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1. Introduction

Our base field is the field C of complex numbers. We study normal complete
algebraic varieties X endowed with an action of a connected reductive algebraic
group G admitting a dense orbit G·x. The stabilizer H of a point of the dense orbit
will be called generic stabilizer. Clearly, H is parabolic if and only if X = G · x.

If H is connected, Borel showed in [4] that the homogeneous space G/H has
at most two ends, i.e. the complement X \ G · x has at most two connected
components. When X \ G · x is disconnected, the generic stabilizer contains a
maximal unipotent subgroup U of G. This property results from the connectedness
(proved in [3, 11]) of the U -fixed point set of X. In this situation, the varieties X
share other peculiarities which were clarified by Ahiezer in [1] where he studied
and classified these objects.

This article deals with the situation where X \G ·x is a single orbit and in par-
ticular connected. Actually, this case appears as the most natural and “simplest”
one to consider after the case of projective homogeneous varieties (Grassmanianns,
flag varieties, etc.). We call such varieties two-orbit G-varieties or simply two-orbit
varieties when no confusion is possible.

Some of these varieties have been studied before. In [2] Ahiezer gave a classifi-
cation of the pairs (G,H) such that G · x = G/H admits a compactification X by
one homogeneous divisor. This list was independently obtained by Huckleberry
and Snow [12] in the more general context of kählerian varieties. Later, Brion gave
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in [7, 8] a purely algebraic approach to these results using the general theory of
embeddings developed by Luna and Vust (see [14]). Finally, Feldmüller classified
in [10] all pairs (G,H) giving raise to two-orbit varieties whose closed orbit is of
codimension 2.

The aim of this paper is to give the complete classification of two-orbit vari-
eties and to prove Luna’s conjecture saying that two-orbit varieties are spherical,
i.e. admit a dense orbit of a Borel subgroup B of G. In particular, two-orbit
varieties contain only finitely many B-orbits. We refer the reader to [14, 6] for an
introduction to spherical varieties.

Acknowledgements. I would like to thank my adviser Peter Littelmann for his
constant support. I am also grateful to Michel Brion for his advice and remarks
about my PhD thesis in which I obtained the results presented in this paper
(see [9]).

Note added in proof. After this article has been submitted I learned from
Alexander Smirnov that he had found a similar classification.

2. Notation and main results

Let G be a connected reductive algebraic group. We fix a Borel subgroup B and a
maximal torus T in B. Let Φ be the root system of G, we denote Φ+ ⊂ Φ the set
of positive roots relative to B and ∆ ⊂ Φ+ the set of simple roots corresponding
to B. In case of a simple group G, we enumerate the simple roots as in [5]
and when it is more convenient, we use the short notation of [loc. cit.] for the
description of positive roots. For example, if G is of type F4, 1111 stands for the
root α1+α2+α3+α4. Given some roots γ1,. . . ,γr, we put 〈γ1, . . . , γr〉 = ΣiQγi∩Φ.

As usual, we denote the Lie algebra of any connected algebraic subgroup H of
G by the corresponding small gothic letter h. In particular, we have g = Lie G
and t = Lie T . For a root α of G, we have the corresponding root group Uα with
Lie algebra gα. We let Yα be any non-zero element of gα so that CYα = gα.

Throughout this article, X will be a two-orbit G-variety. If G · x is the dense
orbit and G ·y is the closed one, we have: X = G ·x∪G ·y = Cl(G ·x) (the closure
of G · x). An embedding of an homogeneous space G/H is a normal G-variety X ′

together with a G-equivariant open embedding G/H → X ′. Thus, X together
with the inclusion G · x ⊂ X is a complete embedding of G/H with two orbits
where H = Gx.

The following proposition collects some important properties of complete vari-
eties with two orbits.

Proposition 2.1. Let G be a connected reductive algebraic group.

(i) A two-orbit G-variety X is projective. More precisely, X is G-equivariantly
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isomorphic to a closed subvariety of P(V ) where V is a rational representation
of G.

(ii) Let X ′ be a projective G-variety with two orbits. Then the normalization
η : X̃ ′ → X ′ is bijective. In particular, X̃ ′ is a two-orbit G-variety.

(iii) Let H ⊂ G be a closed subgroup and H◦ its identity component. Then there
is a natural bijective correspondence between the two-orbit varieties with generic
stabilizer H and those with generic stabilizer H◦.

(iv) The radical R(G) of G acts trivially on every two-orbit G-variety.

Proof. (i) By Sumihiro [16, Theorem 1] the closed orbit has a quasi-projective
G-stable neighbourhood which has to be all of X.

(ii) From the birationality of η it follows that X̃ ′ has a dense G-orbit isomorphic
to the dense orbit G ·x′ of X ′. Since η is finite and the stabilizer of the closed orbit
G · y′ in X ′ is connected, the inverse image η−1(G · y′) is a finite union of closed
orbits which are mapped isomorphically onto G · y′. If there were more than one
then, using again the connectedness of the U -fixed point set, U would have a fixed
point in G · x̃′ hence a fixed point z′ in G ·x′. Since X ′ is projective it follows that
the closure Cl(T · z′) has at least two T -fixed points ([13, Theorem 25.2]) and so
B = TU would fix at least two points in X ′ which is impossible.

(iii) Clearly, if X is a complete two-orbit embedding of G/H◦, G/H inher-
its a complete two-orbit embedding given by X/Γ where Γ is the finite group
H/H◦. Conversely, if Z is a two-orbit variety with dense orbit G · z and stabi-
lizer Gz = H then we consider the normalization X of Z in the field extension
C(G/H◦)/C(G/H). It follows that X has a dense orbit G · x with stabilizer
Gx = H◦ and that Z is the quotient by Γ. The same arguments as in (ii) show
that X is a two-orbit variety.

(iv) If the action of R(G) on a two-orbit G-variety is non-trivial then the fixed
point set XR(G) will have at least two connected components [3]. But clearly,
XR(G) is equal to the closed G-orbit which is connected. ¤

As a consequence, we will assume from now on that G is semisimple. Moreover,
part (iii) of the proposition above allows us to restrict our classification to the
situation where the generic stabilizer is connected.

Before stating the main results, we have to introduce another construction,
called parabolic induction. Let us give first an example.

