant dif-
ferences in the effects of chemical anoxia or high extra-
cellular oleic acid concentrations were observed between
non-transfected, mock-transfected or FABP cDNA-trans-
fected (MDCK) cells [246]. Therefore, no definitive con-
clusion can be drawn about the putative cytoprotective
effect of FABPs.

FABPs as diagnostic marker for tissue damage

Because of their small size, high solubility, and tissue
specificity, FABPs are supposed to be good candidates as
biochemical markers for tissue injury under experimental
and pathological conditions. The FABP type and its
serum concentration may provide information about the
nature and extent of tissue damage. Human H-FABP can
be determined in extracellular fluids such as plasma and
urine [267–270]. FABP released after acute myocardial
infarction is quantitatively recovered in plasma, making it
a useful biochemical plasma marker for the estimation of
infarct size in humans [269, 271, 272]. The diagnostic
sensitivity was significantly higher for H-FABP than for
myoglobin [273]. In addition, the differences in myoglo-
bin and FABP content in heart and skeletal muscles and
their simultaneous release upon muscle injury allow the
plasma ratio of myoglobin/FABP to be applied for dis-
crimination of myocardial from skeletal muscle injury
[274]. In contrast to these data, results obtained by others
[275] indicate that H-FABP does not demonstrate the sen-
sitivity and specificity necessary to detect acute myocar-
dial infarction significantly earlier than do existing mark-
ers. Plasma concentrations of H-FABP are also markedly
elevated in patients with chronic renal failure [276].
Therefore, caution must be taken when using H-FABP as
a marker for early diagnosis of myocardial infarction, in
case of renal insufficiency.
L-FABP is released from liver in various liver diseases
[277]. I-FABP is released into the circulation in the acute
phase of intestinal ischemia and is therefore a potential
biochemical marker to facilitate the early detection of
mesenteric ischemia [278–282]. Studies on neonates suf-
fering from necrotizing enterocolitis indicated that the
sensitivity of the I-FABP marker may be limited to late
stages of this disease. L-FABP seems to be a more sensi-
tive marker, since it could already be detected at stage I
[283]. Acute intestinal allograft rejection could be
detected earlier with I-FABP as a serum marker com-
pared to other markers [284, 285] although this was con-
tested by others [286].

Table 5. FABP as tumour markers.

FABP type Human type Species Change

L-FABP hepatoblastoma H Ø
hepatocellular carcinoma H, R Ø

L-FABP, small intestinal and
I-FABP colonic adenocarcinoma H, R Ø

colorectal adenoma H, R Ø
H-FABP ductal carcinoma mammary

gland H Ø
A-FABP bladder transitional cell 

carcinoma H Ø
lipoblastoma, liposarcoma H +

B-FABP glioma H +

E-FABP papilloma M +
pancreatic adenocarcinoma H ≠
prostate carcinoma H ≠
bladder carcinoma H ≠

H, human; R, rat; M, mouse; Ø, decrease; ≠, increase; +, presence. 



FABPs as targets for immunotherapy 
or chemotherapy against parasites

Various parasites are not able to synthesize FAs and there-
fore need FAs from their host to develop and/or survive.
Molecules similar to FABPs appear to be essential, and
have been found in the perivitelline fluid of the parasitic
nematodes Ascaris suum [287] and Ascaridia galli [288].
The blood flukes Schistosoma mansoni [289] and S.
japonicum [290, 291] and other parasitic platyhelminths
such as Fasciola hepatica and Echinococcus granulosus
[292] contain FABPs. The structure of an allergen of the
mite Blomia tropicalis was partially similar to Schisto-
soma and mammalian FABP [293]. The potential discon-
tinuous epitopes not present in the mammalian (host)
FABPs may give possibilities to develop vaccines against
these, for the parasite, essential proteins. FABPs have
therefore been studied as candidate molecules for im-
munotherapy [294, 295]. Specific drugs may also be
developed based on this information.

Conclusions

Despite the large amount of data on the three-dimen-
sional structure, FA-binding characteristics and tissue
occurrence of FABPs, the physiological role of these pro-
teins has not been completely resolved. Their specific oc-
currence in certain tissues or cells possibly results from
adaptation to specific cellular needs. FABPs undoubtedly
play an essential role in cellular FA transport and utiliza-
tion. FABPs are indirectly involved in FA-mediated regu-
lation of gene expression, sometimes via PPARs. More
investigations are, however, necessary on these aspects
and also on the interaction of FABPs with membrane
lipids, with FA transporters in the plasma membrane,
acceptor proteins of FAs in intracellular membranes and
with enzyme systems involved in FA metabolism. Ex-
tended studies on knockout mice and transgenic cell lines
transfected with FABP-encoding cDNAs will certainly
help in reaching a better understanding of the physiolog-
ical significance of distinct FABP types in different
tissues. 
Application of the knowledge about FABPs also has
potential in medicine. The role of FABPs in normal and
pathological growth and cell signalling certainly deserves
attention. Deficiency or malfunctioning of FABPs may
play a role in the pathology observed in cancer, diabetes,
obesity and atherosclerosis. FABPs may be suitable tar-
gets for intervention in these cases. Since FABPs are re-
leased in the blood and/or urine after tissue damage, they
may be used as diagnostic markers e.g. in cases of cardiac
infarction, intestinal ischaemia or renal failure. The
release of specific FABP types may be indicative of the
origin and severity of the damage. Finally, knowledge on
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FABPs of parasites may help to develop better vaccines
and drugs against these organisms, which are hostdepen-
dent for their FAs. 
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