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Abstract. This paper investigates several dynamically defined dimensions for rational maps f
on the Riemann sphere, providing a systematic treatment modeled on the theory for Kleinian
groups.

We begin by defining the radial Julia set Jrad(f), and showing that every rational map
satisfies

H.dimJrad(f) = α(f)

where α(f) is the minimal dimension of an f-invariant conformal density on the sphere.
A rational map f is geometrically finite if every critical point in the Julia set is preperiodic.

In this case we show
H.dim Jrad(f) = H.dimJ(f) = δ(f),

where δ(f) is the critical exponent of the Poincaré series; and f admits a unique normalized
invariant density µ of dimension δ(f).

Now let f be geometrically finite and suppose fn → f algebraically, preserving critical
relations. When the convergence is horocyclic for each parabolic point of f , we show fn is geo-
metrically finite for n � 0 and J(fn) → J(f) in the Hausdorff topology. If the convergence is
radial, then in addition we show H.dim J(fn)→ H. dimJ(f).

We give examples of horocyclic but not radial convergence where H.dimJ(fn) → 1 >
H.dim J(f) = 1/2 + ε. We also give a simple demonstration of Shishikura’s result that there
exist fn(z) = z2 + cn with H.dim J(fn)→ 2.

The proofs employ a new method that reduces the study of parabolic points to the case of
elementary Kleinian groups.

Mathematics Subject Classification (2000). Primary 58F23; Secondary 58F11, 30F40.

Keywords. Complex dynamics, iterated rational maps, Julia sets, Hausdorff dimension.

1. Introduction

Let f : Ĉ→ Ĉ be a rational map on the Riemann sphere, of degree d ≥ 2. In this
paper we study the equality of several dynamically defined dimensions for f , and
their variation as a function of f .

To pattern the theory after that of Kleinian groups, we define the radial Julia
set of a rational map and a notion of geometric finiteness in the dynamical set-
ting. As a bridge between the two subjects, we also develop a new technique that
reduces the study of parabolic bifurcations of rational maps to the case of Möbius
transformations.

To summarize the main results, we first introduce various dimensions deter-
mined by the dynamics of a rational map f . Distances and derivatives are mea-
sured in the spherical metric.

1. The Julia set J(f) is the closure of the repelling periodic points for f . Our
first invariant is its Hausdorff dimension, H.dimJ(f).

2. We can also consider the dimension of the radial Julia set Jrad(f), consisting
of those z for which arbitrarily small neighborhoods of z can be expanded
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univalently by the dynamics to balls of definite size.
3. A compact set X ⊂ Ĉ is expanding for f if f(X) ⊂ X and f uniformly expands

a smooth metric defined near X . The hyperbolic dimension, hyp-dim(f) is the
supremum of the Hausdorff dimensions of such expanding sets X .

4. An f -invariant density of dimension α > 0 is a finite positive measure µ on Ĉ
such that

µ(f(E)) =
∫
E
|f ′(x)|α dµ

whenever f |E is injective. The critical dimension α(f) is the minimum possible
dimension of an f -invariant density.

5. The Poincaré series is defined by

Ps(f, x) =
∑

fn(y)=x

|(fn)′(y)|−s,

and the supremum of those s ≥ 0 such that Ps(f, x) = ∞ for all x ∈ Ĉ is the
critical exponent δ(f).

In general one knows (§2):

Theorem 1.1. For any rational map f ,

α(f) = hyp-dim(f) = H.dimJrad(f).

For more complete results, we introduce some restrictions on f . A rational
map f is expanding if its Julia set contains no critical points or parabolic points.
More generally, f is geometrically finite if every critical point in J(f) has a finite
forward orbit. Geometrically finite maps can have attracting, superattracting and
parabolic basins, but no Siegel disks or Herman rings. In §6 we show:

Theorem 1.2. Let f be geometrically finite. Then

δ(f) = H.dimJrad(f) = H.dimJ(f),

and the Poincaré series Ps(f, x) diverges at s = δ(f) for all x ∈ Ĉ.
Moreover the sphere admits a unique normalized f -invariant density µ of di-

mension δ(f). The canonical density µ is nonatomic and supported on Jrad(f),
and any f -invariant density on the Julia set is either purely atomic or proportional
to µ.
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Next we discuss the behavior of the Julia set and its dimension under limits of
rational maps. We say fn → f algebraically if deg fn = deg f and the coefficients
of fn (as a ratio of polynomials) can be chosen to converge to those of f . When
f is expanding, algebraic convergence suffices to guarantee J(fn) → J(f) and
H.dim J(fn) → H.dimJ(f). When f is geometrically finite, however, one must
also control parabolic bifurcations and critical points to achieve continuity.

To describe the condition on parabolic points, suppose λn = exp(Ln+iθn)→ 1
in C∗. We say λn → 1 radially if

θn = O(Ln),

and horocyclically if

θ2
n/Ln → 0.

If λn/λ→ 1 radially or horocyclically, we say the same is true for λn → λ.
Now let fn → f algebraically, and consider a parabolic point c ∈ J(f) with

period i. Suppose:

(a) The parabolic point c has p petals, and its multiplier λ = (f i)′(c) is a
primitive pth root of unity;

(b) There are fixed-points cn of f in converging to c; and
(c) Their multipliers λn = (f in)′(cn) satisfy λn → λ radially (or horocyclically).

If these conditions hold for all parabolic points c ∈ J(f), we say fn → f radially
(or horocyclically). (The formal definition (§7) is somewhat more general.)

We say fn → f preserving critical relations if for every critical point b ∈ J(f)
satisfying f i(b) = f j(b), there are critical points bn → b for fn, with the same
multiplicity as b, also satisfying the relation f in(bn) = f jn(bn).

In §9 and §11 we establish:

Theorem 1.3. Let f be geometrically finite and let fn → f horocyclically, pre-
serving critical relations. Then J(fn) → J(f) in the Hausdorff topology, and fn
is geometrically finite for all n� 0.

Theorem 1.4. If, in addition,
(a) fn → f radially, or
(b) H.dim J(f) > 2p(f)/(p(f) + 1),

then H.dimJ(fn) → H.dimJ(f) and the canonical densities satisfy µn → µ in
the weak topology on measures.

Here p(f) is the maximum number of petals at a parabolic point of f or one of
its preimages (§3). On the other hand we find (§14):
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Theorem 1.5. For any ε with 0 < ε < 1/2, there exist geometrically finite rational
maps such that fn → f horocyclically, preserving critical relations, but

H.dimJ(fn)→ 1 > H.dimJ(f) = 1/2 + ε.

In these examples p(f) = 1.

Quadratic polynomials. §13 presents the following applications of the contin-
uity Theorem 1.4 to quadratic polynomials.

Corollary 1.6. If λ is a root of unity, and λn → λ radially, then

H.dim J(λnz + z2)→ H.dimJ(λz + z2).

Corollary 1.7. The function H.dimJ(z2 + c) is continuous for c in the interval
(cFeig, 1/4], where cFeig = −1.401155 . . . is the Feigenbaum point.

Using geometric limits, the same methods show:

Theorem 1.8. Let λ be a primitive pth root of unity. Then there exist λn → λ
horocyclically such that

lim inf H.dimJ(λnz + z2) ≥ 2p
p+ 1

·

This yields a new proof of a result of Shishikura:

Corollary 1.9. There exist expanding quadratic polynomials f with H.dim J(f)
arbitrarily close to 2.

Parallels with Kleinian groups. In Part I of this series we discuss related
results for Kleinian groups. For example, work of Bishop and Jones [4], [28, Thm.
2.1] shows the radial limit set of any Kleinian group satisfies

α(Γ) = H.dim Λrad(Γ).

Our definition of the radial Julia set and Theorem 1.1 are formulated to extend this
result to the dynamics of rational maps. Similarly Theorem 1.2 is modeled after
a result of Sullivan on geometrically finite Kleinian groups [42], [28, Thm. 3.1].

Kleinian groups Γn converge to Γ strongly if the convergence is both algebraic
and geometric. Versions of Theorems 1.3 and 1.4 also hold for strongly conver-
gent sequences of Kleinian groups [28]. Thus the hypothesis of Theorem 1.3 is a
reasonable candidate for the definition of strong convergence in the setting of ra-
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tional maps. In [28] we show strong convergence alone is insufficient to guarantee
convergence of the dimension of the limit set of a Kleinian group, and Theorem
1.5 gives a similar counterexample for rational maps.

Many of our results are proved by a new method that reduces the study of
parabolic fixed-points, their bifurcations and their geometric limits, to the case of
elementary Kleinian groups. The reduction involves quasiconformal conjugacies
with small conformal distortion; it is developed in §6 and §7.

The dimension lower bound of 2p/(p + 1) in Theorem 1.8 is related, via this
method, to the well-known lower bound H.dim Λ > 1 for the limit set of a Kleinian
group with a rank 2 cusp [28, Cor. 2.2]. In fact a suitable geometric limit of
fn(z) = λnz + z2 behaves like a p-fold covering of a rank 2 cusp (§12).

To prove continuity of dimension when fn → f , we study the accumulation
points ν of the canonical densities µn for fn. By controlling the concentration of
these densities, we show ν has no atoms, so by Theorem 1.4 it coincides with the
canonical density for f (§11). It follows that H.dim J(fn)→ H.dimJ(f).

Notes and references.The first equality in Theorem 1.1 is due to Denker, Ur-
bański and Przytycki [11], [32], [36]. The second was observed independently in
[46]. Basic references for the dynamics of rational maps include [3], [7], [30] and
[40]. For the dictionary between rational maps and Kleinian groups, see [41] and
[25].

Several sections below include an exposition and consolidation of results known
to experts, with references and remarks collected in notes at the end of each section.
We hope the present systematic treatment will provide a useful contribution to the
foundations of the field.

Part III of this series presents explicit dimension calculations for families of
conformal dynamical systems.

Notation. A � B means A/C < B < CA for some implicit constant C; n � 0
means for all n sufficiently large.

2. The basic invariants

Let f : Ĉ → Ĉ be a rational map on the Riemann sphere. In this section we
assemble results comparing:

• α(f), the minimum dimension of a f -invariant density on the Julia set;
• hyp-dim(f), the sup of the dimensions of expanding subsets of the Julia set;

and
• H.dim Jrad(f), the Hausdorff dimension of the radial Julia set.

We assume throughout that f has degree 2 or more. We also equip Ĉ with the
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spherical metric 2 |dz|/(1 + |z|2) and let |f ′(z)| denote the spherical derivative.

Definitions. The Julia set J(f) is the closure of the set of repelling periodic
points for f . The Fatou set is its complement, Ω(f) = Ĉ− J(f).

The critical points of f (where f ′(c) = 0) form the critical set C(f). The
postcritical set is given by

P (f) =
∞⋃
n=1

fn(C(f)). (2.1)

The Herman-Siegel set HS(f) is the union of the periodic Herman rings and Siegel
disks for f .

The radial Julia set. We define the radial Julia set Jrad(f) as follows. First,
say x belongs to Jrad(f, r) if for any ε > 0, there is a neighborhood U of x and
n > 0 such that diam(U) < ε and

fn : U → B(fn(x), r)

is a homeomorphism. Then set

Jrad(f) =
⋃
r>0

Jrad(f, r).

We have x ∈ Jrad(f) iff arbitrarily small neighborhoods of x can be blown up
univalently by the dynamics to balls of definite size centered at fn(x).

Invariants. An f -invariant density of dimension α is a positive measure µ on Ĉ
such that

µ(f(E)) =
∫
E
|f ′|α dµ (2.2)

for every Borel set E such that f |E is injective. Thus µ transforms like a form of
type |dz|α.

The critical dimension of f is defined by

α(f) = inf{α ≥ 0 : ∃ an f -invariant density on J(f) of dimension α}.

(One can also allow densities on Ĉ; see Corollary 4.5). As for Kleinian groups,
the infimum is achieved, and we have α(f) > 0 because there is no finite forward-
invariant measure for f .

Following [37], we say a compact set X ⊂ Ĉ is hyperbolic if f(X) ⊂ X and



542 C. T. McMullen CMH

f is expanding on X . The latter condition means there exists an n such that
|(fn)′(x)| > 1 for all x ∈ X . Equivalently, ‖f ′‖ > 1 with respect to a smooth
conformal metric ρ defined near X , e.g. the metric

ρ = σ + f∗σ + · · · (fn−1)∗σ

where σ is the spherical metric. Any hyperbolic set is contained in J(f). The
hyperbolic dimension of f is defined by

hyp-dim(f) = sup{H.dimX : X is a hyperbolic set for f}.

We may now state:

Theorem 2.1. Any rational map f of degree greater than one satisfies

α(f) = hyp-dim(f) = H.dimJrad(f).

The proof relies on work of Denker, Urbański and Przytycki, and some preli-
minaries on the radial Julia set.

Let Jhyp(f) denote the union of the hyperbolic sets for f . By the expanding
property it is easy to see:

Proposition 2.2. For any rational map f , Jhyp(f) ⊂ Jrad(f).

Proposition 2.3. For any r > 0 and x ∈ Jrad(f, r), there are arbitrarily small
balls B(x, s) such that for any f -invariant density µ of dimension β,

µ(B(x, s)) � sβ . (2.3)

The implicit constants are independent of x and s.

Proof. By the definition of the radial Julia set and the Koebe distortion theorem,
there are arbitrarily small s such that B(x, s) can be mapped by a suitable iterate
fn, univalently and with bounded distortion, to an open set U ⊃ B(fn(x), r/10).
We have µ(U) � 1 and |(fn)′| � 1/|s| on B(x, s), so (2.3) follows from the transi-
tion formula (2.2) for µ. �

Corollary 2.4. For any rational map f , H.dim Jrad(f) ≤ α(f).

Proof. Let µ be an f -invariant density of dimension α(f). Fix r > 0; we will first
show H.dimJrad(f, r) ≤ α(f).

Fix ε > 0 and let B(x1, s1) be a ball of maximum radius s1 ≤ ε centered in
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Jrad(f, r) and satisfying (2.3). Inductively define B(xi, si) to be a ball of maximum
radius si ≤ ε, centered in Jrad(f, r), satisfying (2.3) and disjoint from all the balls
chosen so far. Then any ball B(x, s) not chosen must meet one that was chosen,
so we have

Jrad(f, r) ⊂
⋃
B(xi, 3si)

(compare [39, I.3.1]). On the other hand, the chosen balls are disjoint, so∑
(diamB(xi, 3si))α(f) �

∑
µ(B(xi, si)) ≤ µ(J(f)).