Let G be a simple group of rank 2 and λ a dominant weight such that (λ, α∨1 ) >
1 and (λ, α∨2 ) = 0, where (·, ·) is the Killing form of g and α∨i the coroot associated
to the simple root αi. We consider the irreducible G-module V (λ) associated
to λ, a weight vector vλ−α1 ∈ V (λ) of weight λ − α1 and we denote by [vλ−α1 ]
the corresponding element in the projective space P

(
V (λ)

)
. Let P ⊃ B be the

parabolic subgroup associated to α1. Then Cl
(
P · [vλ−α1 ]

) ⊂ P
(
V (λ)

)
is a P -

variety with two P -orbits, namely P · [vλ] and P · [vλ−α1 ]. Note that the strict
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inequality (λ, α∨1 ) > 1 guarantees that [vλ] and [vλ−α1 ] are not in the same P -
orbit. And in turn, Cl

(
G · [vλ−α1 ]

)
= G ·Cl

(
P · [vλ−α1 ]

)
and G×P Cl

(
P · [vλ−α1 ]

)
are G-varieties with two G-orbits. We have an obvious G-equivariant morphism
G ×P Cl

(
P · [vλ−α1 ]

) → Cl
(
G · [vλ−α1 ]

)
. This morphism is an isomorphism on

the open G-orbits and corresponds to the projection G/B → G/Q on the closed
G-orbits where Q ⊃ B is the parabolic subgroup associated to α2.

This example motivates the following notion inspired by Luna’s work [15]
(see also [2]). From now on, a two-orbit P -variety, for P a parabolic subgroup
of G, is a normal complete P -variety with two P -orbits on which the unipotent
radical of P acts trivially.

Definition. A two-orbit G-variety X is said to be obtained by parabolic induction
from a pair (P, Y ) if P ( G is a parabolic subgroup and Y a two-orbit P -variety
such that

(i) the (full) radical of P acts trivially on Y ;
(ii) there exists a P -equivariant injective morphism ϕ : Y → X inducing a

birational morphism G×P Y → X.
A two-orbit variety is cuspidal if it can not be obtained by parabolic induction.

Remark. If X is obtained from (P, Y ) by parabolic induction then it is obvious
that X is spherical if and only if the two-orbit L-variety Y is spherical where
L = P/UP , UP being hte unipotent radical of P .

Theorem 2.2. (i) As an embedding of its dense G-orbit, a two-orbit G-variety
obtained by parabolic induction from a pair (P, Y ) is completely determined (up to
isomorphism) by its closed G-orbit and by the P -variety Y .

(ii) Each (non cuspidal) two-orbit variety is obtained by parabolic induction
from a unique pair (P,Z) such that Z is cuspidal.

This result allows to restrict the classification to cuspidal two-orbit varieties. In
the sections 5 and 6 we determine the possible pairs (G,H) where G is semisim-
ple and H ⊂ G is the generic stabilizer of a two-orbit G-variety (see the first
two columns of the table). Then we use the theory of Luna–Vust to show that
for these pairs the homogeneous space G/H admits a unique complete two-orbit
embedding(see the last column of the table). Thus we get our main result.

Theorem 2.3. The cuspidal two-orbit varieties are obtained as embeddings of the
homogeneous spaces G/H with (G, h) listed in the first two columns of the table.
In particular, G is simple or equal to SL2×SL2, in this situation. Moreover, each
such G/H has exactly one complete two-orbit embedding given in the last column
of the table.

Corollary 2.4. Two-orbit varieties are spherical.
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Remark. In the first column, we list the group acting on the two-orbit variety
designed in the last column. In the second column, we have the corresponding
(connected) generic stabilizer. We denote the Grassmannian of m-planes in Cn

by Gr(n;m), the n− 1-dimensional quadric Q(n) ⊂ Pn with the natural action of
SOn given by g · [z0 : z′] = [z0 : g · z′] and by Σk the Hirzebruch surface.

3. General properties

We first work out the case of two-orbit SL2-varieties.

Proposition 3.1. The two-orbit SL2-varieties are P1×P1 and P2 with the obvious
actions of SL2. The respective generic stabilizers are the maximal torus T and its
normalizer.

Proof. Recall that an SL2-orbit is projective if and only if it is of dimension 0
or 1. Since 3-dimensional SL2-orbits are affine this implies that a two-orbit SL2-
variety X has dimension 2. It follows that the maximal torus T fixes at least three
points of X ([13, Theorem 25.2]). Thus the generic stabilizer H contains T and
so H is either T or its normalizer H = NSL2(T ). This, in turn, implies that G/H
is affine and so the closed orbit has dimension 1. Now the canonical inclusions
SL2/T → P1 × P1 and SL2/NG(T ) → P2 extend to equivariant birational maps
X → P 1×P1 or X → P2. But since the locus of indeterminacy of such a map has
codimension greater or equal than 2 and is G-stable it follows that these maps are
regular and hence isomorphisms. ¤

From now on, the group G is of rank greater or equal than 2. Let us start
by studying locally the two-orbit G-variety X. Consider y the B-fixed point of
X and P its stabilizer in G. The group P is parabolic and PuL will be its Levi
decomposition such that T ⊂ L. By [6, Theorem 1.4], there exists an affine L-
stable subvariety Z of X such that dimZ ≥ 1 and Z ∩G · y = {y}. Using the fact
that T -orbits are affine, it is easy to see that an affine T -variety containing fixed
points also contains 1-dimensional orbits if the action is not trivial. Therefore,
there is a generic element x of X such that codimT Tx ≤ 1. In other words, we
have just obtained

Proposition 3.2. The ranks of the algebraic group G and of the generic stabilizer
differ at most by 1.

Definition. A two-orbit G-variety is said to be of type I if the ranks of G and of
the generic stabilizer are equal. Otherwise, it is said of type II.

Suppose that the generic element x is such that the torus T ◦
x is a maximal torus

of Gx. Let L′ be the centralizer in G of T ◦
x . Then, by the above proposition, L′
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is equal to T or is a Levi subgroup of semisimple rank 1. We are going to prove
that the latter possibility can not occur i.e.

Proposition 3.3. The maximal tori of the generic stabilizer are regular tori of
the group G.

