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Abstract. For any real number x let fxg � xÿ bxc be the fractionary part of x. In this
note, we study the real algebraic numbers b such that

lim
n!1fb

ng � 0:

1. Introduction. For any real number x let fxg � xÿ bxc be the fractionary part of x. In
this paper, we study the real numbers b such that

lim
n!1fb

ng � 0:�1�

One may immediately notice that there are two obvious families of real numbers b satisfying
condition (1); namely:

1) a topological family consisting of the numbers b 2 �0; 1� and
2) a number-theoretical family consisting of the numbers b 2 Z:

A natural question to ask is whether there exist other real numbers b except for the ones
belonging to the families 1� or 2� above which satisfy condition (1). Our main result is that
the answer to the above question is no if one looks only at numbers b which are algebraic.
That is, we have the following:

Theorem. If b is a real algebraic number satisfying condition �1�, then either b 2 �0; 1� or
b 2 Z:

In particular, our result gives a negative answer to a question raised by G. Kuba (see [2],
page 162).

For any real number x let jjxjj be the distance from x to the nearest integer to it. By a well-
known theorem of Pisot and Vijayaraghavan (see Chapter VIII in [1]), we know that when
b > 1 is an algebraic number, then lim

n!1 jjb
njj � 0 if and only if either b is an integer or b is a

PV-number; that is, b 2j Z is an algebraic integer such that all its conjugates lie in the unit
disc fzj jzj < 1g. From this theorem, it follows that if b is a PV-number, then the cluster
points of the set of values of fbngn ^ 0 are contained in the set f0; 1g. What our
Theorem shows is that this set of cluster points of fbngn ^ 0 can never consist of the

Arch. Math. 74 (2000) 269±275
0003-889X/00/040269-07 $ 2.90/0
� Birkhäuser Verlag, Basel, 2000 Archiv der Mathematik

Mathematics Subject Classification (1991): 11P21, 11K06.

Financial support from the Alexander von Humboldt Foundation is gratefuly acknowledged.



point 0 alone. Notice that it can obviously consist of the point 1 alone (take for example b to
be the square of the golden section) or of both points 0 and 1 (take b to be the golden
section).

2. Statements of Preliminary Results. In this section, we state two lemmas whose proofs
are given in the Appendix.

Lemma 1. Let d ^ 2 be a positive integer. Assume that x1; . . . ; xd are all the roots of an
irreducible polynomial F 2 Q�X� of degree d. Assume that for some n0 2 N, some proper
non-empty subset I � f1; . . . ; dg and some complex numbers l1; . . . ; ld one hasP

i2I
lixn

i 2 Q for all n ^ n0:�2�

Then, li � 0 for all i 2 I.

Lemma 2. Let d ^ 1 be a positive integer. Let c � fx1; . . . ; xdg be a set of non-zero complex
numbers which is closed under conjugation. Then, there exist infinitely many positive integers
n such that Pd

i�1
xn

i > 0:�3�

3. The Proof of the Theorem. Assume that b is a real algebraic number satisfying
condition (1). Suppose that b 2j �0; 1� [ Z. Notice that b 2j �ÿ1; 0�. Indeed, if b 2 �ÿ1; 0�,
then

fb2n�1g � 1� b2n�1ÿ! 1;

which contradicts (1). Thus, jbj > 1. We first assume that b > 1 and we will come back to the
negative b case later.

Since the sequence fbngn converges to zero, it follows that the sequence jjbnjjn converges
to zero as well. By the Pisot-Vijayaraghavan Theorem, it follows that b is either a positive
integer or b is a PV-number. Since we have excluded the integers, it follows that b is a
PV-number. In particular, all its conjugates lie in the unit disc fzj jzj < 1g.

For any n ^ 0 let kn � bbnc and en � fbng. Then,

bn � kn � en for all n ^ 0:�4�
Let d � �Q�b� : Q�. Let F 2 Z�X� be a non-zero polynomial of degree d having b as a root.
Denote the roots of F by x1; . . . ; xd with the convention that x1 � b. Write

F�X� � a0Xd � � � � � ad 2 Z�X�:
Since

a0bn�d � � � � � adbn � bnF�b� � 0 for all n ^ 0;

it follows that

�a0kn�d � � � � � adkn� � �a0en�d � � � � � aden� � 0 for all n ^ 0:
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Hence,

a0en�d � � � � � aden 2 Z for all n ^ 0:�5�
Since enÿ! 0, it follows that there exists n0 2 N such that

ja0en�d � � � � � adenj < 1 for all n ^ n0:�6�
From formulae (5) and (6), it follows that

a0en�d � � � � � aden � 0 for all n ^ n0:�7�
In particular, the sequence �en�n^n0

is a linearly recurrent sequence of order d. It�s
characteristic equation is exactly F�X� � 0, whose roots are x1; . . . ; xd. Hence,

