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Abstract. Let W be the Weyl group of a connected reductive group over a finite field.
It is a consequence of the Borel-Tits rational conjugacy theorem for maximal split tori
that for certain reflection subgroups W1 of W (including all parabolic subgroups), the
elements of minimal reflection length in any coset wW1 are all conjugate, provided w
normalises W1. We prove a sharper and more general result of this nature for any finite
Coxeter group. Applications include a fusion result for cosets of reflection subgroups
and the counting of rational orbits of a given type in reductive Lie algebras over finite fields.

1. Background and statement of results. Let W be a finite Coxeter group acting as a
reflection group on the Euclidean space V of dimension `. We refer to [1] for background.

De f i n i t i o n 1 . 1. The reflection length n�w� of an element w 2W is the minimal integer
n such that w � r1r2 � � � rn, where the ri are reflections in W.

The function n�w� is clearly conjugacy invariant and it is well known (see [3, Lemma 2] or
[6], for example) that for any element w 2W, we have

n�w� � dim �im�1ÿ w��:�1:2�
When W is the Weyl group of a connected reductive group G which is defined and split (see
[2]) over a finite field Fq, the function n�w� arises in the study of rationality properties of
tori. For background about the following matters the reader is referred to [7] and the
references there. Let F : G! G be the Frobenius endomorphism associated with the
Fq-structure on G. We refer to an F-stable subvariety of G as rational and denote by HF the
set of F-fixed points of any variety H on which F acts. It is well-known that the
GF -conjugacy classes of rational (that is, F-stable) maximal tori of G are parametrised by the
conjugacy classes of W. Denote by T0 a fixed maximal torus of G which is split over Fq. For
any group H defined over Fq, denote by r�H� its Fq-rank (the dimension of any of its
maximal Fq-split tori). Thus r�G� � r�T0� � dim �T0�. For any element w 2W, we say that
the rational maximal torus T is w-twisted and write T � Tw if T � gT0gÿ1 for some g 2 G
such that gÿ1F�g� � _w 2 NG�T0� where _wT0 � w 2W � NG�T0�=T0. The set fw 2W j T is
w-twistedg is a conjugacy class of W.

If Tw is a w-twisted rational maximal torus, then we have (see [7, (5.5)])

r�Tw� � `ÿ n�w��1:3�
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where ` � r�G�. Now suppose x is a semisimple element of GF. The connected centraliser
CG�x�� is a reductive group defined over Fq and the rational conjugacy of the maximally
split maximal tori of CG�x��, proved in [2], has the following simple (but not obvious)
consequence for the length function.

Proposition 1.4. Let W be the Weyl group of a connected reductive group G over Fq.
Suppose W1 % W is the Weyl group of the connected centraliser of a semisimple element of
GF (e.g. W1 could be any parabolic subgroup of W ± see Section 2 below). Let w be an element
of the normaliser in W of W1. Then any two elements of the coset wW1 which have minimal
reflection length in the coset are conjugate in W.

We shall explain how Proposition 1.4 follows from the work of Borel and Tits in the next
section, but our main purpose in this note is to prove an elementary but more general result
concerning reflection groups, of which Proposition 1.4 is a consequence.

Theorem 1.5. Let W be a finite Coxeter group acting on a Euclidean space V. Let F be the
corresponding root system, with P a chosen base of F. Let s be an orthogonal transformation
of V such that sP � P. Then, for any element w 2W, the following conditions are equivalent

(1) dim �im�1ÿ sw�� is minimal.
(2) There is an element x 2W such that sw � xÿ1sx.
(3) sw stabililises some simple system in F.

We shall see below (see Section 2 or (4.4) (1)) that Proposition 1.4 follows easily from
Theorem 1.5, with W (of Theorem 1.5) replaced by W1. Moreover, Theorem 1.5 shows that
the elements of minimal reflection length in wW1 are actually conjugate by an element of W1.
If W1 is any reflection subgroup of W, the choice of a simple system P for W determines a
length function for W and it is the case (see Section 4 below) that each coset wW1 contains a
unique shortest element with respect to this length function. If w normalises W1, our
theorem identifies the conjugacy class of elements of minimal reflection length in wW1 as
that of this shortest element in the coset (see Corollary 4.2 below).

2. Rational tori. In this section we indicate how (1.4) is related to the results of [2]. We
maintain the notation of Section 1 and assume that the derived group G0 is simply connected.
By a theorem of Steinberg [8 §8] this implies that for any element t 2 T0, the centraliser
CW�t� is a reflection subgroup of W. It is the case that all parabolic subgroups of W arise in
this way, as may be seen from the results in [4], or from the fact that the corresponding
stabilisers in the Lie algebra case are all the parabolic subgroups of W.