For this, we will need the following

Lemma 3.4. Let H be a subgroup of G and S a torus of G. Consider L the
identity-component of the centralizer in G of S. Then the connected components
of (G/H)S, the S-fixed points of G/H, are exactly given by its L-orbits.

Proof. We prove this standard statement on the corresponding tangent spaces. Let
z ∈ (G/H)S such that Gz = H. We consider the tangent space Tz

(
(G/H)S

)
at z.

The lemma follows from the isomorphisms:

Tz

(
(G/H)S

) ∼= (g/h)S ∼= gS/hS ∼= l/lz. ¤

Proof of Proposition 3.3. We proceed by contradiction; suppose that L′ 6= T and
consider the projective L′-variety Cl(L′ · x) in X. Since T ◦

x 6= T , it is actually a
SL2-variety with more than two SL2-orbits (see Proposition 3.1). More precisely,
Cl(L′ ·x) \L′ ·x is a finite union of closed L′-orbits of dimension ≤ 1 all contained
in G · y because of Lemma 3.4. Therefore (see also the proof of Proposition 3.1),
the L′-variety Cl(L′ · x) is of dimension 2.

Let BL′ be the Borel subgroup of L′ equal to B ∩ L′ and UL′ its unipotent
radical. Since Cl(L′ ·x) \L′ ·x is not connected there exists an element x′ in L′ ·x
fixed by UL′ (see again the corresponding argument given in the introduction).
Thus, Cl(L′ ·x′) = L′ ·Cl(BL′ ·x′) = L′ ·Cl(T ·x′). Moreover, T ◦

x fixes obviously x′

so, by Proposition 3.2, T ◦
x = T ◦

x′ . If y1 and y2 denote the T -fixed points in Cl(T ·x′)
then Cl(L′ ·x) = L′ ·x∪L′ ·y1∪L′ ·y2. The variety Cl(L′ ·x), being 2-dimensional,
has at least three T -fixed points, (see [13, Theorem 25.2]). Therefore, y1 and y2

can not be simultaneously fixed by L′. Suppose that L′ · y1 6= y1 and consider the
element y′ satisfying Cl(T · y′) = L′ · y1. Then we get

T ◦
y′ = T ◦

x′ , dim(T · x′) = dim(T · y′) = 1 and y1 ∈ Cl(T · x′) ∩ Cl(T · y′).
It results from the lemma below that y2 ∈ L · y1 which is incompatible with the
fact that Cl(L′ · x) has more than two L-orbits. Thus the assumption L′ 6= T was
absurd – which proves Proposition 3.3. ¤

Lemma 3.5. Let x and z be two elements of a projective G-variety such that

dimT · x = dimT · z = 1 and T ◦
x = T ◦

z .

Let Z = Cl(T · x) ∪ Cl(T · z). If all T -fixed points ZT are contained in a single
projective G-orbit then ZT consists either of two or of four points.
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Proof. By embedding the given projective G-variety G-equivariantly into the pro-
jective space of a G-module, we can write the elements x and z as: x = [vµ1 +
. . . + vµr

] with vµi
6= 0 for all i’s and z = [vν1 + . . . + vνs

] with vνj
6= 0 for all j’s.

By assumption, the weights µi (resp. νj) sit on a same affine line Dx (resp. Dz)
and moreover,

ker(µ1 − µr)◦ = T ◦
x = T ◦

z = ker(ν1 − νs)◦.

From these equalities, we can deduce that the lines Dx and Dz are parallel or equal.
The first situation clearly yields four T -fixed points in Z. Concerning the second
one, we have to show that there are actually only two T -fixed points in Z. For
this, we name the weights µi and νj in order to have ZT = {[vµ1 ], [vµr

], [vν1 ], [vνs
]}.

Since ZT is entirely contained in one single projective G-orbit, its elements are all
conjugated by the Weyl group W of G. And in particular, the weights µ1, µr, ν1

and νs are extremal points of the convex hull of W · µ1. Therefore, if Dx = Dz

then the T -fixed points of Cl(T · x) and of Cl(T · z) must coincide. ¤

As a consequence of Proposition 3.3, we have:

Corollary 3.6. Consider two elements x and z of the dense G-orbit of a two-
orbit variety such that T ◦

x (resp. T ◦
z ) is a maximal torus of Gx (resp. Gz). Then

z ∈ NG(T ) · x; in particular, if x and z are B-conjugated they are actually T -
conjugated.

4. Parabolic induction

This section is the main step to the classification of two-orbit varieties. It consists
essentially in proving that the problem of classifying the two-orbit varieties can
be reduced to a subclass of two-orbit varieties called cuspidal, i.e. the two-orbit
varieties which can not be obtained by parabolic induction (see section 2).

4.1. Statements

Proposition 4.1. If X is obtained by parabolic induction from a pair (P, Y ) then
as an embedding of its open G-orbit it is completely determined (up to isomor-
phism) by its closed G-orbit and by the P -variety Y .

Proof. Suppose the parabolic subgroup P contains the Borel subgroup B and
consider the Borel subgroup B− such that B ∩ B− = T . By the theory of Luna
and Vust on embeddings of homogeneous varieties (see [14]), we know that X is
completely determined (up to isomorphism) by its G-stable prime divisors and by
the B−-stable prime divisors of its dense G-orbit whose closure in X contains the
closed G-orbit (see Theorem 8.3 of [loc. cit.]).



254 S. Cupit-Foutou CMH

Note that if the closed G-orbit of X is a divisor, the proposition follows easily
since the birational morphism G×P Y → X is an isomorphism. Therefore, in the
rest of the proof, we suppose that it is not the case.

Let L be the Levi subgroup of P such that T ⊂ L and B−
L its Borel subgroup

such that B−
L = B−∩L. Consider the G-equivariant morphism π : G×P Y → G/P .

Let D be any B−-stable prime divisor of the dense G-orbit of X (or equivalently
of G×P Y ). Then π(D) is dense in G/P or it is contained in a B−-stable divisor
of G/P .