This shows H.dim(Jrad(f, r)) ≤ α(f).
Since Jrad(f) =

⋃
Jrad(f, 1/n) the same bound holds for the dimension of the

radial Julia set. �

Proof of Theorem 2.1. According to [36, Thm. 9.3.11] we have:

α(f) ≤ hyp-dim(f).

On the other hand, the preceding results show

hyp-dim(f) ≤ H.dim Jhyp(f) ≤ H.dim Jrad(f) ≤ α(f),

so all these quantities agree. �

Notes.
1. For results related to Theorem 2.1, see also [11], [32], [35], [46], [36].
2. The radial Julia set was defined independently by Urbański. Theorem 2.1 is

stated in [46, p.21]; see also [10]. Various other possible definitions for the
radial Julia set are investigated in [35].

3. Our definition of Jrad(f) is intended as a translation, to the dynamical setting,
of the definition of the radial limit set of a Kleinian group Γ. To see the analogy,
recall that x belongs to the radial limit set iff a geodesic ray ρ ⊂ Hd+1 landing
at x projects to a recurrent geodesic on M = Hd+1/Γ. This means there is
a fixed compact set K ⊂ Hd+1, a sequence yn ∈ ρ converging to x, and a
sequence γn ∈ Γ such that γn(yn) ∈ K. Let Un ⊂ Sd∞ be the sequence of
round balls shrinking to x cut off by the hyperplanes through yn normal to ρ.
Since γn moves yn into K, it blows up Un with bounded distortion to a ball of
definite size, just as in the definition of Jrad(f).

4. In general Jrad(f) is strictly larger than Jhyp(f). A nice example is furnished
by the parabolic map f(z) = z2 + 1/4.
In this case Jhyp(f) is meager in J(f). Indeed, lim inf |(fn)′(x)|1/n = 1 along
a dense Gδ containing the inverse orbit of the parabolic fixed-point, while
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lim inf |(fn)′(x)|1/n > 1 for any x ∈ Jhyp(f). On the other hand, the radial
limit set Jrad(f) is almost all of J(f); it only excludes the countable inverse
orbit of the parabolic fixed-point (see Theorem 6.5 below).

5. Spectral theory. A density µ of dimension α on Ĉ determines, via visual
extension, a positive function φ on H3 satisfying ∆φ = α(2 − α)φ. If µ is
f -invariant, then φ descends to a positive eigenfunction on the 3-dimensional
hyperbolic lamination Lf associated to f by Lyubich and Minsky. Thus invari-
ant densities should reflect the spectral geometry of Lf in the same way that
invariant densities for a Kleinian group Γ reflect the spectral geometry of the
3-manifold H3/Γ (compare [23, §9.8]).

3. Petals and dimension

In this section we briefly describe the effect of parabolic points on the critical
dimension of a rational map f . We will establish:

Theorem 3.1. The petal number of f bounds the critical dimension from below
by

α(f) >
p(f)

p(f) + 1
·

Petal number. Let c be a periodic point for f . Then c is a parabolic point with
p > 0 petals if, for some i > 0, c is a fixed-point of f i of multiplicity p + 1. This
means there is a local coordinate with z(c) = 0 such that

f i(z) = z + zp+1 +O(zp+2). (3.1)

The terminology comes from the ‘Leau-Fatou flower theorem’, which asserts that
the immediate attracting basin of c contains p domains touching symmetrically at
c [30, §7], [7, II.5], [40, Ch. 3.5].

Now let b be a critical point of f whose forward orbit lands on a parabolic point
c with p petals; say f i(b) = c. Then b is a preparabolic critical point with dp petals,
where d is the local degree of f i at b. In this case we can replace f by a finite
iterate to arrange that f(b) = c, f(c) = c and f ′(c) = 1. Then in an appropriate
coordinate with z(b) = 0, we obtain a local parabolic fixed point for g where

g(z) = f−1 ◦ f ◦ f(z) = z + zdp+1 +O(zdp+2). (3.2)

The dp petals of g are just the preimages under f of the p petals at c. The
dynamics of (3.2) near b is semiconjugate, by the d-to-1 map f , to the dynamics of
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(3.1) near c. There are (d− 1) choices for g, differing by the choice of the inverse
branch f−1.

The petal number p(f) is the maximum of the number of petals at all parabolic
points and all preparabolic critical points of f . We set p(f) = 0 if no such points
exist. Note that p(f i) = p(f) for any i > 0.

            

Figure 1. The filled Julia set of f(z) = z(1 + z)3 has three petals at z = −1.

Example. For f(z) = z(1 + z)d, we have p(f) = d. Although the parabolic point
at z = 0 has only one petal, the map f also has a preparabolic critical point b = −1
of local degree d. Thus f has d petals at b (see Figure 1 for the case d = 3).

To begin the proof of Theorem 3.1, we show:

Proposition 3.2. If f(z) has a parabolic point with p petals, then
α(f) > p/(p+ 1).

Proof. Replacing f with a suitable iterate and making a change of coordinates, we
can assume the parabolic point is at z =∞ and

f(z) = z + z1−p +O(z−p).

Letting w = zp we obtain the (multi-valued) map in the w-plane

f(w) = w + p+O(w−1/p), (3.3)

where the spherical metric 2 |dz|/(1 + |z|2) becomes

σ =
2 |dw|

p(|w|1+1/p + |w|1−1/p)
·

Choose a point w0 ∈ J(f) near w = ∞; then under the local dynamics, wn =



546 C. T. McMullen CMH

f−n(w0) → ∞ and in fact |wn| � n by (3.3). On the other hand, f ′(w) =
1 + O(w−1−1/p); since

∏
(1 + n−1−1/p) converges, by the chain rule we have

|(f−n)′(w0)| � 1.
Now let µ be an f -invariant density of dimension α. Then by considering the

images Bn = f−n(B0) of a small ball B0 around w0, we find

1 ≥
∑

µ(Bn) � µ(B0)
∑
|(f−n)′(w0)|ασ

�
∑(

1
|wn|1+1/p + |wn|1−1/p

)α
�
∑

n−α(1+1/p),

and for this last sum to converge we must have α > p/(p+ 1). �

Proof of Theorem 3.1. It remains only to treat the case of a preparabolic critical
point b. Replacing f with a finite iterate f i (which does not change p(f) or α(f)),
we can assume f has local degree d at b, f(b) = c is a parabolic fixed-point with
p petals and f ′(c) = 1. Let g be a branch of f−1 ◦ f2 defined near b as in (3.2).
Since g is contained in the full dynamics generated by f , it leaves invariant any
f -invariant density µ, and thus α(f) > dp/(dp+ 1) by the same argument as the
preceding proof. �

Note. Variants of Proposition 3.2 appear in [45, Thm. 7.14] and [1, Thm. 8.5].

4. Poincaré series

For x ∈ Ĉ we define the absolute Poincaré series by

Ps(f, x) =
∞∑
n=0

∑
fn(y)=x

|(fn)′(y)|−s, (4.1)

the critical exponent at x by

δ(f, x) = inf{s > 0 : Ps(f, x) <∞},

and the critical exponent of f by

δ(f) = inf
Ĉ
δ(f, x).

In this section we will establish:

Theorem 4.1. Suppose the critical exponent δ(f, x) is finite for some x ∈ Ĉ.
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Then the Julia set carries an f -invariant density µ of dimension δ(f, x) with no
atoms on the parabolic or repelling points of f , or any of their preimages.

Corollary 4.2. For any rational map, α(f) ≤ δ(f).

We begin with some preliminary remarks about the behavior of these Poincaré
series. Recall from §2 that P (f) denotes the postcritical set, Ω(f) the Fatou set,
and HS(f) the union of the Siegel disks and Herman rings for f .

Proposition 4.3. Let x belong to the Fatou set of a rational map f . Then
• δ(f, x) =∞ ⇐⇒ x ∈ P (f) ∪HS(f).

Assuming δ(f, x) <∞ we also have:
• δ(f, x) ≤ 2,
• P2(f, x) <∞,
• Pα(f, x) < ∞ if x meets the support of an invariant density of dimension α,

and
• f−n(x)→ J(f) in the Hausdorff topology.

Proof. Assume x is in the Fatou set. Suppose x ∈ HS(f); then the terms in the
Poincaré series do not tend to zero, so δ(f, x) =∞. If x ∈ P (f)−HS(f), then x
is an attracting periodic point or some preimage of x is a critical point; in either
case δ(f, x) =∞.

Now suppose x 6∈ P (f)∪HS(f). Then x is the center of a ball B disjoint from
both P (f) and

⋃∞
1 fn(B). It follows that f−n is univalent on B, all the preimages

of B are disjoint and their total spherical area is finite, so P2(f, x) is also finite
by the Koebe distortion theorem. In particular δ(f, x) ≤ 2. By the same token,
Pα(f, x) is comparable to µ(

⋃
f−n(B)) < ∞. The convergence of the preimages

of x to J(f) follows from the classification of stable regions. �

Corollary 4.4. The Julia set of any rational map supports an invariant density
of dimension 0 < α ≤ 2 with no atoms at the parabolic or repelling points of f , or
any of their preimages.

Proof. If J(f) = Ĉ take µ to be Lebesgue area measure. Otherwise, the preceding
Proposition shows there is an x 6∈ J(f) with δ(f, x) ≤ 2, and Theorem 4.1 yields
the desired density. �

Corollary 4.5. One can also define α(f) as the infimum of the dimensions of all
f -invariant densities on the sphere.

Proof. Let µ be an invariant density of dimension α0 with positive mass on the
Fatou set. By invariance, the support of µ contains some x ∈ Ω(f) − (HS(f) ∪
P (f)). Then δ(f, x) ≤ α0 by the preceding Proposition, and J(f) supports an
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invariant density of dimension δ(f, x) by Theorem 4.1. Thus α(f) ≤ δ(f, x) ≤ α0.�

Proof of Theorem 4.1. We begin by recalling the Patterson-Sullivan construction
of an invariant density µ of dimension δ(f, x).

For s > δ(f, x) consider the probability measure

µs =
1

Ps(f, x)

∑
fn(y)=x

|(fn)′(y)|−s δy (4.2)

where δy is the δ-mass at y. Let E be a Borel set with f |E injective. Then by the
chain rule ∫

E
|f ′|s = µs(f(E)) +

{ |f ′(x)|s/Ps(f, x) if x ∈ E,
0 otherwise.

(4.3)

If the Poincaré series diverges at the critical exponent, we let µ be an weak limit
of µs as s↘ δ(f, x).

If the Poincaré series converges at s = δ(f, x), we modify it to force Ps(f, x)→
∞. More precisely, as s → δ(f, x) we change a large but finite number of terms
from |(fn)′(y)|s to |(fn)′(y)|t, where t = 2δ(f, x) − s. Then (4.3) becomes, for
x 6∈ E, ∫

E
min(|f ′|s, |f ′|t) dµs ≤ µs(f(E)) ≤

∫
E

max(|f ′|s, |f ′|t) dµs (4.4)

and t↗ δ(f, x) as s↘ δ(f, x). Again we let µ be any weak limit of µs.
The f -invariance of µ as a density of dimension δ(f, x) follows from (4.3) or

(4.4), and µ is supported on J(f) because f−n(x)→ J(f).
Atoms. Let p ∈ J(f) be a repelling or parabolic periodic point, or one of its
preimages. To complete the proof, we will show µ(p) = 0.

To begin, fix ε > 0. We will construct a neighborhood U of p such that

lim supµs(U − p) < ε.

The argument breaks into three cases, depending on whether p is (I) repelling, (II)
parabolic or (III) preperiodic.

Let δ = δ(f, x) and t = 2δ − s; note that δ ≥ α(f) > 0.
I. Repelling. Suppose p is a repelling fixed-point. Then there is a sequence of
fundamental annuli An for the linearized dynamics, nesting down to p and disjoint
from x, such that fn : An → A0 satisfies |(fn)′| � λn for some λ > 1. By (4.4)
we have

µs(An) = O(λ−ntµs(A0)) = O(λ−nt)
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since µs(A0) ≤ 1. Letting U = {p} ∪
⋃∞
N An we have

µs(U − p) = O

( ∞∑
N

λ−nt
)
< ε

for N sufficiently large and all s close enough to δ. The case of a repelling periodic
point is similar.
II. Parabolic. Now suppose p is a parabolic fixed-point of f with one petal.
Then we can choose coordinates so that p = 0 and

f(z) = z + z2 +O(z3)

near p. Locally f(z) behaves like the parabolic Möbius transformation T (z) =
z/(1− z), and the Julia set is asymptotic to the positive real axis (cf. [7, II.5]).

Choose a fundamental domain A0 for the dynamics f near J(f). The region
A0 can be taken to be approximately a square of size about c2 centered at a
point c > 0, where c is small. Then the Julia set near z = 0 is covered by
{p} ∪ A0 ∪ A1 ∪ . . . , where fn : An → A0 and d(0, An) � c/n. By choosing A0
close to p we can guarantee that all the An are disjoint from x.

Since the parabolic point p has one petal, by Theorem 3.1 we have δ > 1/2.
The map fn on An behaves like Tn(z) = z/(1− nz), so |(fn)′| � (nc)2. Taking
U = {p} ∪

⋃∞
N An we have

µs(U − p) = O

( ∞∑
N

1
(nc)2t

)
< ε

for N sufficiently large and all s close enough to δ, since then 2t > 1.
The case of a parabolic periodic point with more petals can be treated similarly,

using e.g. the analysis in [7, II.5] or §8.
III. Preperiodic. Finally suppose p is strictly preperiodic, with q = f i(p) =
f i+j(p) a parabolic or repelling periodic point for some i, j > 0. We must allow
for the possibility that p is a critical point of f i; so suppose f i is locally d-to-1 at p.

Consider the dynamical system

g(z) = f−i ◦ f j ◦ f i(z)

defined by locally lifting the dynamics of f j from q to p, so g(p) = p. There are d
choices for g, coming from cyclic permutations of the sheets of f i.