en �
Pd
i�1

lixn
i for all n ^ n0:�8�

Notice that l1 � 0. Indeed, since jxij < 1 for all i � 2; . . . ; d, it follows that

lim
n!1 j

Pd
i�2

lixn
i j � 0:�9�

If l1 �j 0, then since x1 � b > 1, it would follow that the sequence

en � j
Pd
i�1

lixn
i j ^ jl1jbn ÿ jPd

i�2
lixn

i j

tends to infinity, which is impossible since en 2 �0; 1�. Hence, l1 � 0 and

en �
Pd
i�2

lixn
i for all n ^ n0:�10�

Writing en � bn ÿ kn, we get

xn
1 �

Pd
i�2
�ÿli�xn

i � bn ÿ en � kn 2 Z � Q for all n ^ n0:�11�

However, since x1; . . . ; xd are the roots of a polynomial with integer coefficients it follows, by
the Newton-Euler formulae, thatPd

i�1
xn

i 2 Q:�12�

Subtracting (11) from (12), we getPn
i�2
�li � 1�xn

i 2 Q for all n ^ n0:�13�

By Lemma 1, it follows that li � ÿ1 for all i � 2; . . . ; n. Hence,

en � ÿ
Pd
i�2

xn
i for all n ^ n0:�14�

Notice that the set fxiji � 2; . . . ; dg is closed under conjugation. By Lemma 2, we know
that there exist infinitely many positive integers n for whichPd

i�2
xn

i > 0:
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By formula (14), such an integer n ^ n0 would imply that en < 0, which is impossible since
en 2 �0; 1�. Hence, there are no such PV-numbers b in this case.

Assume now that b < ÿ1. By the previous arguments, it follows that b2 is an integer.
Suppose that b is not an integer. Write b � ÿ ���

d
p

for some positive integer d which is not a
square and let b1 �

���
d
p

. Since bn � bn
1 2 Z for all n ^ 0 and since the sequence fbngn

converges to zero, it follows that the sequence fbn
1gn converges to 1. In particular, the

sequence jjbn
1 jjn converges to zero. Since b1 > 1, by the Pisot-Vijayaraghavan Theorem, it

follows that b1 is a PV-number, which is certainly not the case because b1 and ÿb1 � b are
conjugate.

The Theorem is therefore proved.

4. Appendix: The proofs of the preliminary results.

The P r oof o f Le m ma 1 . We may assume, without restricting generality, that
I � f1; . . . ; lg for some l < d and that li �j 0 for all i � 1; . . . ; l. The assertion of Lemma 1 is
obvious when l � 1. Indeed, in this case, since l1 �j 0, it follows that

x1 � l1xn0�1
1

l1xn0
1
2 Q;

which contradicts the fact that x1 is a root of an irreducible polynomial with rational
coefficients of degree d ^ 2. Assume now that d > l ^ 2. Let

un �
Pl

i�1
lixn

i for all n ^ n0:�15�

Let s1; s2; . . . ; sl denote the fundamental symmetric polynomials evaluated in the numbers
x1; x2; . . . ; xl; that is

s1 �
Pl

i�1
xi;

s2 �
P

1% i<j% l
xixj;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sl �
Ql
i�1

xi:

�16�

The sequence �un�n ^ n0
is a linearly recurrent sequence satisfying the recurrence

un�l ÿ s1un�lÿ1 � � � � � �ÿ1�lslun � 0 for all n ^ n0:�17�
We now look at the equations

ÿs1un�lÿ1 � � � � � �ÿ1�lslun � ÿun�l for n � n0; n0 � 1; . . . ; n0 � l ÿ 1:�18�
We regard equations (18) as a linear non-homogeneous system of equations in the unknowns
ÿs1; . . . ; �ÿ1�lsl. Notice that it suffices to show that the system (18) is non-singular. Indeed,
assume that the system (18) is non-singular. It follows, from Kramer©s rule and from the fact
that un 2 Q for all n ^ n0, that si 2 Q for all i � 1; . . . ; l. In this case, the polynomial

F�X� � Xl ÿ s1Xlÿ1 � � � � � �ÿ1�lsl
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is a non-zero polynomial in Q�X� having x1; . . . ; xl as roots. This contradicts the fact that
x1; . . . ; xd are all the roots of an irreducible polynomial with rational coefficients.

