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Abstract. Let G be a finite group acting linearly on the polynomial algebra C�V�. We
prove that if G is the semi-direct product of cyclic groups of odd prime order, then the
algebra of polynomial invariants is generated by its elements whose degree is bounded
by 5

8 jGj. As a consequence we derive that C�V�G is generated by elements of degree
% 3

4 jGj for any non-cyclic group G. This sharpens the improved bound for Noether�s
Theorem due to Schmid.

1. Introduction. Let G be a finite group acting linearly on a finite dimensional complex
vector space V, i.e. V is a right G-module. Consider the induced action of G on the
polynomial algebra C�V�, which is the direct sum of the symmetric tensor powers of V. For
any f 2 C�V� and g 2 G we put f g for the image of f under g. We study

C�V�G � ff 2 C�V� j 8g 2 G f g � fg;
the algebra of polynomial invariants. It is a graded subalgebra of C�V�, and Noether�s
Theorem [2] asserts that C�V�G is generated as an algebra by its elements whose degrees are
not greater than the order of G. Following [5] we put

b�G;V� � min fd j C�V�G is generated by its elements of degree % dg
and

b�G� � max fb�G;V� j V is a finite dimensional representation of Gg:
As it is pointed out in [5, Section 6], a theorem of Weyl implies that b�G� � b�G;Vreg�,
where Vreg denotes the regular representation of G. It follows that the number b�G� does not
change if we replace the base field C by any field of characteristic zero.

The bound in Noether�s Theorem is sharp for cyclic groups. However, Schmid [5] (see also
[4]) refined it by showing that b�G� % jGj ÿ 1 if G is non-cyclic. In the present paper we
improve this result as follows.

Theorem 1.1. If G is not cyclic, then b�G� % 3
4 jGj.

Re ma r k . The cases of Klein�s four group Z2 � Z2 and the quaternion group of order 8
(see [5, 10.1. Lemma]) show that c � 3

4 is the best possible constant in a bound b�G� % cjGj
for non-cyclic G.
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The proof is based on the reduction steps developed in [5]. Our main new contribution is a
better bound for b�G� when G is the semi-direct product of cyclic groups of odd order. In
particular, we prove the following:

Proposition 1.2. Let p; q be odd primes with q dividing pÿ 1, and denote by Zp�jZq the
non-commutative semi-direct product of the cyclic groups of order p and q. Then we have the
inequality b�Zp�jZq� % 5

8 pq.

2. The bound for the semi-direct product of cyclic groups. Throughout this section p; q are

odd primes, k � pÿ 1
2q

is a positive integer, G � Zp�jZq. The group G has the presentation

G � ha; b j ap � bq � 1; babÿ1 � ari;
where r is a primitive qth root of unity modulo p, fixed for the whole section. Let V be the
regular representation of G. We shall study C�V�G. As we noted in the introduction,
b�G� � b�G;V�. Recall that up to isomorphism G has q one-dimensional representations
and k conjugate pairs of q-dimensional representations. For the purpose of our proof we
choose a linear basis

fx1; . . . ; xq; yi;n; j; zi;n; j j i � 1; . . . ; k; n; j � 1; . . . ; qg
in V such that the generators a; b act on this basis as follows:

± xa
j � xj, xb

j � hjxj, where h is a complex primitive qth root of unity;

± ya
i;n; j � zr jÿ1

i yi;n; j, where zi is a primitive pth root of unity depending on i (and

fzr jÿ1

i ; �zr jÿ1

i j i � 1; . . . ; k; j � 1; . . . ; qg are all the primitive pth roots of unity);
± yb

i;n; j � yi;n; j�1 � j � 1; . . . ; qÿ 1�, yb
i;n;q � yi;n;1;

± za
i;n; j � zÿr j

i zi;n; j;

± zb
i;n; j � zi;n;j�1 � j � 1; . . . ; qÿ 1�, zb

i;n;q � zi;n;1.