Then on a punctured neighborhood V of p, the measure µs transforms by (4.4)
under g as well as f , since g is locally composed of univalent branches of f . Thus
the preceding arguments yield a neighborhood U of p with µs(U − p) < ε.
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Conclusion. We have now constructed a neighborhood U of p with

lim supµs(U − p) < ε.

But we also have lim supµs(p) = 0, since the Poincaré series for µs is constructed
exactly so that the mass attached to any single term in the series tends to zero as
s→ δ. Thus µ(U) ≤ lim supµs(U) < ε, and therefore µ(p) = 0. �

Remark. It is easy to see that an invariant density µ must assign zero mass to
a repelling fixed-point, because otherwise µ(p) = |f ′(p)|δµ(p) > µ(p). But this
argument does not show µ has zero mass on the inverse orbit of p, because the
inverse orbit may contain a critical point. The treatment of repelling periodic
points in the proof above was chosen to handle both cases the same way.

Notes. The Poincaré series construction of invariant densities was introduced by
Patterson in the setting of Fuchsian groups [31], and applied to Kleinian groups
and rational maps by Sullivan [41].

5. Dynamics on the radial Julia set

The measurable and topological dynamics of f are particularly well-behaved when
the radial Julia set supports an invariant density. In this section we show:

Theorem 5.1. There is at most one normalized f -invariant density µ supported
on Jrad(f). Any such measure is ergodic and of dimension α(f).

Theorem 5.2. If the radial Julia supports an invariant density µ, then:
1. The Poincaré series Ps(f, z) diverges at s = α(f) for all z ∈ Ĉ;
2. Any Borel set A ⊂ Ĉ with f(A) ⊂ A has zero or full µ-measure; and
3. The forward orbit of µ-almost every z is dense in J(f).

Proof of Theorem 5.1. Let ν be an f -invariant density of dimension β supported
on the radial Julia set, and let µ be an invariant density of dimension α(f).

Fix r > 0. By Proposition 2.3, for any x ∈ Jrad(f, r) there are arbitrarily small
balls satisfying

ν(B(x, s))
µ(B(x, s))

� sβ

sα(f)
.

For β > α(f) this ratio tends to zero as s→ 0, and it follows that ν(J(f, r)) = 0,
contrary to our assumption that ν is supported on the radial Julia set. Thus
β = α(f).
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The same argument shows any two invariant densities ν1, ν2 supported on
Jrad(f) are mutually absolutely continuous. If E is an f -invariant set of posi-
tive ν-measure, then ν|E is also an invariant density supported on Jrad(f). Since
ν � ν|E, the set E has full ν-measure thus f is ergodic with respect to ν.

Similarly, for any invariant ν1, ν2 supported on Jrad(f), the Radon-Nikodym
derivative φ = dν1/dν2 is an f -invariant Borel function, hence constant by ergod-
icity. Thus there is at most one normalized invariant density supported on the
radial Julia set. �

Proof of Theorem 5.2.
1. Let us say B′ is a descendant of a ball B if for some n > 0, fn : B′ → B is a
univalent map with bounded distortion. Choose r > 0 such that µ(Jrad(f, r)) > 0.
By compactness of the Julia set, there are balls 〈B1, . . . , Bn〉 such that every
x ∈ Jrad(f, r) is contained in infinitely many descendants of 〈B1, . . . , Bn〉.

Let Ai ⊂ Jrad(f, r) be the set of x contained in infinitely many descendants of
Bi. Then µ(Ai) > 0 for some i, and therefore∑

µ(B′) =∞

where the sum is over all descendants B′ of Bi.
Now fix x ∈ Bi. Then any descendant B′ of Bi contains a point y with

fn(y) = x, and

µ(B′) � |(fn)′(y)|−α

where α = α(f). Every such y contributes to the Poincaré series Pα(f, x), and
since

∑
µ(B′) =∞ we have Pα(f, x) =∞ for all x ∈ Bi.

Finally we show Pα(f, x) = ∞ for all x ∈ Ĉ. Clearly the Poincaré series
diverges if the inverse orbit of x meets a critical point of f . But if no critical point
is encountered, the inverse orbit accumulates on J(f), and so x has a preimage
y in Bi. Then the preimages of y contribute to the Poincaré series for x, and
therefore Pα(f, x) =∞ in this case as well.
2. Let A ⊂ Jrad(f) be a forward-invariant Borel set with µ(A) > 0. Let x be a
Lebesgue density point of A, so that

lim
s→0

µ(B(x, s) ∩A)
µ(B(x, s))

= 1.

Since x ∈ Jrad(f, r) for some r > 0, there is a sequence sn → 0 and kn →∞ such
that

fkn : B(x, sn)→ Dn
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is a univalent, fkn has bounded distortion and Dn ⊃ B(fkn(x), r/10). Now
f(A) ⊂ A, so the density of A in Dn tends to 1 as n→∞. Pass to a subsequence
such that Dn → D∞ in the Hausdorff topology; then µ(D∞ ∩A) = µ(D∞). Since
D contains an open subset of J(f), we have fn(D) ⊃ J(f) for some n, and thus
µ(fn(A)) = µ(J(f)). By forward invariance, A has full measure in J(f).
3. Choose a ball B(x, r) centered on a point in the Julia set, and let A be the set
of z ∈ J(f) whose forward orbits never enter B(x, r). Then A is forward invariant,
and

µ(A) ≤ µ(J(f)−B(x, r)) < µ(J(f)).

By (2) we have µ(A) = 0, and thus the forward orbit of almost every z ∈ J(f)
enters B(x, r). Since the Julia set has a countable base for its topology, µ-almost
every orbit is dense. �

Note. For Theorem 5.1 see also [10].

6. Geometrically finite rational maps

A rational map f is geometrically finite if |P (f) ∩ J(f)| < ∞; equivalently, if
every critical point in the Julia set is preperiodic. This condition rules out Siegel
disks and Herman rings but permits parabolic cycles. (The postcritical set P (f)
is defined by (2.1).)

In this section we prove:

Theorem 6.1. Let f be a geometrically finite rational map. Then

δ(f) = H.dim Jrad(f) = H.dimJ(f) = α(f).

Moreover Ĉ carries a unique normalized f -invariant density µ of dimension δ(f);
the measure µ is nonatomic and supported on the radial Julia set; and the Poincaré
series Ps(f, x) diverges at s = δ(f) for any x ∈ Ĉ.

We refer to the unique normalized density of dimension δ(f) as the canonical
density for a geometrically finite rational map f .

Corollary 6.2. If f is geometrically finite then J(f) = Ĉ or H.dim(J(f)) < 2.

Proof. Otherwise Lebesgue measure on the sphere would be a second invariant
density of dimension δ(f) = H.dimJ(f) = 2. �

Corollary 6.3. If f−1(C) = C for some circle C, then f is geometrically finite
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and either J(f) = C or H.dimJ(f) < 1.

Proof. Clearly f has no critical points in C and J(f) ⊂ C, so f is geometrically
finite. If J(f) 6= C, then we can find a small interval I ⊂ C − J(f) with disjoint
preimages. Letting µ denote 1-dimensional Hausdorff measure, we have∫

I
P1(f, x) dµ =

∞∑
0

µ(f−i(I)) ≤ µ(C) <∞,

so P1(f, x) <∞ for almost every x ∈ I. Since the Poincaré series diverges at the
critical exponent δ(f) = H.dimJ(f), we have H.dim J(f) < 1. �

Remark. For f in the preceding Corollary, either f or f2 is conjugate to a
Blaschke product.

We begin the proof of Theorem 6.1 with:

Lemma 6.4. If f is geometrically finite then δ(f) ≤ 2.

Proof. When J(f) 6= Ĉ this follows from Proposition 4.3.
Now suppose J(f) = Ĉ. Let B ⊂ Ĉ− P (f) be a spherical ball. Then there is

a λ < 1 such that

diam(B′) = O(λn)

for any component B′ of f−n(B). Indeed, the sphere admits an orbifold metric ρ
with respect to which ‖f ′‖ > C > 1 [44], [24, §A]. Thus B′ is exponentially small
in the ρ-metric. But ρ has singularities on P (f) locally of the form |dz|/|z|α,
0 < α < 1, so the identity map is Hölder continuous from the ρ-metric to the
spherical metric. Therefore the spherical diameter of B′ is also exponentially
small.

By the Koebe distortion theorem,

1
|(fn)′(y)| �

diam(B′)
diam(B)

= O(λ−n)

for y ∈ B′. Letting σ denote spherical area measure, for any ε > 0 and n ≥ 0
fixed, we have∫
B

∑
y : fn(y)=x

|(fn)′(y)|−2−ε dσ(x) ≤ area(f−n(B)) sup
f−n(B)

|(fn)′(y)|−ε = O(λ−nε).
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Summing over n, we find∫
B
P2+ε(f, x) dσ(x) = O

(∑
λ−nε

)
<∞.

Thus δ(f, x) ≤ 2 for a.e. x ∈ B and therefore δ(f) ≤ 2. �

Theorem 6.5. Let f be a geometrically finite rational map. Then J(f)−Jrad(f)
consists exactly of the inverse orbits of the parabolic points and critical points in
the Julia set. In particular J(f)− Jrad(f) is countable.

Proof. If x belongs to Jrad, then lim sup |(fn)′(x)| =∞, so the forward orbit of x
contains no critical points or parabolic points.

Conversely, assume the forward orbit of x ∈ J(f) contains no critical or
parabolic points; we will show x ∈ Jrad(f).

Suppose the forward orbit of x meets P (f). Every point in the finite set
P (f) ∩ J(f) either lands on a parabolic or repelling cycle. Thus x lands on a
repelling cycle and therefore x ∈ Jrad.

Now suppose the forward orbit of x is disjoint from P (f). Whenever the forward
orbit of x comes near P (f), it is pushed away from P (f) by the dynamics of one of
a finite number of parabolic or repelling cycles. Thus s = lim inf d(fn(x), P (f)) >
0. Since all branches of f−n are univalent outside of P (f), we obtain infinitely
univalent maps f−n : B(fn(x), s)→ Vn where x ∈ Vn. Letting r = s/2 we obtain
infinitely many maps fn : Un → B(fn(x), r) such that diam(Un) � |(fn)′(x)|−1

by the Koebe distortion theorem.
Excluding the easy case of f(z) = zn, we also know ‖(fn)′(x)‖ → ∞ with

respect to the Poincaré metric on Ĉ − P (f) [24, Thm. 3.6]. Since the spherical
and Poincaré metrics are comparable away from P (f), diam(Un)→ 0 and therefore
x ∈ Jrad. �

Proof of Theorem 6.1. By Lemma 6.4, δ(f) is finite. Choose any x ∈ Ĉ with
δ(f, x) <∞. By Theorem 4.1, there is an invariant density µ on J(f) of dimension
δ(f, x) with no atoms on the preperiodic points. Hence µ is supported on Jrad(f).

We claim

δ(f) = α(f) = H.dimJrad(f) = H.dimJ(f).

Indeed, any invariant density supported on Jrad(f), such as µ, has dimension
α(f) by Theorem 5.1. Thus δ(f, x) = α(f), and since this holds for all x with
finite critical exponent we have δ(f) = α(f). The equality α(f) = H.dim Jrad(f)
holds for all rational maps (Theorem 2.1), and H.dimJrad(f) = H.dimJ(f) since
J(f)− Jrad(f) is countable.

Since the radial Julia set supports an invariant density, the Poincaré series
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Ps(f, x) diverges at s = δ(f) for all x ∈ Ĉ by Theorem 5.2.
Finally consider any normalized f -invariant density ν on Ĉ of dimension δ(f).

We claim ν = µ.
To begin with, ν is nonatomic and supported on J(f). Indeed, if ν had an

atom, it would have an atom at a nonperiodic point x 6∈ P (f), and for δ = δ(f)
we would have

Pδ(f, x) =
∑

fn(y)=x

|(fn)′(y)|−δ =
∑

ν(y)/ν(x) ≤ ν(Ĉ)/ν(x) <∞,

contrary to the divergence of the Poincaré series at the critical exponent. Similarly,
if the support of ν were to meet the Fatou set, we would have Pδ(f, x) < ∞ for
some x 6∈ J(f) by Proposition 4.3, again contradicting divergence.

Since J(f) − Jrad(f) is countable, ν is supported on the radial Julia set. But
the radial Julia set carries at most one normalized invariant density (Theorem
5.1), so ν = µ. �

Corollary 6.6. Any normalized invariant density supported on the Julia set of a
geometrically finite rational map is either:
• the canonical density of dimension δ(f), or
• an atomic measure of dimension α > δ(f) supported on the inverse orbits of

parabolic points and critical points.

Proof. An invariant density of dimension α > δ(f) must be supported on the
countable set J(f)− Jrad(f) by Theorem 5.1. By the transformation rule (2.2) it
vanishes on the forward orbit of any critical point. �

A rational map f is expanding if J(f) itself is a hyperbolic set. It is not hard
to see f is expanding ⇐⇒ J(f) ∩ P (f) = ∅ ⇐⇒ J(f) = Jrad(f). Compare [24,
Thm. 3.13]. Since the Julia set of an expanding map contains no critical points
or parabolic cycles, we have:

Corollary 6.7. The Julia set of an expanding rational map f supports a unique
normalized f -invariant density.

Notes.
1. The existence and uniqueness of the invariant density µ for an expanding map

was shown in [41].
2. The canonical density µ for a geometrically finite rational map can be related

to Hausdorff and packing measures on J(f) by the results of [45], which also
gives Corollary 6.2. A generalization of Theorem 6.5 to mappings with non-
recurrent critical points is implicit in [45, Prop. 6.1]. Geometrically finite maps
without critical points in J(f) are studied in [12], and [1].
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3. A topological classification of geometrically finite rational maps, akin to
Thurston’s classification of critically finite maps [15], has been given by Cui
[9].

4. If f is geometrically finite but not expanding, then J(f) carries atomic f -
invariant densities of any dimension s > δ(f). For example, if x ∈ J(f)−P (f)
is a critical point, then the density µs defined by (4.2) is f -invariant by (4.3).
Similarly, if the forward orbit of x ∈ J(f) − P (f) lands on a parabolic cycle,
then we can augment µs by finitely many atoms along the forward orbit of x
to obtain an invariant density of dimension s.