Suppose that π(D) is dense in G/P . Then there exists a B−
L -stable prime

divisor DY of the dense P -orbit of Y such that B− · DY ⊂ D. Therefore, the
closure of D in X contains the closed G-orbit of X if and only if the closure of DY

in Y contains the closed P -orbit of Y . The proposition follows in this case.
Suppose now that π(D) is contained in a B−-stable divisor of G/P . Then the

closure of D in G×P Y , say D̃, is the inverse image by π of a B−-stable divisor of
G/P and the intersection of D̃ with the closed G-orbit of G×P Y is a divisor D′.
Therefore, the closure of D in X contains the closed G-orbit of X if and only if
the image of D′ through ϕ (morphism given by the definition of the pair (P, Y ))
is the closed G-orbit of X. This ends the proof of the proposition. ¤

We can put an order ≤ on the set of induction pairs of X, defined naturally,
for two pairs (P1, Y1) and (P2, Y2), by:

(P1, Y1) ≤ (P2, Y2) if P1 ⊆ P2 and ϕ1(Y1) ⊆ ϕ2(Y2),

where ϕ1 and ϕ2 are morphisms given by the definition (see section 2) of the
induction pairs (P1, Y1) and (P2, Y2) respectively.

Theorem 4.2. The set of induction pairs of a two-orbit variety (endowed with the
order ≤) has an unique minimal element.

4.2. Proof of Theorem 4.2

In order to prove Theorem 4.2, we will give an explicit construction of the minimal
induction pair.

Let us consider an induction pair (P, Y ) of X and two elements x and z in the
dense G-orbit of X. Suppose that B · x and B · z are closed in G · x. This means
that Bx (resp. Bz) contains a Borel subgroup of Gx (resp. Gz) and in particular,
Bx (resp. Bz) contains a maximal torus of Gx (resp. Gz). Let S1 ⊂ Bx (resp.
S2 ⊂ Bz) be such a torus and S̃1 ⊃ S1 (resp. S̃2 ⊃ S2) a maximal torus of B.
Then, by considering the elements x′ = b1 · x and z′ = b2 · z for elements b1 and
b2 of B such that S̃1 = b−1

1 Tb1 and S̃2 = b−1
2 Tb2, one can show that T ◦

x′ (resp.
T ◦

z′) is a maximal torus of Gx′ (resp. Gz′). Therefore, by Corollary 3.6, x′ and z′

are conjugated by an element n ∈ NG(T ). Moreover, because of the choice made
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on B · x and on B · z, one can show by a short computation that n is in fact an
element of P . We have got:

Lemma 4.3. If X is obtained from a pair (P, Y ) by parabolic induction then the
B-orbits which are closed in the dense G-orbit are in the same P -orbit of X. In
particular, they are contained in ϕ(Y ) for ϕ a morphism given by the definition of
(P, Y ).

Let x be a generic element of X such that B · x is closed in G · x and T ◦
x is

a maximal torus of Gx. Denote Gx by H. Let P1 be the parabolic subgroup of
G generated by B, H and the elements n of NG(T ) such that Bn · x is closed in
G ·x. By construction, for all pairs (P, Y ), we have: P1 ⊂ P and X1 = Cl(P1 ·x) ⊂
ϕ(Y ). However, X1 may not be a two-orbit P1-variety. More precisely, we have:
X1 ∩ G · x = P1 · x but an analogous equality may not hold for X1 ∩ G · y (y a
T -fixed element of the closed orbit in X1). So, instead of P1, we have to consider
the parabolic subgroup PH of G generated by P1 and the elements w ∈ W such
that w · y ∈ X1. Thus, XH = Cl(PH · x) = Cl(PH · X1) has two PH -orbits with
PH ⊂ P and XH ⊂ ϕ(Y ).

Finally, let us consider the normalization π : X̃H → XH of XH . The pair
(PH , X̃H) is the required element.

Proposition 4.4. The pair (PH , X̃H) is an induction pair; this is the minimal
element for the set of induction pairs of X.

We already know (see section 2) that the variety X̃H is a two-orbit PH -variety
and that π is bijective (so in particular, π(X̃H) = XH). Therefore by construction,
the minimal condition is fulfilled by (X̃H , PH , π), that is π(X̃H) ⊂ ϕ(Y ) and
PH ⊂ P for any induction pair (P, Y, ϕ) of X. So we are left to prove that the
radical of PH acts trivially on X̃H . For this, we use the following

Proposition 4.5. Let Y be a projective Q-variety with two Q-orbits, Q being a
parabolic subgroup of G containing B. Consider an element z of its dense Q-orbit
such that B · z is closed in Q · z and T ◦

z is a maximal torus of Qz. Suppose that
the radical of Q does not act trivially on Y . Then the orbit L · z is complete for a
Levi subgroup L of Q containing the torus T .

Proof of Proposition 4.4. According to Proposition 4.5 applied to X̃H , PH = Pu
HL

and x ∈ XH , if we prove that L · x is not complete, Proposition 4.4 will follow.
If T ◦

x 6= T , that L · x is not complete is obvious. Consider then the other case:
T ◦

x = T . If α is a simple root of PH such that Uα 6⊂ Gx then (because of the
assumption made on B · x) sαBsα ∩ Gx contains a Borel subgroup of Gx. In
other words, Bsα · x is closed in PH · x and by definition of PH , it means that
SL2(α) ⊂ L. To conclude that L · x is not complete, we only need to observe that
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Cl(L · x) contains a T -fixed point of the closed G-orbit of X (because Cl(Uα · x)
does by Corollary 3.6). ¤

Proof of Proposition 4.5. First of all, note that the radical of Q acts trivially on
the closed Q-orbit of Y . So the proposition relies only on the dense Q-orbit.

Let us start with the case: T ◦
z 6= T . Thus L · z is not complete. Let β ∈ Φ+

be such that Uβ 6⊂ Qz. Such a root exists otherwise Y will have two B-fixed
points given by the T -fixed points of Cl(T · z). Consider the 2-dimensional variety
Xβ = Cl(UβT · z) and denote by TXβ

(⊂ ker β) its generic stabilizer in T . To get
our result, we are going to prove that T ◦

Xβ
contains the identity-component Z(L)◦

of the center of L. Indeed, it will imply that Z(L)◦ ⊂ ker β hence Uβ 6⊂ Qu.
Let y1 and y2 be the T -fixed points of Cl(T · z). If yi (i = 1, 2) is not fixed

by Uβ , we denote by y′i the other T -fixed point in Cl(Uβ · yi); otherwise, we set
y′i = yi. The points y′1 and y′2 are distinct; this follows easily from Lemma 3.5 and
from the fact that T ◦

z is regular.
The variety X

Uβ

β , being connected and containing the two distinct elements y1

and y2, is 1-dimensional.