Note that x1; . . . ; xq span pairwise non-isomorphic one-dimensional irreducible repre-
sentations of G. For a fixed i and n

SpanCfyi;n; j j j � 1; . . . ; qg
is a q-dimensional irreducible G-invariant direct summand of V, and

SpanCfzi;n; j j j � 1; . . . ; qg
is its conjugate representation. The index i parametrizes the conjugate pairs of isomorphism
classes of q-dimensional irreducible representations, and for a fixed i we have q isomorphic
summands indexed by n. Observe that we have chosen the basis so that the eigenvalue of a
on zi;n; j is the complex conjugate of the eigenvalue of a on yi;n; j�1 (yi;n;1, when j � q). This
translation between the corresponding indices may seem unnatural now, but it will be
relevant later (see the proof of Lemma 2.1).

The set of monomials in the above variables is denoted by M�V�. Consider a monomial

v � xa1
1 � � � xaq

q

Q
i;n; j

y
gi;n; j

i;n; j

Q
i;n; j

zdi;n; j

i;n; j ;
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and define its degrees as

gi
j�v� �

Pq
n�1
�gi;n; j � di;n; j�; �i � 1; . . . ; k; j � 1; . . . ; q�:

We call a monomial v a brick, if there exists an i 2 f1; . . . ; kg such that v � y1 � � � yq, where
yj 2 fyi;n; j; zi;n; j j n � 1; . . . ; qg for j � 1; . . . ; q.

Lemma 2.1. A brick is either a-invariant or it has an a-invariant submonomial of degree
two.

P roof. Let v � y1 � � � yq be a brick, and denote by J the subset of indices j for which
yj 2 fyi;n; j j n � 1; . . . ; qg. Then we have

ya
j �

zr jÿ1

i yj; if j 2 J;

z
ÿr j
i yj; if j 2j J:

(
It is easy to see that if v has no a-invariant subproduct of degree two, then the map
j 7! jÿ 1 �mod q� stabilizes J: It follows that J is either empty or J � f1; . . . ; qg. In both cases
v itself is a-invariant. h

Now we introduce a partial ordering on M�V�. First for any monomial v 2M�V� and
i 2 f1; . . . ; kg we define the ith degree counting series of v as

mi
d�v� � jfj j gi

j�v� � dgj �d � 0; 1; 2; . . .�:
Let v; v0 be two monomials. We say that v is smaller than v0 (v � v0) if the total degree of v is
smaller than the total degree of v0, or if they have equal total degrees, and there exists an
s 2 f1; . . . ; kg such that mi

d�v� � mi
d�v0� for i � 1; . . . ; sÿ 1, d � 0; 1; 2; . . . , and the series

�ms
0�v�; ms

1�v�; ms
2�v�; . . .� is lexicographically smaller than �ms

0�v0�; ms
1�v0�; ms

2�v0�; . . .�.
We call an a-invariant monomial v expressible if

v� vb � � � � � vbqÿ1 2 C �w� wb � � � � � wbqÿ1 j w 2M�V�;wa � w;w � v�:
The above definition is motivated by the fact that C�V�G is generated as an algebra by the
elements w� wb � � � � � wbqÿ1

as w runs over the set of a-invariant monomials.
For v 2M�V� and i 2 f1; . . . ; kg we define the number

hi�v� � min fd j mi
d�v� �j 0; mi

d�1�v� � 0g:
In other words, put the degrees gi

1�v�; . . . ; gi
q�v� in an increasing sequence. Then hi�v� is the

first member of this sequence such that the next member jumps at least by two (if there is no
such a jump then hi�v� is the largest degree in the sequence).

Lemma 2.2. Let v be an a-invariant monomial with a non-trivial decomposition v � wz;
such that wa � w, za � z, and z contains a variable different from x1; . . . ; xq. Let s 2 f1; . . . ; kg
be the minimal index for which z contains a variable from fys;n; j; zs;n; j j n; j � 1; . . . ; qg.
Assume that

gs
j �z� > 0 if and only if gs

j �v� > hs�v�,
and gs

j �w� ^ hs�v� � 1 if gs
j �v� > hs�v�.