5. It is natural to ask if

H.dimJrad(f) = H.dimJ(f)

for all rational maps f , and equality has been verified in several cases [34], [20].
For geometrically finite maps, equality follows from Theorem 6.1 above.

6. Among geometrically infinite quadratic polynomials, there are nearly parabolic
examples where H.dim J(f) = hyp-dim(f) = 2 [38], [37]. On the other hand,
H.dim J(f) < 2 for:
• maps with no recurrent critical points [45], [8];
• Collet-Eckmann maps [33], [19].
• the Fibonacci map [20]; and
• the quadratic maps with Siegel disks f(z) = e2πiθz + z2, where θ is an

irrational of bounded type [27].

One also has area(J(f)) = 0 if f has no indifferent cycle and is not infinitely
renormalizable [22].

7. Creation of parabolics

To study limits of rational maps, we need to understand the creation of parabolic
points. Our prototype for this process is the sequence of maps

fn(z) = λnz + zp+1

converging to f(z) = z+ zp+1. The limit has a parabolic fixed-point with p petals
at the origin. This prototype arises generically for fn = g

p
n when the multiplier at

a fixed point of gn tends to a pth root of unity (see Proposition 7.3).
Since we will be interested in putting the local dynamics into this standard

form, we will work with germs of analytic maps.

Maps with fixed points. Let G be the union, over all open regions U ⊂ Ĉ, of
all holomorphic maps f : U → Ĉ. Let U(f) denote the domain of f ∈ G. We say
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fn → f in G if for any compact K ⊂ U(f), we have K ⊂ U(fn) for all n� 0 and
fn|K → f |K uniformly. This definition makes G into a non-Hausdorff topological
space.

Define the space F ⊂ G × Ĉ of maps with fixed-points by

F = {(f, c) : c ∈ U(f) and f(c) = c}.

We give F the product topology.

Petals. For (f, c) ∈ F let mult(f, c) denote the multiplicity of the fixed-point c.
Then mult(f, c) = r > 1 iff

f ′(c) = 1,

f (i)(c) = 0 for 1 < i < r, and

f (r)(c) 6= 0.

In this case we say (f, c) is parabolic with p = r−1 petals, following the terminology
of §3. Note that any iterate of f has the same number of petals as f .

Dominant convergence. Suppose (fn, cn) → (f, c) in F , f ′(c) = 1, and
mult(f, c) = r. We say (fn, cn) → (f, c) dominantly if there exists an M such
that

|f (i)
n (cn)| ≤M |f ′n(cn)− 1| for 1 < i < r.

The terminology is meant to suggest that the first derivative dominates the higher-
order derivatives. The derivatives should be taken in a local chart around c. The
dominance condition is automatic if (f, c) has only one petal.

Roots of unity. More generally we say (f, c) ∈ F is parabolic if f ′(c) = λ is
a root of unity, say λq = 1. Then we say (f, c) has p petals if (fq, c) does, and
(fn, cn)→ (f, c) dominantly if fn → f in G and (fqn, cn)→ (fq, c) dominantly.

Finally if f ′(c) is not a root of unity, we adopt the convention that any sequence
(fn, cn)→ (f, c) converging in F does so dominantly.

Coordinate change. We say (gn, dn) → (g, d) is related to (fn, cn) → (f, c) by
a coordinate change if there are bijective maps φn → φ in G such that the new
sequence is obtain from the old one by conjugation: that is, such that

(gn, dn) = (φn ◦ fn ◦ φ−1
n , φn(cn)),

(g, d) = (φ ◦ f ◦ φ−1, φ(c)).
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Proposition 7.1. Dominant convergence is preserved by a coordinate change.

Proof. The proposition is clear for a coordinate change by translation, such as
φn(z) = z − cn. Thus we may assume cn = dn = 0. We may also assume
f ′(0) = 1, since the case where f ′(0) is a root of unity reduces to this case.

Let λn = f ′n(0)→ 1, r = mult(f, 0). Write

fn(z) = z + zεn(z) +O(zr)

where εn(z) is a polynomial of degree r−2 with coefficients bounded by M |λn−1|.
Letting ζ = φn(z), we have

gn(ζ) = φn(fn(z))

= φn(z) + φ′n(z)εn(z)z + · · ·+ φ
(r−1)
n (z)
(r − 1)!

εn(z)r−1zr−1 +O(zr)

= ζ + a1z + a2z
2 + · · · = λnζ + b2ζ

2 + b3ζ
3 + · · ·

Now for 1 ≤ i < r, an εn(z) occurs in each term contributing to ai, so |ai| =
O(|λn − 1|). Substituting z = φ−1

n (ζ), we find |bi| ≤ M ′|λn − 1| for 1 < i < r,
where M ′ depends only on M and bounds on the power series for φn and φ−1

n .
Thus (gn, 0)→ (g, 0) dominantly. �

Theorem 7.2. (Dominant normal form) Suppose (fn, cn) → (f, c) dominantly,
and mult(f, c) = r > 1. Then after passing to a subsequence and making a coor-
dinate change, we can assume cn = c = 0 and

fn(z) = λnz + zr +O(zr+1),

f(z) = z + zr +O(zr+1).

Proof. First change coordinates so cn = c = 0. Consider the least s in the range
1 < s < r such that f (s)

n (0) 6= 0 for all n sufficiently large. Write

fn(z) = λnz +Anz
s +O(zs+1).

Let φn(z) = z −Bnzs where

Bn =
An

λn(λs−1
n − 1)

· (7.1)

Since |An| = O(|λn − 1|) by the definition of dominant convergence, and λn → 1,
we find Bn = O(1). Thus φn is injective on a uniform neighborhood of z = 0, and
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we can pass to a subsequence such that φn → φ. Changing coordinates by φn, we
find fn becomes

fn(z) = λnz + (An + λnBn − λsnBn)zs +O(zs+1),

so by (7.1) the coefficient of zs now vanishes. After the coordinate change the
convergence is still dominant, so we can continue the discussion replacing s with
s+1. After a finite number of coordinate changes we obtain fn(z) = λnz+Anzr+
O(zr+1) and f(z) = z +Azr +O(zr+1).

Since mult(f, z) = r, we have A 6= 0, so a final linear change of coordinates
renders An = A = 1. �

Proposition 7.3. Suppose (f, c) is parabolic with p petals and f ′(c) = λ is a
primitive pth root of unity. Then any sequence (fn, cn) → (f, c) in F converges
dominantly.

Proof. We may assume cn = c = 0. Let λn = f ′n(0). We claim there is a coordinate
change φn → φ, fixing the origin, such that

fn(z) = λnz +O(zp+1) (7.2)

for all n� 0.
This coordinate change is constructed by the same method as in the previous

proof. Let s increase from s = 2 to s = p. For each fixed value of s, we apply a
coordinate change of the form φn(z) = z 7→ z−Bnzs to kill the coefficient of zs in
fn. Since fn → f , the numerator An in (7.1) converges; and the denominator has
a nonzero limit because λs−1 6= 1. Thus φn tends to a limiting coordinate change
φ as n → ∞, and the composition of these for 2 ≤ s ≤ p puts fn into the form
(7.2).

From (7.2) we have

fpn(z) = λpnz +O(zp+1),

so (fpn, cn)→ (fp, c) dominantly. �

The next result is useful for handling preparabolic critical points.

Proposition 7.4. Suppose (fn, 0) → (f, 0) dominantly, and (gn, 0) → (g, 0) sa-
tisfies

gn(z)d = fn(zd). (7.3)

Then (gn, 0)→ (g, 0) dominantly.
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Proof. We treat the main case, where g′(0) = f ′(0) = 1 and (f, 0) has p petals;
then (g, 0) has dp petals. Applying a coordinate change to fn → f , and applying
its pullback under z 7→ zd to gn → g, we can assume fn(z) = λnz(1 + O(zp)).
Then by (7.3),

gn(z) = fn(zd)1/d = λ
1/d
n z(1 +O(zdp)),

so (gn, 0)→ (g, 0) dominantly. �

8. Linearizing parabolic dynamics

In this section we show that if f(z) has a parabolic fixed-point with one petal at
z = ∞, then f is almost conformally conjugate to the translation T (z) = z + 1.
Similarly, a parabolic bifurcation fn → f can be reduced to the model Tn → T
where Tn(z) = λnz + 1 and λn → 1.

As these model mappings are Möbius transformations, we obtain a reduction of
analytic dynamics to the theory of elementary Kleinian groups, modulo an almost
conformal change of coordinates. This reduction simplifies the study of the Julia
set and its dimension in the presence of parabolics.

We present these reductions as the following three successively more general
theorems. In all three theorems the conjugacies fix z =∞.

Theorem 8.1. Let

f(z) = z + 1 +O(1/z)

be the germ of an analytic map with a parabolic fixed-point at z = ∞. Then for
any ε > 0, f is (1 + ε)-quasiconformally conjugate near ∞ to

T (z) = z + 1.

Theorem 8.2. Let fn → f on a neighborhood of z =∞ where

fn(z) = λnz + 1 +O(1/z),
f(z) = z + 1 +O(1/z),

and λn → 1 horocyclically. Then for any ε > 0, there are (1 + ε)-quasiconformal
maps φn → φ defined near ∞ and conjugating fn → f to Tn → T , where

Tn(z) = λnz + 1,
T (z) = z + 1.
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Theorem 8.3. Let fn → f on a neighborhood of z =∞ where

fn(z) = λnz + z1−p +O(1/zp),

f(z) = z + z1−p +O(1/zp),

p ≥ 1 and λn → 1 horocyclically. Then for any ε > 0, there are (1 + ε)-
quasiconformal maps φn, φ defined near ∞ and conjugating fn → f to Tn → T ,
where

Tn(z) = λn(zp + 1)1/p,

T (z) = (zp + 1)1/p.

After passing to a subsequence we can assume φn → φ.

Terminology and remarks.
Horocyclic and radial convergence. Let λn → 1 in C∗, where λn = exp(Ln+
iθn) with θn → 0. We say λn → 1 radially if

θn = O(|Ln|),

and horocyclically if

θ2
n/Ln → 0.

(In either case we also allow λn = 1.)
In terms of hyperbolic geometry, radial convergence means tn = i|Ln| + θn

stays within a bounded distance of a geodesic landing at 0 in the upper half-plane,
while horocyclic convergence means any horoball resting on t = 0 in H contains all
but finitely many terms in the sequence 〈tn〉. Horocyclic convergence also means
the complex torus Xn = C∗/λZn converges to a cylinder as n→∞. More precisely,
λn → 1 horocyclically iff the generator of π1(C∗) ⊂ π1(Xn) is represented by an
annulus An ⊂ Xn with modAn →∞ as n→∞.

Holomorphic index. The holomorphic index of a fixed point p of f with multi-
plier λ is given by

ind(f, p) = Resp

(
dz

z − f(z)

)
=

1
1− λ ·

The index satisfies
∑
f(p)=p ind(f, p) = 1 (see [30, §9]). Another characteriza-

tion of horocyclic convergence, suggested by Shishikura, is that the real part
of the holomorphic index tends to infinity; that is, λn → 1 horocyclically iff
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|Re(1− λn)−1| → ∞.

Analytic obstructions. It is known that a germ f(z) = z + 1 + O(1/z) as in
Theorem 8.1 has infinitely many moduli providing obstructions to a conformal
conjugacy to T (z) = z + 1 near z =∞ [47].

In Theorem 8.2, a typical sequence fn should be thought of as a bifurcation
in which the parabolic fixed-point z = ∞ for f splits into a pair of repelling and
attracting points for fn. The domain of φn includes both points for n large. Since
the multipliers of fn and Tn at their second fixed-points (6= ∞) generally differ,
at best a quasiconformal conjugacy can be achieved.

Models for multiple petals. In Theorem 8.3, the pth roots in the equations for
Tn and T are chosen so (zp + 1)1/p = z + O(1) near ∞. These model mappings
commute with rotation by a pth root of unity and are semiconjugate to w 7→
λ
p
nw + 1 and w 7→ w + 1 under the substitution w = zp. For p > 1 the maps Tn

and T are only defined near z =∞.
Note that fn → f is in the dominant normal form produced by Theorem

7.2, except that the fixed-point has been moved from zero to infinity. Thus a
corresponding result holds whenever (fn, cn)→ (f, c) dominantly.

Proof of Theorem 8.1. Partition the sphere Ĉ into disks B tD, where D = {z :
|z| > R} and R� 0 is chosen so D is contained well within in the domain where
f is univalent. Then f is nearly linear on D.

We claim f |D can be extended to a map F : Ĉ → Ĉ such that the iterates of
F are uniformly quasiconformal, with dilatation

K(Fn) = 1 +O(R−1) (8.1)

for all n. Assuming this claim, F is conjugate by a 1 + O(R−1)-quasiconformal
map to a Möbius transformation T (z). (To achieve this conjugacy, one constructs
an F -invariant Beltrami differential µ with |µ| = O(R−1) from the full orbit under
F of the standard structure on the sphere, and applies the measurable Riemann
mapping theorem; see [41, Theorem 9].) Since F = f near ∞, T (z) must be
parabolic, so we may assume T (z) = z + 1 and the proof is complete.

It remains to construct F . The extension can be done directly by hand, or
analytically as follows. Let

ρD =
2R |dz|
|z|2 −R2

denote the Poincaré metric on D, and let Sf(z) dz2 be the Schwarzian derivative
of f , a quadratic differential analytic near z =∞. From the behavior of ρD with
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respect to R it follows that

‖Sf‖D = sup
D

|Sf(z)|
ρ2
D(z)

= O(R−2).

Now the Ahlfors-Weill extension (cf. [18, §5.4]) prolongs any such f with small
Schwarzian to a quasiconformal homeomorphism F : Ĉ → Ĉ with K(F ) = 1 +
O(‖Sf‖D) = 1 +O(R−2).

We claim

F (z) = z + 1 + O(R−1). (8.2)

This bound holds for z ∈ D by our assumptions on f . To see it on B, first
assume F (z) − 1 fixes ±R. Since K(F ) = 1 + O(R−2), F (z) − 1 moves points
at most distance O(R−2) in the Poincaré metric ρ(z)|dz| on C − {−R,R}; since
ρ(z) = O(1/R) on B, the estimate follows. If F (z) − 1 does not fix ±R, it still
moves these points at most Euclidean distance O(R−1), so after composition with
an affine map of size O(R−1) these points are fixed and again the estimate follows.