In order to prove that system (18) is non-singular, notice that its determinant is equal to:

l1xn0
1 � � � � � llx

n0
l l1xn0�1

1 � � � � � llx
n0�1
l . . . . . . l1xn0�lÿ1

1 � � � � � llx
n0�lÿ1
l

l1xn0�1
1 � � � � � llx

n0�1
l l1xn0�2

1 � � � � � llx
n0�2
l . . . . . . l1xn0�l

1 � � � � � llx
n0�l
l

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

l1xn0�lÿ1
1 � � � � � llx

n0�lÿ1
l l1xn0�l

1 � � � � � llx
n0�l
l . . . . . . l1xn0�2lÿ2

1 � � � � � llx
n0�2lÿ2
l

����������

����������

�

l1xn0
1 l2xn0

2 . . . . . . llx
n0
l

l1xn0�1
1 l2xn0�1

2 . . . . . . llx
n0�1
l

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

l1xn0�dÿ1
1 l2xn0�dÿ1

2 . . . . . . llx
n0�dÿ1
l

����������

����������
�

1 x1 . . . . . . xlÿ1
1

1 x2 . . . . . . xlÿ1
2

. . . . . . . . . . . . . . . :

1 xl . . . . . . xlÿ1
l

����������

����������
� Ql

i�1
li

� � Ql
i�1

xi

� �n0 Q
1% i<j% l

�xi ÿ xj�2 �j 0:

The P r o of o f L em m a 2 . Write

un �
Pd
i�1

xn
i :�19�

Then,

u2n �
Pd
i�1

x2n
i :

If some of the xi�s are real, then x2n
i > 0. Thus, we may assume that all the xi�s are complex

non-real. Write d � 2l and assume that xl�i � xi for i � 1; . . . ; l. Write

xj � �j eiqj for j � 1; . . . ; l:
Then,

un � 2
Pl

i�1
�n

i cos �nqi�:�20�

Let V be the Q-vector space generated by f1; q1=p; . . . ; ql=pg. We may assume that none of
the numbers qi=p is rational. Indeed, suppose that qi � qip for some qi 2 Q and some
i � 1; . . . ; l. Let Di be the denominator of qi. Then,

x2nDi
i � x2nDi

l�i � 2�2nDi
i cos �2n Diqip� � 2�2nDi

i > 0:

Hence, we may replace the sequence �un�n^0 by

vn � 2
P
j�j i
�2nDi

j cos �2n Diqj�:

and continue by induction on l. Let s� 1 be the dimension of V over Q. Clearly,
2 % s� 1 % l � 1. Up to reindexing, we may assume that 1; q1=p; . . . ; qs=p is a basis of V
over Q. Write

qi

p
�Ps

j�1
aij

qj

p

� �
� bi for i � s� 1; . . . ; l;�21�
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where aij and bi are rational for j � 1; . . . ; s and i � s� 1; . . . ; l. Let B be the greatest
common denominator of the bi�s. We may replace qi by 2Bqi. This means that we look only
at the subsequence �u2Bn�n^0. In this case,

2Bqi

p
�Ps

j�1
aij

2Bqj

p

� �
� 2Bbi for i � s� 1; . . . ; l:�22�

Since the argument of a complex number is defined only modulo 2p, it follows that we may
assume that bi � 0 for i � s� 1; . . . ; l. Thus, formula (21) becomes:

qi

p
�Ps

j�1
aij

qj

p

� �
for i � s� 1; . . . ; l:�23�

Let

L � max 1;
Ps
j�1
jaijj

( )
s�1% i% l

 !
:�24�

Let D be the greatest common denominator of all the aij�s. Choose e 2 0;
1

4DL

� �
. Since

1; q1=p; . . . ; qs=p are linearly independent over Q, it follows that 1;
q1

2pD
; . . . ;

qs

2pD
are also

linearly independent over Q. By a well-known theorem of Kronecker, it follows that there
exist infinitely many n�s such that

nq1

2pD

� �
; . . . ;

nqs

2pD

� �� �
2 �0; e�s:�25�

Assume that n is such that containment (25) holds. For j � 1; . . . ; s write

nqj

2pD
� kj � ej where kj 2 Z and 0 < ej < e <

1
4DL

:�26�

Hence,

nqj � 2pDkj � 2pDej and 2pDej <
p

2L
%

p

2
�27�

when j � 1; . . . ; s. Moreover, notice that for i � s� 1; . . . ; l one has

nqi �
Ps
j�1

aijnqj � 2p
Ps
j�1

aijDkj

 !
� 2pD

Ps
j�1

aijej

 !
:�28�

Clearly,
Ps
j�1

aijDkj 2 Z. Moreover,

2pD
Ps
j�1

aijej

 !�����
����� < 2pDe

Ps
j�1
jaijj

 !
% 2pDeL <

p

2
:�29�

From formulae (27), (28) and inequality (29), it follows that cos �nqi� > 0 for all i � 1; . . . ; l.
Hence, un > 0, whenever n is such that containment (25) is satisfied.

Not e (Added in the Proof): The referee observed that the main idea behind the proof of
Lemma 2 is similar to a method developed by TuraÂn in [3]. We thank the referee for pointing
this out to us.
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