Claim. There exist z1, . . . , zr and ρ1, . . . , ρr+1 (r ≥ 1) in X
Uβ

β such that dimT ·
zi = 1 and such that ρi, ρi+1 are the T -fixed points in Cl(T · zi). Moreover, if
yi = y′i (i = 1, 2) then r ≥ 2.

To get the elements zi and ρi, it suffices to consider the convex hull of the
support of Xβ ; the elements zi (resp. ρi) have as support the edges (resp. vertices)
of this polytope.

Because of the claim, we have now at hand at least two elements u and v
simultaneously in the closed Q-orbit of Y and in Xβ such that: dim(T · u) = 1 =
dim(T · v) and the cardinality of Cl(T · u)∩Cl(T · v) is 1. Therefore

(
Tu ∩ Tv

)◦ is
of codimension 2 hence equal to T ◦

Xβ
. But since Z(L) acts trivially on the closed

Q-orbit, we end up with the required inclusion: Z◦
L ⊂ T ◦

Xβ
.

Assume now that T ◦
z = T and that L · z is not closed. Therefore, there exists

at least one positive root, say α, in the root system of (L,L) such that Uα 6⊂ Qz.
Recall that we want to prove that the radical of Q acts trivially on Q · z. But
since the center of L is already contained in Qz, we only need to prove that the
unipotent radical of Q acts trivially on Q·z. To do so, we proceed by contradiction:
suppose there exists β ∈ Φ+, β 6= α such that Uβ ⊂ Qu and Uβ 6⊂ Qz. Then the
variety Xβ,α = Cl(UβUα · z) is 2-dimensional and contains a dense T -orbit; denote
by TXβ

its generic stabilizer in T .
If y1 and y2 are the T -fixed points (distinct from z) of Cl(Uα ·z) and of Cl(Uβ ·z)

respectively, then y1 and y2 are necessarily distinct (as they do not have the same
support). If Uβ · y1 6= y1, we denote by y′1 the other T -fixed point of Cl(Uβ · y1);
otherwise, we set y′1 = y1. Then the variety X

Uβ

β,α is 1-dimensional, since it contains
the distinct points y′1 and y2. But y1 and y2 must be the only T -fixed points
simultaneously in the closed Q-orbit of Y and in Xβ,α otherwise with the same
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arguments used in the first case (T ◦
z 6= T ), we will have: Z(L)◦ ⊂ TXβ

. But this
inclusion is not true as Z(L) does not act trivially on Uβ · z. So we can conclude
that Uβ must fix y1 and that there exists an element u in the closed Q-orbit of Y

such that: X
Uβ

β,α = Cl(T · u).
Let y3 6= y1 be the other T -fixed point of the 1-dimensional variety Cl(U−α ·y1).
To summarize, we have constructed two 1-dimensional subvarieties Xβ,α and

Cl(U−α ·y1) of the closed Q-orbit such that y1 is their only common T -fixed point.
According to Lemma 3.5, this yields the contradiction: (Tu ∩ ker α)◦ = T ◦

Xβ
. ¤

5. Two-orbit varieties of type I

In this section, the two-orbit G-variety X = Cl(G · x) = G · x ∪ G · y is of type
I, i.e. T ◦

x = T . Recall (see section 2) that a two-orbit variety is projective. So
we can embed X in P(V ) with V a finite dimensional G-module. We identify X
with its image in P(V ). The elements x and y of X can be written as x = [vµ]
and y = [vλ] with weight vectors vµ and vλ. Since X contains only one projective
G-orbit the module V can be chosen to be of the form V (λ)

⊕⊕νV (ν) with ν in
the convex hull of W · λ.

Given β ∈ Φ+ such that Uβ 6⊂ Gx (such a root exists otherwise B ⊂ Gx),
consider z = [vµ + vµ+β · · · + vµ+kβ ] ∈ Uβ · x. With a judicious choice of x, (for
instance µ dominant), one shows easily that [vµ+kβ ] ∈ G · y. So finally, we can
choose x such that λ = µ+kβ (take a W -conjugate of the previous x if necessary).

The support of a root β, denoted by suppβ, is defined to be the set of simple
roots which occur in presentation of β as a linear combination of simple roots.

Proposition 5.1. If X = G · x ∪ G · y is cuspidal then G is simple. Moreover
suppβ = ∆ with β ∈ Φ+ such that Uβ 6⊂ Gx and y = [vλ] ∈ Cl(Uβ · x).

Proof. Recall from the construction of the minimal induction pair (see section 4.2)
that since X is cuspidal, G must be generated by the parabolic subgroup P1 and
the elements w ∈ W such that w · [vλ] ∈ X1. Recall that P1 is spanned by H, B
and the elements n ∈ NG(T ) such that Bn ·x is closed in G ·x and X1 = Cl(P1 ·x).

If G = G1×· · ·×Gr with Gi simple and ∆ = ∆1×· · ·×∆r with ∆i associated
to Gi, we are going to show that H = H1×· · ·×Hr with Hi = Gi for all i 6= i0 and
i0 such that suppβ ⊂ ∆i0 . First of all, note that if α 6∈ suppβ, then Uα ⊂ Gx.
Indeed, µ + `α (` > 0) is not of shape λ − ∑

γ∈∆ nγ · γ, (weights of V ) since
λ = µ + kβ (see the choice of x made above). Moreover, if α ∈ ∆ \ ∆i0 then
with the above description of G (given by the cuspidal condition), we must have
U−α ⊂ Gx. Thus: U±α ⊂ Gx, for all α ∈ ∆ \∆i0 . The acting group G can then
be assumed to be simple.