From (8.2) we have that for large R and all n, Re(Fn(z) − z) � n. Since
ReFn(z) ∈ [−R,R] if Fn(z) ∈ B, we see any orbit of F includes at most O(R)
points in B. Thus K(Fn) = 1 +O(R ·R−2) = 1 +O(R−1) for all n, establishing
(8.1) and completing the proof. �

N log λ

f̃N −2πi

0

f

λ
S

fN

θ

S̃

S̃ + 2πi

f̃ F̃ (0)
1

Figure 2. The first return map.

Renormalization. The analysis of nearly recurrent dynamics is facilitated by
the renormalization or first return construction. This technique is central to the
next proof, so we begin by explaining the idea in the linear case f(z) = λz, with

logλ = L+ iθ,

L > 0 and 0 < θ < π.
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Consider the region

S = {z ∈ C∗ : 0 ≤ arg(z) ≤ θ},

and let S/f denote the Riemann surface obtained from S by gluing z to f(z) for
z ∈ R+. The first return map F : S → S is defined by F (z) = fN (z) for the least
N > 1 with fN (z) ∈ S. The first return occurs after the orbit of z has moved
once around the origin. The map F descends to a biholomorphic map

Rf : S/f → S/f,

called the renormalization of f .
Now the Riemann surface S/f is a cylinder isomorphic to C∗. Let us arrange

this isomorphism so 0 ∈ ∂S corresponds to 0 ∈ ∂C∗; then Rf(z) = R(λ) · z where

logR(λ) =
4π2

logλ
· (8.3)

To check this formula, it is useful to pass to the universal cover π : C→ C∗, where
π(z) = ez and S is covered by the strip S̃ = {z : 0 ≤ Im(z) ≤ θ} (Figure 2).
Then f lifts to f̃(z) = z + logλ, and

F̃ (0) = f̃N (0)− 2πi = N logλ− 2πi

for the least N > 1 with f̃N (0) ∈ 2πi + S̃. The identification S̃/f̃ ∼= C∗ is given
by πR(z) = exp(−2πiz/ logλ), and thus

R(λ) = (Rf)(1) = πR(F̃ (0))

which yields (8.3). In particular,

log |R(λ)| = 4π2

L+ θ2/L
· (8.4)

Since λn = exp(Ln + iθn) → 1 horocyclically if and only if both Ln → 0 and
θ2
n/Ln → 0, we have:

Proposition 8.4. For |λn| > 1 we have λn → 1 horocyclically iff R(λn)→∞ .

Proof of Theorem 8.2. We apply the construction of Theorem 8.1 to each fn. That
is, writing Ĉ = D ∪B where B = B(0, R) and R� 0, we apply the Ahlfors-Weill
extension to fn|D obtain a quasiconformal mapping Fn : Ĉ→ Ĉ with Fn = fn on



Vol. 75 (2000) Hausdorff dimension and conformal dynamics II 565

D, K(Fn) = 1 +O(R−2) and

Fn(z) = λnz + 1 +O(R−1)

for all z ∈ C.
Our main task is to show that for n and R large, we have

F in(B) ∩B = ∅ for |i| > 3R. (8.5)

This control on the recurrence of B will imply K(F in) = 1 + O(R−1) and thus
Fn is conjugate, with small dilatation, to an affine mapping. The proof of (8.5)
breaks into 3 cases.

Case 1: λn = 1. Then Re(F in(z))−Re z � i which implies (8.5).
Excluding the subsequence where Case 1 holds, we henceforth assume λn 6= 1

for all n. Then fn has a second fixed-point an near the fixed-point of the affine
map λnz + 1; in fact

an =
1

1− λn
+O(1)

by Rouché’s theorem, and

λ′n = f ′(an) = λn +O(|1− λn|2)

since f ′(z) = λn +O(1/z2). From this we find λ′n → 1 horocyclically as well.
Since the fixed-points ∞ and an behave the same, we can exchange them if

necessary (by a Möbius conjugacy close to the identity) to arrange that |λn| > 1
for all n. Then we can write

logλn = Ln + iθn ∈ H

with θn → 0.

Case 2: Radial convergence. Suppose we have the radial convergence condition
|θn| < MLn for all n. Then for all n� 0:

|λn| − 1
|λn − 1| ∼

Ln
|Ln + iθn|

>
1

M + 1
. (8.6)

Let bn = (1−λn)−1 be the fixed-point of the linear map λnz+1. On a large scale,
Fn repels from bn, and

|Fn(z)− bn| = |z − bn|+ (|λn| − 1)|z − bn|+O(R−1).
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Now z ∈ B satisfies |z − bn| > |bn|/2 (n� 0); setting zi = F in(z) by induction we
find

|zi+1 − bn| − |zi − bn| ≥
|λn| − 1
2|λn − 1| −O(R−1) ≥ 1

2M + 3

when R is sufficiently large (using (8.6)). Thus the distance |zi− bn| increases lin-
early along a forward orbit starting in B, establishing (8.5) for i > 0. For backward
iteration, move the other fixed-point an to infinity and repeat the argument.

an Sn

Fn

B

Figure 3. Horocyclic dynamics.

Case 3: Horocyclic convergence. For the last case we assume both θ2
n/Ln → 0

(horocyclic convergence) and |θn| > Ln (since otherwise we have radial conver-
gence). For convenience we also assume θn > 0.

Consider the measure of rotation

ρn(z) =
Fn(z)− an
z − an

·

We claim

arg ρn(z) � θn (8.7)

for all n sufficiently large.
First, for z ∈ B, the triangle with vertices (z, Fn(z), an) has two long sides of

length about θ−1
n and a short side of length |z − Fn(z)| � 1 nearly parallel to the

real axis. The condition θn > Ln implies an avoids a cone of definite angle around
the real axis, so the angle argρn(z) between the long sides is comparable to θn
(see Figure 3).

Now ρn(z) is holomorphic on Ĉ − B (with ρn(∞) = λn and ρn(an) = λ′n);
since (8.7) holds on ∂B, it holds throughout Ĉ−B by the maximum principle.

Because of (8.7) the orbits of Fn circulate around an and pass through the
region Sn bounded by a positive ray through an and its image (Figure 3 again).
Note that Fn = fn is holomorphic on Sn and thus Sn/fn is naturally a Riemann
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surface isomorphic to C∗. The first return construction determines a 1 +O(R−1)-
quasiconformal map

RFn : Sn/fn → Sn/fn,

since any orbit starting in B departs within O(R) iterates and lands in Sn before
returning again. The orbits passing through B are confined to a round annulus
An ⊂ Sn/fn of modulus O(R) and RFn is holomorphic elsewhere.

C∗/λZn

Sn/fn

RFn

An

Figure 4. Cylinder and quotient torus.

Think of Sn/fn ∼= C∗ as an infinite cylinder of unit radius. Then An is a
subcylinder of width O(R). The map RFn is approximately an isometry of the
whole cylinder, translating by distance

log |RF ′n(∞)| = log |R(λn)| → ∞

(by Proposition 8.4). Thus for all n� 0, An embeds in the quotient torus C∗/λZn
and

RF in(An) ∩An = ∅

for i 6= 0 (see Figure 4). This means B never returns to itself after circulating
around an, so (8.5) holds in this final case as well.

Completion of the proof. To construct the linearizations, we now define Fn-
invariant Beltrami differentials µn converging to an F -invariant µ.

Observe that for any z ∈ Ĉ, by we have F in(z) ∈ D for all i � 0. Indeed, for
z ∈ B we can take i = 3R + 1. Let µn(z) be the complex dilatation of F in(z),
i � 0; it is well-defined since Fn is conformal on D. In other words, µn(z) is the
pullback of the standard complex structure on D along the orbit of z; it is clearly
invariant. Define by the same procedure an F -invariant Beltrami differential µ.

The Schwarzians of the maps fn satisfy Sfn → Sf on D in the C∞ topology, so
their Ahlfors-Weill extensions satisfy Fn → F smoothly on B. Therefore µn → µ
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a.e. on Ĉ (using (8.5) to verify that µn(z) and µ(z) can be defined using F in and
F i where i depends only on z.)

Let φn : Ĉ → Ĉ be the unique quasiconformal map with complex dilatation
µn, normalized to fix 0 and∞ and with φn(Fn(0)) = 1. Let φ with dilatation µ be
similarly normalized for F . Since µn → µ, we have φn → φ uniformly on Ĉ. Then
φn → φ conjugates Fn → F to Tn → T , where Tn(z) = αnz+ 1 and T (z) = z+ 1.
Since Fn = fn and F = f outside B, the proof is almost complete.

It remains only to replace αn with λn. To this end, consider the complex tori
forming the local quotient space for the dynamics of fn and Tn near z =∞. The
map φn descends to a map

Φn : C∗/λZn → C∗/αZn

between these quotient tori, with K(Φn) = K(φn). Since Φn is conformal outside
the image of An, and R(λn) → ∞, we see Φn is conformal on most of the torus
C∗/λZn (Figure 4). Thus the Teichmüller mapping Ψn in the homotopy class of Φn
has dilatation K(Ψn) → 1. Replacing φn with ψ−1

n ◦ φn for suitable lifts of Ψn,
we can replace αn with λn and complete the proof. �

Proof of Theorem 8.3. For simplicity assume |λn| ≥ 1. The mappings fn and f ,
like their models Tn and T , are asymptotic to p-fold coverings of affine mappings.
To see this, make the change of variables w = zp; then

f(w) = w + p+O(w−1/p),

fn(w) = λpnw + pλp−1
n +O(w−1/p),

where f and fn are understood as multi-valued functions that become well-defined
on a p-sheeted covering of the w-plane. Using the equations above, the dynamics
can be analyzed in a manner similar to the preceding proof.

For example, under f the point z =∞ is a fixed-point of multiplicity p+ 1. It
is attracting along the nearly invariant rays where zp ∈ R+ and repelling along the
rays zp ∈ R−. For λn 6= 1 this fixed-point splits into an attracting point at z =∞
with multiplier λ−1

n , and p symmetrically arrayed repelling points z ≈ (1−λn)−1/p

with multipliers ≈ λpn.
The idea of the proof is to construct a conjugacy between fn and Tn on each

of p sectors where the behavior is like that of a pth root of an affine map. See
Figure 5, where z = ∞ has been moved by an inversion to the center of the
picture. We will use double indices to label these sectors and associated objects;
Snj , 0 ≤ j < p− 1, will be the sectors associated to fn.

To define these sectors, consider a large radius R, and let Rj = Re2πij/p.
For R large enough, f in(Rj) → ∞ for all n. Join these points to form a path
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fn Tnφn

γnj
γ′nj

S′njSnj

Figure 5. Multiple petals (p = 4).

γnj : [0,∞)→ C, defined by

γnj(t) =


Rj if t = 0,
(1− t)Rj + tfn(Rj) if 0 < t < 1, and
fn(γnj(t− 1)) if t ≥ 1.

We can assume |λn − 1| is small, since otherwise fn and Tn are conformally
conjugate on a definite neighborhood of infinity. Then for R large, each path γnj
is properly embedded and nearly straight in the region R < |z| < 2R. The paths
divide

D(R) = {z : |z| ≥ R}

into p sectors Snj bounded by γnj and γn,j+1, j = 0, . . . , p− 1.
Next we glue together the edges of Snj to obtain a new dynamical system. That

is, we identify γnj(t) and γn,j+1(t) for all t, to obtain from Snj a Riemann surface
conformally equivalent to a punctured disk, and hence to D(Rp) = {z : |z| ≥ Rp}.
In fact there is a unique conformal map ψnj : Snj → D(Rp) that identifies the
parameterized edges, sends ∂D(R) to ∂D(Rp) and sends Rj to Rp.

Conjugating fn by ψnj , we obtain a holomorphic map fnj defined near ∞ in
D(Rp) with

fnj(z) = λnjz +O(1),

where λnj ≈ λpn. More precisely, for R large enough we have

d(logλnj , logλpn) ≤ ε/2 (8.8)

in the hyperbolic metric on the upper half-plane, because ψnj(z) ≈ zp.



570 C. T. McMullen CMH

Finally set f∞ = f , and carry out the same construction with n =∞. Then

f∞,j(z) = z + cj +O(1/z),

with cj 6= 0. (In fact cj ≈ p for R large, because ψ∞,j(z) ≈ zp.) Then

fnj → f∞,j

on a neighborhood of z =∞, and the corresponding multipliers λnj converge to 1
horocyclically.

Now construct similar paths γ′nj and sectors S′nj for the model map Tn. Since
Tn commutes with rotation by a pth root of unity, the edges of S′nj can be glued
together by a rotation, and the quotient map ψnj : S′nj → D(Rp) is given just by
ψnj(z) = zp. Therefore the quotient dynamics is given by

Tnj(z) = λpn(z + 1).

By Theorem 8.2, there are (1 + ε)-quasiconformal maps φnj → φj defined
near ∞ that conjugate fnj → f∞,j to Tnj → T∞,j. (Here we use an additional
conjugacy controlled by (8.8) to replace λnj with λpn.)

Increasing R again, we can assume D(Rp) is contained in the domain and range
of φnj . Note that Tnj(z) commutes with all rotations about z = (1 − λpn)−1, or
all translations if λn = 1. Thus we can compose with a conformal automorphism
of Tnj to arrange that φnj(Rp) = Rp for all n� 0. We can also arrange that

φnj ◦ ψnj ◦ γnj(t) = ψ′nj ◦ γ′nj(t) (8.9)

for all t ≥ 0. Indeed, the paths above descends to nearly straight quasicircles on
the quotient torus or cylinder for Tnj, passing through the same point (the image
of Rp), so by a small quasiconformal isotopy they can be made to coincide. This
isotopy lifts to an isotopy of φnj commuting with the dynamics and achieving
(8.9).

By (8.9) it is evident that the lifts

φ̃nj = (ψ′nj)
−1 ◦ φnj ◦ ψnj

send Snj to S′nj near z = ∞ and send γnj to γ′nj respecting parameterizations.
Thus the lifts fit together to form a (1 + ε)-quasiconformal map φn conjugating fn
to Tn near ∞.