Then v is expressible.
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P roof. Consider

�w� wb � � � � � wbqÿ1��z� zb � � � � � zbqÿ1� � Pqÿ1

t;u�0
wbt

zbu � Pqÿ1

t;u�0
�wzbt �bu

:�1�

We claim that wzbt � wz for t � 1; . . . ; qÿ 1. Since z and zbt
do not depend on variables

contributing to mi
d�v� for i < s, we have

mi
d�wzbt � � mi

d�w� � mi
d�v� if i < s:

The conditions on w and z imply that �ms
0�w�; . . . ; ms

h�w�� � �ms
0�v�; . . . ; ms

h�v��, where
h � hs�v�.

Since q is a prime number, the non-empty set of indices fj j gs
j �v� > hs�v�g is not stabilized

by the map j 7! j� t (mod q). Therefore there exists a variable y of zbt
such that for the

unique index l with gs
l �y� � 1 we have f :� gs

l �v� % h, thus

gs
l �wzbt � > gs

l �w� � f :

It follows that �ms
0�wzbt �; . . . ; ms

f �wzbt �� is lexicographically smaller than �ms
0�w�; . . . ; ms

f �w�� �
�ms

0�v�; . . . ; ms
f �v��. This means that wzbt � wz � v, and wz� �wz�b � � � � � �wz�bqÿ1

is
expressible by (1). h

Corollary 2.3. Let v be an a-invariant monomial. We decompose it as a product v � v0w,
where w does not contain any variable xj, v0 is a product of variables xj and bricks (see
Lemma 2.1), and mi

0�w� �j 0 for i � 1; . . . ; k (i.e. w is not divisible by any bricks). If
deg�w� ^ k�1� 2� � � � � �qÿ 1�� � p, then v is expressible.

P roof. The assumption on deg�w� implies that gi
1�w� � � � � � gi

q�w� > 0� 1�
2� � � � � �qÿ 1� holds for some i, and therefore there is a jump by two in the increasing
sequence of the degrees 0 � gi

p�1��w� % � � � % gi
p�q��w�. Let s 2 f1; . . . ; kg be minimal with

hs�w� < maxfgs
j �w� j j � 1; . . . ; qg:

Let w1 denote a submonomial of w such that

gi
j�w1� �

gi
j�w�; if i < s;

gs
j �w�; if i � s and gs

j �w� % hs�w�;
hs�w� � 1; if i � s and gi

j�w� > hi�w�;
0; otherwise.

8>>>><>>>>:
For any j with gs

j �w� > hs�w� take a variable y of
w
w1

with gs
j �y� � 1, and denote by w2 the

product of these variables. Then we have w � w1w2w0. It is easy to see that
deg�w1w2� % s�1� 2� � � � � �qÿ 1�� � 1, hence d � deg�w0� ^ pÿ 1 by the assumption on
deg�w�. Now write w0 � y1 � � � yd as a product of variables. We have ya

j � zcj yj, where z is a
complex primitive pth root of unity, and cj are positive integers smaller than p. Consider the
two-element subsets Cj � f�cj; �0g of the additive group of the residue classes modulo p.
Recall the Cauchy±Davenport Lemma [1], which states that for any subsets C;D of the
additive group of the residue classes modulo p we have that the cardinality of their sum
C �D is at least minfp; jCj � jDj ÿ 1g. It follows that C1 � � � � � Cd contains all the residue
classes modulo p, which means that w0 has a submonomial w3 such that w2w3 is a-invariant.
Thus we get a decomposition of v as a product of a-invariant monomials v � �v0w1w4��w2w3�
such that the conditions of Lemma 2.2 are fulfilled, and so v is expressible. h
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P roof o f Pr opos i t ion 1 . 2 . The algebra C�V�G is generated by v� vb � vb2

� � � � � vbqÿ1
as v runs over the set of a-invariant monomials in M�V�. Moreover, by

definition it is clearly sufficient to take v from the set of monomials which are not
expressible. The proof will be concluded by giving an upper bound for the degree of a non-
expressible monomial. We shall use the fact that if an a-invariant monomial v is the product
of more than q non-trivial a-invariant monomials, then v� vb � � � � � vbqÿ1

is contained in the
algebra generated by the elements w� wb � � � � � wbqÿ1

with wa � w and deg�w� < deg�v�
(c.f. [5, 4.2. Lemma, line 5]), in particular, v is expressible.