To obtain the second assertion, consider the parabolic subgroup P ⊃ B as-
sociated to suppβ and the P -variety Z = X ∩ P

(⊕
ν Vν

)
for ν = λ − ∑

nαα
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with α ∈ suppβ and nα ≥ 0. Then by construction, if suppβ 6= ∆, (P,Z) is an
induction pair of X. ¤

From now on, G will be simple and x will satisfy the above conditions as well
as the two following ones. Consider x′ = [vµ′ ] another generic element of X and
β′ ∈ Φ+ such that Uβ′ 6⊂ Gx′ . Suppose that [vµ′+k′β′ ] ∈ Cl(Uβ′ · x′) ∩G · y for k′

a positive integer. The first condition we require on x is that k must be smaller
or equal than k′. The second one is that µ must be greater than µ′, for µ and µ′

comparable, if k = k′ and µ′ + k′β′ = λ.
Consider a second positive root γ 6= β such that Uγ 6⊂ Gx (there exists at least

one such a root which is simple). Denote by L the Levi subgroup associated to β
and γ, i.e. L is the centralizer in G of (kerβ ∩ ker γ)◦. Then we have

Lemma 5.2. The normalization of the L-variety Cl(L · x) is a cuspidal two-orbit
L-variety.

Proof. From Lemma 3.4, we have L ·x = Cl(L ·x)∩G ·x and Cl(L ·x)\L ·x consists
of a finite union of complete L-orbits. Thus, if Cl(L·x) does not have two L-orbits,
we will have (L · x)UL 6= ∅ for UL an unipotent maximal subgroup of L (again the
same argument as in the introduction). It will follow that Cl(L · x) = L · x. But
this equality can not hold since [vλ] ∈ Cl(L · x) \ L · x. Therefore, Cl(L · x) has
exactly two L-orbits.

As we can not find any proper parabolic subgroup P such that Pu ⊂ Lx ⊂ P
(because U±β , U±γ 6⊂ Gx), the normalization of Cl(L · x) has to be cuspidal. ¤

By this procedure, we have constructed two-orbit varieties for some subgroups
L of G of semisimple rank 2. Thus, once we know what the two-orbit varieties
are, for all simple groups of rank 2, we will know in particular Lx (for all L’s as
above) hence Gx.

Let us start with determining the cuspidal two-orbit varieties in the rank 2
case. For this, we need two technical lemmas. Let Λ be the convex hull of the
support of the variety Cl(UγUβ · x). We have the following picture and notation
in the weight lattice X of G.
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Lemma 5.3. The extremal points νi of Λ are W -conjugated to λ and the βi’s are
some roots of Φ.

Proof. First of all, note that the points [vνi
] and the elements [vi] whose support

is [νi, νi+1] ∩ X are contained in Cl(UγUβ · x).
Consider the torus T ◦

[vi]
= ker(νi − νi+1)◦. Given a maximal torus T ′ of G[vi]

(hence of G in the case of a two-orbit variety of type I) containing T ◦
[vi]

and assume
that T ◦

[vi]
is regular. Then we will have: CG

(
T ◦

[vi]

)
= T ′ hence T = T ′ and thus T

will fix [vi]. But this is impossible since the weights νi are all distinct. Therefore,
the torus T ◦

[vi]
is singular and the βi’s are some roots.

Let us prove now the first assertion of the lemma. If Λ has more than three ex-
tremal points then the cardinality of the support of [vi] is less than the cardinality
of suppx. So by the minimality assumption made on x, we must have [vi] ∈ G · y
and thus [vνi

] ∈ G · y. If Λ has three extremal points, the assumed maximality of
the weight µ (x = [vµ]) forces ν1 to be in W · λ. ¤

Lemma 5.4. Let δ be a positive root such that [vsγ′ (λ)] ∈ Cl(Uδ · x), for γ′ ∈ ∆.
Suppose that: if there exists r ≥ 0 such that µ + rγ′ is extremal as a weight of
V , we must have µ + rγ′ = sα(λ) for α ∈ ∆. Then, Uγ′ ⊂ Gx if (µ, γ′) ≥ 0 and
U−γ′ ⊂ Gx if (µ, γ′) ≤ 0.

Proof. If there is no r > 0 such that µ + rγ′ is extremal as weight of V then by
Lemma 5.3, we must have Uγ′ ⊂ Gx if (µ, γ′) ≥ 0. If (µ, γ′) ≤ 0 and U−γ′ 6⊂ Gx

then Cl(U−γ′ · x) contains a T -fixed point of G · y and so does Cl(Uγ′ · x) – which
is absurd.

Suppose now that Uγ′ 6⊂ Gx and that (µ, γ′) ≥ 0. Let x′ = εδ(1) · x ∈ Uδ · x,
εδ being the natural map associated to δ from C to Uδ. Then by assumption
x′ = [vµ + · · · + vsγ′ (λ)]. The study of supp(εβ(1) · x′) gives raise to a j > 0 such
that

−Y
nj

β

nj !
· vµ+jδ = sYγ′ · vsγ′ (λ) for s ∈ C \ {0} and nj ≥ 0. (1)

Recall (see section 2) that Yβ denotes an element of gβ\{0}. Furthermore, consider
the support of the variety Cl

(
T · exp(Yβ + sYγ′) · x′

)
. The points sα(λ), sγ′(λ)

are extremal points of this support but λ is not; otherwise, we will have a gap in
this support since the weight γ′+ sγ′(λ) is missing by equality (1). It implies that
[sα(λ), sγ′(λ)] must be an edge of this support – which contradicts Lemma 5.3
since sα(λ)− sγ′(λ) is not a root, α and γ′ being simple. The first assertion of the
lemma follows.

If (µ, γ′) ≤ 0, we can go back to the positive case with the element sγ′ · x. ¤

Let us show how we can apply these two lemmas to get the two-orbit varieties
in the rank 2 case, through the following
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Example. Suppose G is of type B2. Then there are two possibilities for β: β =
α1 + α2 or β = α1 + 2α2. Let us compute gx in case β = α1 + α2.

If Uα1 6⊂ Gx then α2 satisfies the conditions of Lemma 5.4 with (µ, α∨2 ) ≥ 0.
Therefore Uα2 ⊂ Gx. Let us show that Uα1+2α2 ⊂ Gx. If there does not exist
r > 0 such that µ + r(α1 + 2α2) is extremal then this inclusion is given by
Lemma 5.3. Otherwise, we will have: µ + rα = s1(λ). A simple computation
leads to: 2(λ, α∨1 ) = (λ, α∨2 ). But in this latter case, µ does not satisfy the
good conditions; in particular, “k” is not minimal. We have obtained the pair:
(SO5, gx = t⊕ gα2 ⊕ gα1+2α2).