By the normalization φn(R) = R and the bound K(φn) ≤ 1 + ε on the dilata-
tion, the maps φn range in a compact family and hence φn → φ after passing to
a subsequence. �
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Notes.
1. A topological version of Theorem 8.1 was obtained by Camacho in [6].
2. See e.g. [47] for the analytic classification of parabolic fixed-points.
3. Parabolic bifurcations can be analyzed in great detail by the technique of Ecalle

cylinders, implicit in the renormalization construction above. For more details
and examples see [14], [13] and [38].

4. The renormalization construction is applied to small denominators in [48].

9. Continuity of Julia sets

The Julia set J(f) determines a map

J : Ratd → Cl(Ĉ)

from the space of all rational maps of degree d to the space of compact subsets
of the sphere. Here Ratd is given the algebraic topology and Cl(Ĉ) the Hausdorff
topology (recalled below).

As is well-known, J(f) varies discontinuously at many points f ∈ Ratd. For
example, if f has a Siegel disk with center x, then x can be made repelling by a
slight perturbation of f . We then obtain fn → f with x ∈ J(fn) but x 6∈ J(f).
Parabolic implosions provide another source of discontinuity [13], [16]. In fact
J(f) varies continuously on a neighborhood of f in Ratd iff f is structurally stable.
Conjecturally, f is structurally stable iff f is expanding. See [24, Thm. 4.2, Conj.
1.1] for more details.

In this section we give a condition that insures J(fn) → J(f) when f is geo-
metrically finite. We will establish:

Theorem 9.1. (Continuity of J) Let f be geometrically finite, and suppose fn →
f horocyclically, preserving critical relations. Then fn is geometrically finite for
all n� 0 and

J(fn)→ J(f)

in the Hausdorff topology.

Algebraic limits. We say rational maps fn converge to f algebraically if deg fn =
deg f and, when fn is expressed as the quotient of two polynomials, the coefficients
can be chosen to converge to those of f . Equivalently, fn → f uniformly in the
spherical metric.

Given that fn → f algebraically, we can further qualify the notion of conver-
gence by imposing the following conditions.
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Critical relations. Let b ∈ J(f) be a preperiodic critical point, satisfying f i(b) =
f j(b) for some i > j > 0. Suppose for all such b and for all n � 0, the maps fn
have critical points bn ∈ J(fn) with the same multiplicity as b, bn → b and
f in(bn) = f

j
n(bn). Then we say fn → f preserving critical relations.

Horocyclic and radial convergence of rational maps. It is a basic fact that
a rational map f has only a finite number of parabolic cycles [7, Thm. III.2.4].
Thus for a suitable k > 0, every parabolic point c of fk is a fixed-point with
multiplier (fk)′(c) = 1. We say fn → f horocyclically (or radially) if for each such
parabolic fixed-point c of fk, there are fixed-points cn of fkn such that

(a) The pairs (fkn , cn) → (fk, c) dominantly in the space of maps with fixed-
points F introduced in §8; and

(b) The multipliers λn → 1 horocyclically (or radially), where λn = (fkn)′(cn).

The Hausdorff topology. Recall that compact sets Kn → K in the Hausdorff
topology if:

(a) Every neighborhood of a point x ∈ K meets all but finitely many Kn; and
(b) If every neighborhood of x meets infinitely many Kn, then x ∈ K.

We define lim inf Kn as the largest set satisfying (a), and lim supKn as the smal-
lest set satisfying (b) [21, §2-16]. Then Kn → K is equivalent to lim supKn =
lim inf Kn = K.

The next result is well-known (cf. [13, §5]):

Lemma 9.2. If fn → f algebraically, then J(f) ⊂ lim inf J(fn).

Proof. Any neighborhood of x ∈ J(f) contains a repelling periodic point which
persists nearby in J(fn) for all n� 0. �

Here is the model result for showing that parabolic basins move continuously.

Lemma 9.3. Let λn → 1 horocyclically, and let Tn(z) = λnz + 1. Then for any
R > 0 there exists an N such that

|T kn (x)| > R

whenever |x| < R and n, |k| > N .

Proof. We treat the case where x = 0; the case where |x| is bounded by R is
similar. By horocyclic convergence we can write λn = exp(Ln + iθn) with Ln → 0
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and θ2
n/Ln → 0. Then

T kn (0) = λk−1
n + · · ·+ λn + 1 =

λkn − 1
λn − 1

.

For n large enough, |λn − 1| � 1/R so we need only worry about the case where
the numerator is close to zero. In that case

|T kn (0)| � |kLn + i{kθn}|
|Ln + iθn|

where {kθn} = kθn + 2πj and j is an integer chosen to give the value closest to
zero.

If |k| < |1/θn| then j = 0 and we have |T kn (0)| � |k|, so we get |T kn (0)| > R by
taking the lower bound N on |k| large enough. If |k| ≥ |1/θn|, then we have

|kLn + i{kθn}|
|Ln + iθn|

≥ |Ln/θn|
|Ln + iθn|

=
1

|θn + iθ2
n/Ln|

→ ∞

as n→∞ (by horocyclic convergence), so |T kn (0)| > R in this case by taking the
lower bound N on n sufficiently large. �

Remark. The preceding result is related to the fact that the cyclic Kleinian
groups Γn = 〈Tn(z) = λnz + 1〉 converge geometrically to Γ = 〈T (z) = z + 1〉;
their quotient Riemann surfaces Ω(Γn)/Γn are complex tori converging to the
infinite cylinder C/Γ ∼= C∗. Compare [28, Thm. 5.1].

Proof of Theorem 9.1. (Continuity of J). The map f has at most 2 deg(f) − 2
attracting, superattracting or parabolic cycles. Thus by replacing fn → f with
fkn → fk (which does not change the Julia sets), we can assume that all such
cycles of f are actually fixed points. We can also assume that f ′(c) = 1 at each
parabolic fixed-point c.

Since fn → f algebraically, we have J(f) ⊂ lim inf J(fn). So to prove J(fn)→
J(f), we need only show lim supJ(fn) ⊂ J(f). This amounts to showing, for each
x ∈ Ω(f) = Ĉ−J(f) (the Fatou set of f), there exists a neighborhood U of x such
that U ⊂ Ω(fn) for all n� 0.

Since the Fatou set is totally invariant, we can replace x with a finite iterate
f i(x) at any stage of the argument.

Because f is geometrically finite, under iteration f i(x) converges to an attract-
ing, superattracting or parabolic fixed-point c of f .

Attracting and superattracting fixed-points. First suppose c is attracting
or superattracting. Then this behavior persists under algebraic perturbation of f .
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In fact there is a small neighborhood U of c such that fn(U) ⊂ U for all n � 0.
Thus U ⊂ Ω(fn). Choosing i such that f i(x) ∈ U , we have shown a neighborhood
of x persists in the Fatou set for large n.

Parabolics with one petal. Now suppose c is a parabolic point with one petal.
By our assumption of horocyclic convergence, there are fixed-points cn of fn such
that (fn, cn) → (f, c) dominantly and the multipliers λn → 1 horocyclically. By
Theorem 7.2, we can first move cn to∞, then make an analytic coordinate change
(depending on n) near ∞ such that

fn(z) = λnz + 1 +O(z−1),

f(z) = z + 1 +O(z−1).

Applying Theorem 8.2, we can make a further quasiconformal coordinate change
near ∞ to arrive at the linearized dynamics

Tn(z) = λnz + 1,
T (z) = z + 1.

(9.1)

In summary, there is an R such that for all n� 0, the linearized dynamics Tn on
the neighborhood |z| > R of∞ is topologically conjugate to the dynamics of fn on
a neighborhood of cn. The conjugacy φn from fn to Tn converges to a conjugacy
φ from f to T .

Replacing x with f i(x) for i� 0, we can assume that x′ = φ(x) is defined, and
satisfies Rex′ > R (since the real part increases under iteration by T ). We claim
there is a neighborhood V of x′ and N > 0 such that

|T in(z)| > R for all z ∈ V , i > 0 and n > N. (9.2)

Indeed, by Lemma 9.3, we can choose V and N so (9.2) holds for i > N . But for
0 < i ≤ N , we have |T i(x′)| > R; since Tn → T , by further increasing N we can
obtain (9.2) for all i > 0.

Since φn → φ and φ(x) ∈ V , there is a neighborhood U of x such that φn(U) ⊂
V for all n� 0. By (9.2), the iterates f in(z) then remain close to cn for all z ∈ U
and i > 0. Thus f in|U is a normal family, so U ⊂ Ω(fn) as desired.

Parabolics with multiple petals. The case of p > 1 petals is very similar.
Pass to any subsequence such that J(fn) converges in the Hausdorff topology. By
Theorems 7.2 and 8.3, after passing to a further subsequence we obtain topological
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conjugacies φn → φ to the dynamical systems Tn → T , where

Tn(z) = λn(zp + 1)1/p,

T (z) = (zp + 1)1/p. (9.2)

By composing with the map z 7→ zp, we obtain a semiconjugacy φn → φ to the
linearized dynamics (9.1). Choose V as before and U with φn(U) ⊂ V , we again
find U ⊂ Ω(fn) for all n� 0.

Therefore the original sequence satisfies J(fn)→ J(f).

Geometric finiteness. By algebraic convergence, any critical point bn of fn is
close to a critical point b of f . If b ∈ J(f), then b is preperiodic, and so is bn for all
n � 0 by our assumption that critical point relations are preserved. If b ∈ Ω(f),
then bn ∈ Ω(fn) for all n� 0, since J(fn)→ J(f). Thus for all n� 0, all critical
points in J(fn) are preperiodic, so fn is geometrically finite. �

10. Parabolics and Poincaré series

In this section we continue our study of parabolic bifurcations. We establish, under
suitable conditions, uniform convergence of the Poincaré series. This uniformity
controls the concentration of invariant densities as parabolics are created.

Poincaré series of germs. For f ∈ G we define the (forward) Poincaré series by

Pδ(f, x) =
∑
i≥0

|(f i)′(x)|δσ ,

where the derivative is measured in the spherical metric σ. To study the rate of
convergence, we define for any open set V the sub-sum

Pδ(f, V, x) =
∑

f i(x)∈V
|(f i)′(x)|δσ .

In both sums i ≥ 0 ranges only over values such that f i(x) is defined, i.e. such
that f j(x) ∈ U(f) for 0 ≤ j < i.

Now consider a sequence

(fn, cn, δn)→ (f, c, δ)

in F × R+ such that

(a) (fn, cn) converges to (f, c) dominantly; and
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(b) δ > p/(p+ 1) if (f, c) is parabolic with p petals.

We say the Poincaré series for (fn, cn, δn) as above converge uniformly if, after
suitably shrinking U(fn) and U(f), for any compact set K ⊂ U(f) − {c} and
ε > 0, there exists a neighborhood V of c such that

Pδn(fn, V, x) < ε

for all n� 0 and all x ∈ K. This means the tail of the series can be made small,
independent of n, by choosing V small enough.

Here is a simple case:

Theorem 10.1. Let (f, c) be an attracting or superattracting fixed-point. Then
the Poincaré series converge uniformly for any sequence (fn, cn, δn)→ (f, c, δ).

Proof. After suitable restrictions, we can assume all points in U(fn) are attracted
to cn under iteration of fn, and |f ′n| < λ < 1 for all n � 0. Then the Poincaré
series is dominated by the tail of a geometric series, namely

∑
f in(x)∈V λ

i, and this
bound is small when V is a small neighborhood of c. �

The main result of this section treats the parabolic case.

Theorem 10.2. Let (f, c) be parabolic with p petals and let λn = f ′n(cn). If
(a) λn → 1 radially; or
(b) λn → 1 horocyclically, and δ > 2p/(p+ 1),

then the Poincaré series for (fn, cn, δn) converge uniformly.

Proof. First consider the case where (fn, cn) = (Tn,∞) and (f, c) = (T,∞) are
the model mappings

Tn(z) = λn(zp + 1)1/p,

T (z) = (zp + 1)1/p, (10.1)

with U(Tn) = U(T ) = {z : |z| > R} for some large radius R. Then for p = 1,
uniform convergence is proved in [28]. Indeed, Tn and T generate cyclic Kleinian
groups with Ln → L geometrically by horocyclic convergence of λn → 1. Uniform
convergence of the Poincaré series under condition (a) or (b) then follows, from
[28, Thms. 5.1 and 6.1 – 6.3].

For the case p > 1, use the substitution w = zp to semiconjugate Tn → T to
Sn → S, where

Sn(w) = λpn(w + 1),
S(w) = w + 1.
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Then the spherical metric

σ =
2 |dz|

1 + |z|2

goes over to

ρ =
2 |dw|

p(|w|1+1/p + |w|1−1/p)
� |dw|
|w|1+1/p

for large |w| (as in Proposition 3.2). To obtain uniform convergence, one simply
repeats the proofs of [28, §6] for this new metric. For example, bounds of the form

Pδn(Tn, V, x) = O

∑
k>K

k−2δn


for p = 1 become, for p > 1,

Pδn(Tn, V, x) = O

∑
k>K

k−(1+1/p)δn

 ,

and this is small for all n,K � 0 because (1 + 1/p)δn → (1 + 1/p)δ > 1.
Now consider the case of general (fn, cn, δn). Choose L > 1 such that αn =

δn/L > p/(p+1) for all n� 0. By Theorems 7.2 and 8.3, there are L-quasiconfor-
mal conjugacies φn, φ sending suitable restrictions of (fn, cn)→ (f, c) to the model
mappings (Tn,∞)→ (T,∞) of (10.1). Restricting the domains sufficiently, we may
assume fn, f, Tn and T are univalent.

An L-quasiconformal map is Hölder continuous of exponent 1/L; in particular,

diam(B) = O(diam(φn(B))1/L) (10.2)

for any ball B ⊂ U(f) [2, Ch. III.C]. To conclude the proof, we will use this Hölder
continuity to transport uniform convergence from Tn to fn.