Let v be a non-expressible a-invariant monomial. Then we write it as

v � xi1 � � � xis v1 � � � vtw;�2�
where xij 2 fx1; . . . ; xqg, v1; . . . ; vt are bricks, w does not contain more a-invariant variables
and mi

0�w� �j 0 for i � 1; . . . ; k. By Corollary 2.3 we have deg�w� % k�1� � � � � �qÿ 1���
pÿ 1 � A, so (2) implies

deg�v� % s� tq�A:�3�
On the other hand, by Lemma 2.1 each vj contains an a-invariant submonomial v

0
j , so we

have

v � xi1 � � � xis v
0
1 � � � v0tw0:�4�

Let u denote the maximal number such that w0 is the product of u non-trivial a-invariant
monomials. Since v cannot be written as a product of more than q non-trivial a-invariant
monomials, we have

s� t � u % q:�5�
By the Cauchy±Davenport Lemma any monomial of degree ^ p contains non-trivial
a-invariant submonomials, hence we have deg�w0� % up, and (4) implies

deg�v� % s� tq� up:�6�
If up ^ A, then we use the bound (3), while if up % A, then we use the bound (6). The
biggest value with (3) is obtained when u � dA=pe, s � 0 and t � qÿ u. Similarly, the biggest
value with (6) is obtained when u � bA=pc, s � 0, t � qÿ u.

So we conclude from (3), (5) and (6) that

b�G� % minfq�qÿ dA=pe� �A; q�qÿ bA=pc� � bA=pcpg;�7�
where dÿe (bÿc, resp.) denotes the upper (lower, resp.) integral part of the rational number
in the argument. Note that the difference of the two numbers on the right hand side of (7) is
Aÿ pbA=pc ÿ q.

In the remaining part of the proof we demonstrate that 5
8 is the best upper bound for

b�G�
jGj

which can be derived from (7). Indeed, since A � 1
2 kq�q� 3�, we have

q� 2
4

<
A
p
�

kq
q� 3

2
2kq� 1

<
q� 3

4
:
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Hence if q � 1 mod 4, then
A
p

� �
� q� 3

4
. One can easily check that the number in (7)

coming from (6) gives the better bound, which is

b�G�
jGj %

3q� 1
4p

� qÿ 1
4q

%
5q2 ÿ 1
8q2 � 4

<
5
8

(k � 1 yields
5q2 ÿ 1
8q2 � 4

, which tends to 5
8 as q goes to infinity).

If q � 3 mod 4, then
A
p

� �
� q� 5

4
, and the number in (7) coming from (3) gives

b�G�
jGj %

q qÿ q� 5
4

� �
� kq�q� 3�

2
pq

%
5q� 1
8q� 4

<
5
8
: h

3. Noether�s bound in general. Let G be a finite group. Then b�G� % b�G=N�b�N� for any
normal subgroup N of G, and b�G� % b�H��G : H� for any subgroup H of G, where �G : H�
denotes the index of H in G (c.f. [5, 3.1., 3.2. Lemma]). Therefore by induction it is sufficient
to prove Theorem 1.1 for the direct products of two cyclic groups (which are non-cyclic), and
for non-abelian groups whose all proper subquotients are cyclic, and these non-abelian
groups are precisely the semi-direct products of groups of prime order (see for example
[5, 3.4. Proposition]).

Now we have

(i) b�Zp�jZ2� � p� 1 % 2
3 2p for any odd prime p by [5, 7.1. Theorem].

(ii) If a is a divisor of b, then b�Za � Zb� � a� bÿ 1 by [3] (see [5, Section 2, 8] why
Olson�s Theorem is relevant here), and obviously a� bÿ 1 % 3

4 ab. We would like to
note that [5, 8.2. Conjecture] is false in general, the first counterexample was given
in [6].

(iii) The only missing case is that of the groups Zp�jZq, which is covered by our
Proposition 1.2.

Thus b�G� % 3
4 jGj holds for any non-cyclic group G.

Ac knowl ed ge m e nt . We thank PaÂ lfy PeÂter PaÂ l for his helpful comments on the
manuscript.
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