If Uα1 ⊂ Gx then Uα2 6⊂ Gx and we have (µ,±α1) = 0. Thus by Lemma 5.4,
we get U±α1 ⊂ Gx. It follows from Lemma 5.3 that Uα1+2α2 ⊂ Gx. Therefore, we
have obtained the pairs: (SO5, so4) and (SO5, gx = t⊕ g±α1 ⊕ gα1+2α2).

By the procedure given in this example, we get the two-orbit varieties for the
rank 2 case. More precisely, we obtain a description of the root system Φ(Gx) of
Gx.

Lemma 5.5. Let γ ∈ Φ+, we have the following:

(i) if 〈γ, β〉 is of type A1 ×A1 then ±γ ∈ Φ(Gx);

(ii) if 〈γ, β〉 is of type A2 then ±γ ∈ Φ(Gx) or ±sγ(β) ∈ Φ(Gx);

(iii) if 〈γ, β〉 is of type B2 with β = ε1 + εj then Φ(Gx)∩〈γ, β〉 = {ε1− εj , ε1};
(iv) if 〈γ, β〉 is of type B2 with β = ε1 then Φ(Gx)∩〈γ, β〉 ⊃ {ε1+εj ,±(ε1−εj)}

or Φ(Gx) ∩ 〈γ, β〉 = {ε1 + εj , εj}.

By applying this statement to a positive root β of maximal support and to any
other positive root, we get the desired (G, h). Let us work out two examples to
understand how it works.

Example. Suppose G is of type An. Then β = α1 + · · · + αn. Since 〈αi, β〉 is
of type A1 × A1, by Lemma 5.5-(i), we have ±αi ∈ Φ(Gx) for 2 ≤ i ≤ n − 1.



Vol. 78 (2003) Classification of two-orbit varieties 261

Moreover, Lemma 5.5-(ii) yields: ±α1 ∈ Φ(Gx) or ±αn ∈ Φ(Gx). This gives the
pair (SLn+1, gln).

Suppose G is of type Bn and β = ε1. Applying Lemma 5.5-(i) and Lemma 5.5-
(ii) respectively, we get {±α2, . . . ,±αn} ⊂ Φ(Gx) and respectively {ε1 + εi :
i ≥ 2} ⊂ Φ(Gx) with ±(ε1 − εi) ∈ Φ(Gx) or εi ∈ Φ(Gx) for all i ≥ 2. If
±α1 6∈ Φ(Gx) then {±α1, . . . ,±αn−1, αn−1 + 2αn} ⊂ Φ(Gx). Therefore, we ob-
tain the two pairs (SO2n+1, so2n) and

(
SO2n+1, gx =

⊕
α∈Ψ gα ⊕ t

)
where Ψ =

〈±α1, . . . ,±αn−1, αn−1 + 2αn〉. If ±α1 6∈ Φ(Gx), we get the pair (SO2n+1, gx =⊕
α∈Ψ gα ⊕ t), with Ψ = 〈±α2, ...,±αn−1, αn, ε1 + εn〉.

6. Two-orbit varieties of type II

In this section, the two-orbit G-variety X = Cl(G · x) is of type II, that is, by
definition, T ◦

x 6= T . We embed X in P(V ) with V a finite G-module as in the
previous section. Then the generic element x can be written as [vλ0 + · · ·+ vλr+1 ]
with the λi’s sitting on a same affine line, say Dx (because of Proposition 3.2). We
order the weights λi of suppx in such a way that Cl(T ·x) = T ·x∪{

[vλ0 ], [vλr+1 ]
}
.

As elements of G · y, [vλ0 ] and [vλr+1 ] are W -conjugate, i.e. there exists w ∈ W
such that λ0 = w(λr+1). We choose x such that λ0 = λ and satisfying the following
condition of minimality: if x′ = [vλ + · · ·+ vw′(λ)] is another generic element then
w < w′ if w and w′ are comparable.

Let α be a simple root such that sαw < w and Uα 6⊂ Gx. Take for instance α
such that

(
w(λ), α

)
< 0. Consider the variety Xα = Cl(TUα ·x) and in particular,

the convex hull Λ of its support pictured below in the weight lattice X of G.
Similarly as for Lemma 5.3, we get:

Lemma 6.1. The elements yi ∈ Xα whose support sits on the line Di belong to
the closed G-orbit of X. The directions of the affine lines Di are given by roots βi.
In particular, the extremal points νi are W -conjugated and supp yi = [νi, νi+1]∩X .
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The roots βi span a root system of rank 2; let {α, β} be a basis of this root
system.

Corollary 6.2. w = sαsβ.

Proof. We know that sαw < w and that λ−w(λ) can not be, up to a scalar, a root
because T ◦

x = ker
(
λ − w(λ)

)◦ is regular (see Proposition 3.3). So we can assume
〈α, β〉 to be of type G2 with w = (sαsβ)2 – the case w = w0 being easily ruled out.

Consider the convex hull Λ (see the corresponding picture). Since supp yi =
[νi, νi+1] ∩ X , there exists a weight ν ∈ Dx such that λ− βt = ν + kα, k ≥ 0. In
other words, if Dα,λ−βt

denotes the line of direction α passing through λ− βt, we
must have:

Dx ∩Dα,λ−βt
∩ X 6= ∅. (2)

If w = (sαsβ)2 with 〈α, β〉 of type G2 then βt = β or βt = β + α. But (2)
forces (λ, α)/

(
(λ, α) + (λ, β)

)
to be an integer – which can not occur because

(λ, α) · (λ, β) 6= 0 since T ◦
x is regular. ¤

Using this corollary and the same arguments given in the proof of Proposi-
tion 5.1, we get:

Proposition 6.3. If X is cuspidal of type II then G is simple or of type A1×A1.
Furthermore, suppβ ∪ {α} = ∆.

From now on G will be assumed to be simple or of type A1×A1. Let L be the
Levi subgroup associated to α and β and l its Lie algebra.

Proposition 6.4. (i) If 〈α, β〉 is of type A1 × A1 then lx = t′ ⊕ C(Y−α + Yβ) ⊕
C(Yα + Y−β).

(ii) Otherwise, lx = t′ ⊕ C(Y−α + Ysα(β))⊕
⊕

γ∈Φ+∩〈α,β〉
γ 6=α,sα(β)

gγ .