Consider a fixed compact set K ⊂ U(f)−{c} and ε > 0. Choose a compact set
K ′ ⊂ U(T )− {∞} such that φn(K) ⊂ K ′ for all n� 0. By uniform convergence
of the Poincaré series for (Tn,∞, αn), there is a neighborhood V ′ of ∞ such that

sup
x∈K′

Pαn(Tn, x, V ′) < ε

for all n� 0. Choose a neighborhood V of c such that φn(V ) ⊂ V ′ for all n� 0.
Now consider x ∈ K. For a small ball B about x, the Koebe distortion theorem
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gives

Pδn(fn, x, V ) �
∑

f in(x)∈V
(diam f in(B))δn .

Set xn = φn(x) and Bn = φn(B). Then (10.2) yields

diam f in(B) = O((diamφn(f in(B)))1/L) = O((diamT in(Bn))1/L),

and since δn/L = αn, we have

Pδn(fn, x, V ) = O

 ∑
T in(xn)∈V ′

(diamT in(Bn))αn

 .

But Koebe again gives∑
T in(xn)∈V ′

(diamT in(Bn))αn � Pαn(Tn, xn, V ′) < ε

by our choice of V ′. Thus Pδn(fn, x, V ) = O(ε) and we have uniform convergence
of the Poincaré series. �

11. Continuity of Hausdorff dimension

In this section we establish conditions for continuity of the Hausdorff dimension
of the Julia set.

The continuity of dimension will generally come along with a package of addi-
tional properties. For economy of language, we say fn → f dynamically if:

D1. fn → f algebraically;
D2. The Julia sets satisfy J(fn)→ J(f) in the Hausdorff topology;
D3. H.dim J(fn)→ H.dim J(f);
D4. The critical dimension satisfies α(fn)→ α(f);
D5. The maps fn and f are geometrically finite for all n� 0; and
D6. The normalized canonical densities on J(fn) and J(f) satisfy µn → µ in

the weak topology on measures.

The terminology is meant to suggest that the dynamical and statistical features
of fn (as reflected in its Julia set and invariant density) converge to those of f .

Here is the prototypical example:
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Theorem 11.1. If fn → f algebraically and f is expanding, then fn → f dyna-
mically.

Proof. Since expanding maps are open in the space of all rational maps, fn is
expanding for all n� 0, and hence geometrically finite. By Theorem 9.1, J(fn)→
J(f) in the Hausdorff topology.

Now the Julia sets of the expanding maps f and fn, n � 0, carry unique
normalized invariant densities µ and µn, by Corollary 6.7. The density µn has
dimension α(fn). But any weak accumulation point ν of µn gives an f -invariant
density supported on J(f), by convergence of Julia sets. Thus ν = µ, µn → µ, and
α(fn)→ α(f), the dimension of µ. Since α(f) = H.dimJ(f) for any geometrically
finite rational map (Theorem 6.1), we have H.dimJ(fn)→ H.dimJ(f), and thus
fn → f dynamically. �

Our goal in this section is to obtain dynamic convergence in the presence of
parabolic points and critical points in the Julia set. We will establish:

Theorem 11.2. (Dynamic convergence) Let f be geometrically finite and let fn →
f algebraically, preserving critical relations. Suppose:

(a) fn → f radially; or
(b) fn → f horocyclically, and

lim inf H.dimJ(fn) >
2p(f)
p(f) + 1

·

Then fn → f dynamically.

Recall p(f) denotes the petal number of f (§3). Condition (b) can be replaced
by:

(b′) fn → f horocyclically, and H.dimJ(f) > 2p(f)/(p(f) + 1),

since Theorems 6.1, 9.1 and Proposition 11.3 below imply

lim inf α(fn) = lim inf H.dim J(fn) ≥ α(f) = H.dimJ(f).

Semicontinuity of dimension. Before proceeding to the proof, we remark that
one inequality for the critical dimension is general and immediate:

Proposition 11.3. If fn → f algebraically, then α(f) ≤ lim inf α(fn).

Proof 1. Let α0 = lim inf α(fn). Pass to a subsequence such that α(fn) → α0,
and such that normalized fn-invariant densities µn of dimension α(fn) converge
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to weakly to a measure µ. Then µ is an f -invariant density on Ĉ, so by Corollary
4.5 its dimension α0 is an upper bound for α(f).

Proof 2. (Compare [38, §1].) By Theorem 2.1 we have hyp-dim(f) = α(f) for any
rational map f . By structural stability, any hyperbolic set X for f gives rise to
a nearby hyperbolic set Xn for fn, n � 0, admitting a conjugacy to f |X with
Hölder exponent tending to one. Thus H.dimXn → H.dimX , so hyp-dim(f) ≤
lim inf hyp-dim(fn). �

Corollary 11.4. Let f be geometrically finite with J(f) = Ĉ. If fn → f alge-
braically, then H.dim J(fn)→ 2.

Proof. By Theorems 2.1, 6.1 and the preceding result we have

lim inf H.dim J(fn) ≥ lim inf H.dimJrad(fn) = lim inf α(fn)
≥ α(f) = H.dimJ(f) = 2.

�

Thus the main concern in proving continuity of dimension is to show H.dimJ(f)
is not too small. To do this, we show J(f) supports a limiting density without
atoms.

Proof of Theorem 11.2. (Dynamic convergence). By Theorem 9.1, we have J(fn)→
J(f) and fn is geometrically finite for all n � 0. Let µn be the canonical nor-
malized invariant density on J(fn); its dimension is δn = α(fn). Consider any
subsequence such that µn → ν in the weak topology on measures, and δn → δ.
We will show ν = µ, the canonical density for f of dimension α(f). This will
complete the proof of dynamic convergence, since it implies α(fn) → α(f) and
thus H.dimJ(fn)→ H.dimJ(f) by Theorem 6.1.

Now ν is an f -invariant density of dimension δ, supported on J(f) by conver-
gence of Julia sets. To prove µ = ν, it suffices by Corollary 6.6 to show ν has no
atom at any preperiodic point c ∈ J(f). To this end we will show for any ε > 0
there is a neighborhood V of c such that µn(V ) < ε for all n� 0.

Repelling points. We first illustrate the method of proof when c is a repelling
periodic point. Replacing f with an iterate of f , we can assume f(c) = c. Then
there are repelling fixed-points cn → c for fn, n� 0, and we can locally invert fn
and f to obtain a convergent sequence of attracting fixed-points (gn, cn)→ (g, c)
in F . By Theorem 10.1, after suitably restricting gn and g the Poincaré series for
(gn, cn, δn) converge uniformly.

Choose an fundamental annulus K ⊂ U(g) − {c}, within the domain of li-
nearization, such that {c} ∪

⋃∞
0 gi(K) covers a neighborhood V of c. Enlarging
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K slightly, we can also assume that

V ⊂ {cn} ∪
∞⋃
0

gin(K)

for all n� 0.
By uniform convergence of the Poincaré series, after shrinking V we can assume

Pδn(gn, V, x) < ε for all x ∈ K. Since µn has no atoms, νn(cn) = 0 and we find

µn(V ) ≤
∞∑
0

µn(gin(K) ∩ V ) =
∫
K

∑
gin(x)∈V

|(gin)′(x)|δn dµn(x)

=
∫
K
Pδn(gn, V, x) dµn(x) < εµn(K) ≤ ε (11.1)

for all n� 0. Since ε was arbitrary, ν has no atom at c.

Parabolic points. Now suppose c is a parabolic point with p petals. Replacing
f with an iterate we can assume f(c) = c and f ′(c) = 1. By assumption there are
fixed-points cn of fn such that (fn, cn) → (f, c) dominantly. Under assumption
(b) we also have

δ ≥ lim inf α(fn) > 2p(f)/(p(f) + 1) ≥ 2p/(p+ 1). (11.2)

Locally inverting fn → f as before we obtain, by Theorem 10.2, a sequence
(gn, cn, δn)→ (g, c, δ) with uniformly convergent Poincaré series.

Now on a small neighborhood of c, the maps (fn, cn)→ (f, c) are topologically
conjugate to the model maps (Tn,∞) → (T,∞) of Theorem 8.3. For the models
it is clear that under iteration, for any x in a small neighborhood U of ∞, either

(a) x is a repelling fixed-point; or
(b) the forward orbit of x escapes from U ; or
(c) the forward orbit of x stays in U and converges to an attracting or parabolic

fixed-point.

Thus the same holds true for iteration of fn and f on x in a small enough neigh-
borhood V of c.

Now for x ∈ V ∩J(fn), only (a) and (b) are possible. Choosing V small enough,
we can find a compact annulus K ⊂ U(g)− {c} such that any forward orbit of f
of type (b) must pass through K. Enlarging K slightly, we can assume the same
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is true for fn, n� 0. Then we have

V ∩ J(fn) ⊂ Rn ∪
∞⋃
0

gin(K)

where Rn is the set of fixed-points of fn. Shrinking V further, we can assume
Pδn(fn, V, x) < ε for x ∈ K. Since µn has no atoms and is supported on J(fn),
we have

µn(V ∩ J(fn)) ≤
∑

µn(V ∩ gin(K))

and we again conclude µn(V ) < ε for all n� 0 by (11.1).

Preperiodic points. Finally we treat the case of a preperiodic point b ∈ J(f).
Replacing f with an iterate, we can assume f(b) = c and c is a fixed-point as
above. Then we can lift the dynamics of f near c to a map g = f−1 ◦ f ◦ f
defined near b. From the fixed-points cn → c for fn above, we obtain bn → b with
fn(bn) = cn.

If b is a critical point, where f is locally of degree d, then the same is true
for bn by our assumption that critical relations are preserved. Thus we can form
gn = f−1

n ◦ fn ◦ fn and obtain a sequence

(gn, bn)→ (g, b)

in F .
Since (fn, cn) → (f, c) dominantly, (gn, bn) → (g, b) dominantly, by Proposi-

tion 7.4. We have g′n(bn)d = f ′n(cn), so g′n(bn)→ g′(b) radially (or horocyclically)
under assumption (a) (or (b)) of the Theorem. In the case of horocyclic conver-
gence, we also have δ > 2p(f)/(p(f)+1) ≥ 2p/(p+1) where p is the petal number
of (g, b). Thus Theorems 10.1 or 10.2 the Poincaré series for (gn, bn, δn) converge
uniformly. Since the density µn is gn-invariant, we obtain as above a neighborhood
V of b with µn(V ) < ε for all n� 0. �

12. Julia sets of dimension near two

In this section we show parabolic bifurcations lead to rational maps with
H.dim J(fn)→ 2.

The p-fold cover of a rank-two cusp. We begin by sketching the connection
between parabolic points, rank-two cusps, geometric limits and Julia sets with
dimJ(f) ≈ 2.
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For 0 < r < 1/2, consider the Hecke group Γr ⊂ Isom(H) generated by p(z) =
z + 1 and r(z) = −r2/z. The limit set Λr of Γr is a Cantor set contained in
R ∪ {∞}.

As r → 0, Λr squeezes down to the integers Z ∪ {∞}. Nevertheless the lower
bound

H.dim Λr > 1/2 (12.1)

holds for all r > 0.
The lower bound (12.1) comes from the parabolic subgroup in Γr generated

by p(z) = z + 1. To see it, recall that Λr carries an invariant conformal density
µ of dimension δ = H.dim Λr (cf. [28] and references therein). Let Λr(n) be the
part of the limit set closest to the integer n. Working in the spherical metric
σ = 2|dz|/(1 + |z|2), we have

µ(Λr) = µ

( ∞⋃
−∞

Λr(n)

)
=
∑
n

µ (pn(Λr(0))) � µ(Λr(0))
∑
n

|(pn)′(0)|δσ

�
∑
n

∣∣∣∣ |(pn)′(0)|
1 + |pn(0)|2

∣∣∣∣δ =
∑
n

1
(1 + n2)δ

;

since µ(Λr) is finite, we have δ > 1/2.
By the same reasoning, H.dim Λ(Γ) > 1 whenever a Kleinian group Γ has a

rank-two cusp.
Now let f(z) be a rational map such that z =∞ is a parabolic fixed-point with

p petals. We have seen in §8 that f behaves like the model map

T (z) = (zp + 1)1/p,

i.e. like a p-fold covering of a rank-one cusp. The parabolic behavior near∞ gives
the lower bound

H.dimJ(f) >
p

p+ 1

as in Theorem 3.1. As the number of petals tends to infinity, this lower bound
tends to one.

To obtain Julia sets with dimension near two, we consider rational maps fn → f
horocyclically such that the geometric limit of the dynamics contains a second
transformation g(z), defined near z =∞, commuting with f and behaving like

S(z) = (zp + τ)1/p,
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τ ∈ H. The dynamical system generated by the pair 〈S, T 〉 is a p-fold cover of a
rank-two cusp, and thus its critical exponent satisfies

δ(S, T ) ≥ 2p
p+ 1

·

A limit of the conformal densities µn for fn gives a density µ invariant under 〈f, g〉,
and we conclude that

lim inf H.dimJ(fn) ≥ 2p
p+ 1

− ε.

The ε arises because 〈g, f〉 is only (1 + ε)-quasiconformally conjugate to 〈S, T 〉.

Statement of the theorem. We now proceed to a formal treatment. Let c be
a fixed-point of a rational map f with f ′(c) = 1. Let fn → f algebraically, with
fixed-points cn → c. Let

λn = exp(Ln + iθn) = f ′n(cn)→ 1

with θn → 0. We say λn → 1 along the η-horocycle, if

θ2
n/Ln → η 6= 0

as n→∞. We allow both η > 0 and η < 0 (the fixed-points cn can be attracting
or repelling, but not indifferent.)

Theorem 12.1. (Dimension along horocycles) Suppose f has p petals at c, (fn, cn)
→ (f, c) dominantly, and λn → 1 along the η-horocycle. Then

lim inf α(fn) ≥ 2p
p+ 1

− ε

where ε = ε(η, f)→ 0 as η → 0.

Since α(fn) ≤ H.dimJ(fn) (Theorem 2.1), the lower bound above also holds
for lim inf H.dim J(fn). When the number of petals p is large and η is small, one
finds H.dimJ(fn) is close to 2 for n� 0.

To begin the proof, we study geometric limits of the model mappings of §8.
Let

Tn(z) = λn(zp + 1)1/p,

T (z) = (zp + 1)1/p
(12.2)
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be germs in G with U(Tn) = U(T ) = {z : |z| > R} for some R� 0.