Here, t′ is the kernel of α + sα(β) considered as element of the dual t∗.

Proof. Let δ = sα(β). Then (sαsβ(λ), δ∨) < 0 hence Yδ /∈ g[vw(λ)] and Yδ 6∈ gx.
In order to get: Yδ + Y−α ∈ gx, we start to show

(λ, α∨) = (λ, β∨). (3)

Set λ = mωα+nωβ (m,n > 0) and consider the variety Cl(TUα·x). The arguments
used in the proof of the previous corollary give a weight λi ∈ suppx such that
Y r

α · vλi
is of weight λ−β (for r > 0). Translating the latter in terms of equations,

we get λi = λ − α − n/mδ and n/m ∈ N. Similarly, considering the variety
Cl(Uα · x), we get m/n ∈ N. Therefore m = n and

Y−α · vλ = −qYδ · vλi
, q ∈ C∗. (4)
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Finally, let Zt be the variety Cl
(
T exp t(Yδ + qY−α) · x)

, t ∈ C. Its support is
entirely contained in the triangle with vertices λ, sα(λ) and w(λ). But there is a
gap in this support: the weight λ− α is missing because of (4). This implies that
exp t(Yδ + qY−α) ∈ Gx.

To show that Uγ ⊂ Gx for all γ ∈ Φ \ {α, δ}, we proceed by contradiction and
as before, we will find a gap in the support of Cl(Uγ · x).

To conclude, we have to note that if 〈α, β〉 is not of type A1 × A1, then Yα +
Y−sα(β) 6∈ gx. The first assertion is obtained just by symmetry. ¤

As a consequence of the previous proof, we have

Corollary 6.5. (i) (λ, α∨) = (λ, β∨);
(ii) T ◦

x = ker
(
α + sα(β)

)◦;
(iii) NG(H)/H is finite;
(iv) The normalization of Cl(L · x) is a cuspidal two-orbit L-variety.

The main thing to do now, in order to get the cuspidal two-orbit varieties of
type II, is to give the list of the possible (G,α, β) where α and β are the positive
roots considered previously. If G is of rank 2, it is done already by Proposition 6.3.
So the acting group G will be definitely of rank greater than 2. Let us summarize
the properties of α and β:

1) α ∈ ∆,
(
w(λ), α

) ≤ 0 and Uα 6⊂ Gx;
2) λ− w(λ) ∈ 〈α, β〉C, the C-vector space spanned by α and β;
3) {α, β} basis of 〈α, β〉;
4) suppβ ∪ {α} = ∆;
5) w = sαsβ ;
6) (λ, α∨) = (λ, β∨).

It will appear quickly that there are very few roots satisfying all these conditions
together mainly because of the two following statements.

Remark. Let γ1, γ2 and γ3 be three roots of Φ spanning a root system Ψ of
rank 3. Suppose Ψ satisfies the property:

η = n1γ1 + n2γ2 + n3γ3 ∈ Ψ =⇒ η − n3γ3 ∈ Φ (up to a scalar).

If η is a root of Φ then 〈γ1, γ2〉C ∩ 〈γ3, η〉C is spanned by a root or is equal to {0}.

Consider a simple root δ such that (β, δ) > 0 (then δ ∈ suppβ). Let γ = sα(δ).
Then (

w(λ), γ
)≤ 0. (5)

Lemma 6.6. If α, β and γ satisfy the property given in the remark with γ = γ3

then
(
w(λ), γ

)
= 0.
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Proof. If
(
w(λ), γ

) 6= 0 then according to (5),
(
w(λ), γ

)
< 0. And therefore, there

exists η ∈ Φ such that λ − w(λ) ∈ 〈γ, η〉C (argue similarly as we did to get the
root β). It implies: λ−w(λ) ∈ 〈α, β〉C ∩ 〈γ, η〉C. But this is impossible because of
the remark and the fact that T ◦

x is regular (see Proposition 3.3). ¤

Start with G classical and suppose: (α, δ) = 0. If suppβ = ∆ then α, β and δ
satisfy the conditions of Lemma 6.6. Therefore we get: (λ, δ) = (λ, β). But this
equality is incompatible with (λ, α∨) = (λ, β∨). So assume that suppβ = ∆\{α}.
Then we have the following possibilities for (G,α, β):

• (An, αi(i = 1, n), α̃− αi);

• (G,αn, ε1 − εn) for G of type Bn or Cn;

• (G,α1, ε2 + εn) for G of type Bn or Cn;

• (
G,α1, ε2 + εj(2 < j < n)

)
for G of type Bn, Cn or Dn;

• (Dn, αn−1, ε1 + εn);

• (Dn, αn, ε1 − εn).

Applying Lemma 6.6 case by case, we end up again with a contradiction. Thus
necessarily, (α, δ) < 0. The possible triples (G,α, β) are now:

• (A3, α2, α̃);

• (G,α2, ε1 + ε3) for G of type Bn, Cn or Dn;

• (B3, α3, α̃);

• (Bn, α1, ε2);

• (Cn, α2, α̃);

• (Cn, α1, 2ε2);

• (Dn, α1, α̃).

Claim. In all these cases,
(
w(λ), γ

) 6= 0.

But because of Lemma 6.6, we may also have
(
w(λ), γ

)
= 0. So we have to

reduce the list to

• (A3, α2, α̃);

• (C3, α2, ε1 + ε3);

• (B3, α3, α̃);

• (Cn, α2, α̃);

• (Dn, α1, α̃).

The fourth triple is ruled out just by considering
(
w(λ), α1

)
. The other ones

give raise to some pairs of the table (apply Proposition 6.4).
For the exceptional case, we proceed similarly and we obtain the left pairs of

the table. This ends the proof of Theorem 2.3.



Vol. 78 (2003) Classification of two-orbit varieties 265

References

[1] D. Ahiezer, Dense orbits with two endpoints, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977),
no 2, 308–324.

[2] D. Ahiezer, Equivariant completion of homogeneous algebraic varieties by homogeneous
divisors, Ann. Global Anal. Geom. 1 (1983), 49–78.

[3] A. Bialynicki-Birula, On fixed point schemes of actions of multiplicative and additive
groups, Topology 12 (1973), 99–103.
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