Proposition 12.2. If λn → 1 along the η-horocycle, then there is a subsequence
of n such that T k(n)

n → S, where

S(z) = (zp + τ)1/p

is defined on a neighborhood of z =∞, k(n) = [2π/θn] and Im τ = −2πpη.

Proof. Consider the case p = 1. Then

T kn (z) = λknz +
λkn − 1
λn − 1

·

Now k(n) is chosen so that λk(n)
n → 1, so the first term above converges. Noting

that λn − 1 ∼ iθn, we have

λ
k(n)
n − 1
λn − 1

∼ k(n)Ln + i(k(n)θn − 2π)
iθn

= −i
[

2π
θn

]
Ln
θn

+
(
k(n)− 2π

θn

)
.

The imaginary term tends to −2πiη, and the real term is O(1), so after passing
to a subsequence the quotient above converges and T

k(n)
n → S(z) = z + τ with τ

as above.
For the case p > 1, write Tn(z) = (λpnzp+1)1/p and use the substitution w = zp

to reduce to the case p = 1. (Note that λpn → 1 along the pη-horocycle.) �

Commuting maps. The map S above belongs to the geometric limit of the
semigroup 〈Tn〉 generated by Tn. Note that S and T commute; indeed when
p = 1, S and T generate a rank 2 parabolic Kleinian group.

For general commuting univalent maps f, g ∈ G, define the critical exponents

δ(f, g, x) = inf{δ ≥ 0 :
∑
i,j

|(f igj)′(x)|δσ <∞}, and

δ(f, g) = inf
x
δ(f, g, x).

The sum above extends over all (i, j) ∈ Z2 such that f igj is defined.

Proposition 12.3. The critical exponent satisfies δ(S, T ) = 2p/(p+ 1).

Proof. We assume U(S) = U(T ) = {z : |z| > R} for some large R. First suppose
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p = 1; then δ(S, T,∞) =∞, while for x 6=∞ we have

∑
|(SiT j)′(x)|δσ �

∑ 1
(1 + |(SiT j)(x)|2)δ

�
∑ 1

(1 + |i+ jτ |2)δ
.

Since (SiT j)(x) is defined at least for all (i, j) in a half-plane in Z2, we have
δ(S, T, x) = 1. For p > 1, make the substitution w = zp; then σ(w)|dw| �
|dw|/|w|1+1/p for large w, so

∑
|(SiT j)′(x)|δσ �

∑(
1

|i+ jτ |

)(1+1/p)δ

and therefore δ(S, T ) = 2p/(p+ 1). �

Proof of Theorem 12.1. (Dimension along horocycles). Let δ = lim inf α(fn), and
choose normalized invariant densities µn for fn of dimension α(fn). Passing to a
subsequence, we can assume α(fn)→ δ and µn converges to an f -invariant density
µ of dimension δ.

Next we conjugate fn → f to the model mappings Tn → T of (12.2). To do
this, observe that the proof of Theorem 8.3 applies even when λn → 1 along the
η-horocycle, so long as η is sufficiently small. Indeed, the key point of the proof
is prevent recurrence of orbits of the renormalized mappings RFn, and for this
we only need log |R(λn)| large. Since log |R(λn)| ∼ 4π2/η by (8.4), we obtain the
following statement:

After passing to a subsequence, there is a (1 + ε)-quasiconformal
change of coordinates φn → φ, defined near c and sending (fn, cn) →
(f, c) to (Tn,∞)→ (T,∞). Here ε = ε(η, f)→ 0 as η → 0.

After passing to a further subsequence, we can assume T k(n)
n → S as above.

It follows that fk(n)
n (z) converges, on a neighborhood of c, to a holomorphic map

g(z) = (φ−1Sφ)(z). Since µn is fn-invariant, the density µ is also g-invariant.
Because c ∈ J(f), we can find x arbitrarily close to c in the support of µ.

Near c, the maps (f, g) behave like (S, T ), i.e. like the p-fold cover of a pair of
independent translations. Thus any x close enough to c is contained in a ball B
such that for |i|, |j| � 0, the images f igj(B) are disjoint, and f igj |B is univalent
with bounded distortion. Therefore we have∑

(diam(f igj)(B))δ �
∑

µ(f igj)(B) = µ
(⋃

(f igj)(B)
)
≤ 1.

The sums extends over (i, j) such that (f igj)(B) is defined and near c.
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On the other hand, setting y = φ(x) and A = φ(B), we have∑
|(SiT j)′(y)|δ(1+ε) �

∑
(diam(SiT j)(A))δ(1+ε)

= O
(∑

(diam(f igj)(B))δ
)
,

by (1 + ε)-Hölder continuity of φ−1. Therefore δ(1 + ε) ≥ δ(S, T ) = 2p/(p+ 1). It
follows that

lim inf α(fn) = δ ≥ 2p
p+ 1

− 2ε,

and since ε(η, f)→ 0 as η → 0, the proof is complete. �

Remarks. The proof above emphasizes the reduction to Kleinian groups. A
direct analysis along the lines of Proposition 3.2 would show δ(f, g) = 2p/(p+ 1),
and thus in Theorem 12.1 we can actually take ε = 0 for η sufficiently small.

Related lower bounds on H.dimJ(f), using Ecalle cylinders, appear in [38];
see also [43], [49].

13. Quadratic polynomials

In this section we illustrate our main results in the setting of quadratic polynomials.
Let

f(z) = λz + z2

where λ is a primitive pth root of unity. The parabolic point z = 0 attracts the
critical point z = −λ/2 of f , so f is geometrically finite. All periodic points of f
in C other than z = 0 are repelling.

We claim (f, 0) has p petals. Indeed, every petal must contain a critical value
of fp [7, Thm. 2.3], and fp has only p critical values in C.

Now let

fn(z) = λnz + z2

where λn → λ. Let us say λn → λ radially if λpn → 1 radially; equivalent, if
λn/λ→ 1 radially. We adopt a similar convention for horocyclic convergence.

Theorem 13.1. If λ is a primitive pth root of unity, and λn → λ radially, then
J(fn) → J(f), H.dimJ(fn) → H.dimJ(f), and the canonical densities satisfy
µn → µ in the weak topology on measures.
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Proof. Since f has p petals at z = 0, (fn, 0) → (f, 0) dominantly by Proposition
7.3, and the result follows from Theorem 11.2 on dynamic convergence. �

Theorem 13.2. If λ is a primitive pth root of unity, then there exist |λn| < 1
with λn → λ horocyclically, such that

lim inf H.dimJ(fn) ≥ 2p
p+ 1

·

Proof. By Theorem 12.1, for η = −1/n there exist λn on the η-horocycle with
|λn − 1| < 1/n and H.dimJ(fn) > 2p/(p+ 1)− εn, where εn → 0. Since η < 0 we
have |λn| < 1. �

Corollary 13.3. There exist |λn| < 1 such that

H.dim J(λnz + z2)→ 2.

Real quadratics. Finally consider the family of real quadratic polynomials

fc(z) = z2 + c.

Let cFeig = −1.401155 . . . denote the Feigenbaum point, i.e. the limit of the cascade
of period doublings as c decreases along the real axis.

Theorem 13.4. The function H.dimJ(fc) is continuous for c ∈ (cFeig, 1/4].

Proof. For c ∈ (cFeig, 1/4) it is known that fc has either an attracting cycle of
period 2n, or a parabolic point p of period 2n with two petals and multiplier −1
(see, e.g. [17]). In the attracting case, fc is expanding and continuity of dimension
is immediate (11.1). In the parabolic case, since the multiplier λ = −1, the point
(p, p) is a transverse intersection of the diagonal y = x with the graph of the
equation y = f2n

c (x) in R × R. By transversality, if cn → c in R, then there are
periodic points pn for fn(z) = z2 + cn with pn → p in R, and with multipliers

λn = (f2n)′(pn)→ −1

along the real axis. Thus fcn → fc radially, so H.dimJ(fcn) → H.dimJ(fc) by
Theorem 11.2.

Finally for c = 1/4, p = 1/2 is a parabolic fixed-point of fc with one petal and
multiplier λ = 1. If cn → c = 1/4 from below, then there are real fixed-points
pn → 1/2 with real multipliers λn = 1 −

√
1− 4cn, so λn → λ radially and the
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dimension is continuous in this case as well. �

Notes.
1. Shishikura has shown there exist (geometrically infinite) quadratic polynomials

with H.dim J(f) = 2 [38]. His argument shows directly that hyp-dim(f) = 2,
and from this he deduces that the Mandelbrot set M satisfies H.dim ∂M = 2.

2. Theorems 13.1 and 13.2 generalize to fn in any hyperbolic component of the
Mandelbrot set, with λn denoting the multiplier of the attracting cycle. Similar
results hold in the family fc(z) = zd + c, d > 1.

3. As c → 1/4 from above, the fixed-points of fc(z) = z2 + c are repelling and
their multipliers tend to 1 along a horocycle. Douady, Sentenac and Zinsmeister
have shown that H.dim J(fc) is discontinuous as c→ 1/4 from above [16]. The
Julia set varies discontinuously as well [13, Thm. 11.3].
Another example of discontinuity in the quadratic family is given in the next

section.
4. Continuity of H.dimJ(fc) as c→ 1/4 from below was also shown in [5].

Addendum, February 1998: Zinsmeister has recently given a simplified proof that
H.dim(∂M) = 2, based ideas similar to those we present above [49].

14. Examples of discontinuity

We conclude with two examples of rational maps such that

(a) fn → f algebraically, and
(b) f and fn are geometrically finite, but
(c) H.dim J(fn) does not tend to H.dimJ(f), even though
(d) J(fn)→ J(f) in the Hausdorff topology.

These examples show the necessity of the assumptions in Theorem 11.2 on con-
vergence of dimension.

I. Critical relations. The first example is a sequence of quadratic polynomials
such that fn → f radially but

H.dimJ(fn)→ 2 > H.dimJ(f).

This example shows the continuity of Hausdorff dimension fails if we drop the
assumption that critical relations are preserved in Theorem 11.2(a).

Let f(z) = z2 + c where c is a Misiurewicz point; that is, suppose the cri-
tical point z = 0 is strictly preperiodic. Then the Julia set is a dendrite with
H.dim J(f) < 2 by Corollary 6.2. (For a concrete example one can take c = −2,
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with J(f) = [−2, 2].)
Choose expanding maps gn(z) = z2 + an with connected Julia sets such that

H.dim J(gn) → 2 (using, e.g. Corollary 13.3). In [29, Thm. 1.3] we show one
can choose cn → c such that fn(z) = z2 + cn is renormalizable, with a suitable
restriction

f
k(n)
n : Un → Vn

quadratic-like and (1+ εn)-quasiconformally conjugate to gn, where εn → 0. Since
J(fn) contains a nearly conformal copy of J(gn), we have H.dimJ(fn)→ 2.

Since gn is expanding, fn is expanding, and fn → f radially because f has
no parabolic points. Finally J(fn) → J(f) because the Julia set J(z2 + c) varies
continuously at each Misiurewicz point c [13, Cor. 5.2].

In this example, any weak limit µ of the canonical invariant densities µn on
J(fn) must be an atomic measure living on the inverse orbit of the critical point
z = 0 (Corollary 6.6). The atom of µ at z = 0 is the limit of the Hausdorff
measures on small, renormalized copies of J(gn) in J(fn).

II. Horocyclic convergence. The second example is a sequence of quadratic
rational maps such that fn → f horocyclically, preserving critical relations, but

lim H.dim J(fn) = 1 > H.dimJ(f) = 1/2 + ε. (14.1)

This example shows continuity of the Hausdorff dimension fails if we drop the
condition H.dimJ(f) > 2p/(p+1) in Theorem 11.2(b). We obtain such an example
for any ε with 0 < ε < 1/2.

For r > 0, let

f(z) = z + 1− r

z
·

The map f is geometrically finite, c =∞ is a parabolic fixed-point with one petal,
and J(f) ⊂ R̂ = R ∪ {∞} is a Cantor set with H.dimJ(f) < 1. (Note that
f−1(R̂) = R̂, so Corollary 6.3 applies.)

As r varies from 0 to ∞, H.dimJ(f) varies continuous from 1/2 to 1; in fact
for r small,

H.dimJ(f) =
1 +
√
r

2
+O(r)

(see the discussion of quadratic Blaschke products in [26]). So for 0 < ε < 1/2 we
can choose r such that H.dim J(f) = 1/2 + ε.
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We claim there is a sequence λn → 1 horocyclically such that (14.1) holds for

fn(z) = λnz + 1− r

z
·

This is immediate from Theorem 12.1. Indeed, for each η = 1/n there is a point λn
on the η-horocycle such that H.dim J(fn) ≥ 1− ε(η, f) and |λn − 1| < 1/n. Since
ε(η, f)→ 0 as η → 0, we have lim inf H.dim J(fn) ≥ 1. But if lim sup H.dim J(fn)
were to exceed 1, we would have H.dim J(f) > 1 by Theorem 11.2, which is
impossible since J(f) ⊂ R̂. Thus we deduce (14.1). Note that fn → f dominantly
since f has only one petal.

Since the critical points z = ±
√
−r for f are both attracted to z = ∞, the

sequence fn → f vacuously preserves critical point relations. By Theorem 9.1,
J(fn)→ J(f), and fn is geometrically finite (in fact expanding) for n� 0.

In this example, any weak limit µ of the canonical invariant densities µn on
J(fn) must be an atomic measure living on the inverse orbit of z = ∞ under
f . The Hausdorff measure on J(fn) concentrates on small spiral arms near the
parabolic point z =∞ and its inverse images.

A similar example in the setting of Kleinian groups is presented in [28, §8].
There we construct geometrically finite groups with Γn → Γ strongly, such that
the limit sets converge in the Hausdorff topology but

H.dim Λ(Γn)→ 1 > H.dim Λ(Γ) = 1/2 + ε.

The group Γ is Fuchsian and its limit set Λ(Γ), like J(f) above, is a Cantor set
lying on a circle.
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[35] F. Przytycki, Conical limit set and Poincaré exponent for iterations of rational functions.
Trans. Amer. Math. Soc. 351 (1999), 2081–2099.



Vol. 75 (2000) Hausdorff dimension and conformal dynamics II 593
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