Let x be a semisimple element of GF. If T is any rational maximal torus in CG�x��, then
there exists an element g 2 G such that T � gT0gÿ1, and gÿ1F�g� is a representative in
NG�T0� of w 2W � NG�T0�=T0. Moreover x 2 T, so that y � gÿ1xg 2 T0. Recall that since
T0 is split over Fq, the F-action on W is trivial.

Proposition 2.1 (cf. [7, (5.5)]). Maintaining the notation above, let W1 be the centraliser in
W of y. Then W1 is a reflection subgroup of W (see the remarks above) and we have

(1) The W-orbit of y 2 T0 is determined by x, independently of the choice of T or g:
(2) y is fixed by the endomorphism w � F of T0 (given by t 7!wF�t�wÿ1).
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(3) w normalises W1.
(4) fu 2W j y 2 Tu�F

0 g � wW1.

P roof. The first part follows because any two elements of T0 which are conjugate in G
are conjugate by an element of W, while the second part is a simple computation. For the
third part, observe that since F�y� � wÿ1yw,

wÿ1W1w � CW�wÿ1yw� � CW�F�y�� 8 F�CW�y�� � F�W1� �W1:

The fourth part follows from the second, since �u � F��y� � �w � F��y� if and only if
wÿ1u 2 CW�F�y�� �W1. h

Corollary 2.2. The coset wW1 7 W of Proposition 2.1 is determined up to conjugacy in W
by x.

This follows immediately from Proposition 2.1.

Proposition 2.3. Maintain the above notation. The subset S1 of W consisting of those
elements u such that CG�x�� contains a u-twisted rational maximal torus of G coincides with
the union S2 of those conjugacy classes which are represented in wW1.

P roof. Suppose u 2 S1. Then x 2 hT0hÿ1 for some h 2 G with hÿ1F�h� 2 uT0. By
Corollary 2.2, u is conjugate to an element of wW1; hence u 2 S2. Conversely, let u 2W1. To
complete the proof we show that there is a wu-twisted maximal torus which contains x.

Since CG�y�� has Weyl group W1 we may choose _u 2 F�CG�y��� with _uT0 � u. Now
F�g� _uF�g�ÿ1 2 F�gCG�y��gÿ1� � F�CG�x��� 7 CG�x��, and by Lang�s Theorem we may
choose f 2 CG�x�� with fÿ1F�f � � F�g� _uF�g�ÿ1. Writing k � f g and T1 � kT0kÿ1, we have
x � fxfÿ1 � kykÿ1 2 T1, so that T1 7 CG�x��. Moreover,

kÿ1F�k� � gÿ1fÿ1F�f �F�g� � gÿ1F�g� _u � _w _u;

which shows that T1 is rational and wu-twisted. h

We are now able to give the

P roof o f P r opos i t ion 1 . 4. Given a subgroup W1 of W as specified in the statement of
Proposition 1.4 and an element w 2 NW�W1�, there is an element y 2 T0 with centraliser W1

in W and, provided q is sufficiently large, which we may assume, y 2 Tw�F
0 . Let g 2 G satisfy

gÿ1F�g� � _w. Then let x � gygÿ1. By [2, TheoreÁme 4.21], the maximally split tori in CG�x��
are conjugate in CG�x��F and hence a fortiori in GF . But, by (1.3) and Proposition 2.3, the
GF -conjugacy classes of these correspond to the conjugacy classes of W which are
represented in wW1 and have minimal reflection length among those classes. Hence there is
a unique such class. h

3. Proof of the main theorem. We shall require the following two elementary results.

Lemma 3.1. Let V be a finite dimensional vector space over a field, equipped with a non-
degenerate symmetric bilinear form � ; �. If q is any isometry of V, then im�1ÿ q� � ker �1ÿ q�?,
where S? denotes the perpendicular subspace of the subset S of V.
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The proof is easy and left to the reader. The second result is

Proposition 3.2. Let V be as in Lemma 3.1 and suppose g ��j 1� is an isometry of V. Assume
the characteristic of the ground field is not two. Let a be a non-isotropic vector in im�1ÿ g�
and let ra be the involutory reflection in the hyperplane orthogonal to a. Then

dim �im�1ÿ rag�� � dim �im�1ÿ g�� ÿ 1:

Pr oof. By hypothesis, there is an element u 2 V such that a � �1ÿ g�u. Then

0 �j �a; a� � �uÿ gu; uÿ gu� � 2�u; u� ÿ 2�u; gu�:
Moreover

�1ÿ rag�u � uÿ ra�gu�

� uÿ gu� 2
�gu; a�
�a; a� a

� a� 2
�gu; u�
�a; a� ÿ

�gu; gu�
�a; a�

� �
a

� aÿ a

� 0:

It follows that gu � rau, whence �1ÿ rag�a � 0. Now

im�1ÿ rag� � im �1ÿ ra� � ra�1ÿ g�� � 7 ra im�1ÿ g� � im�1ÿ g�
since im�1ÿ ra� � spanfag 7 im�1ÿ g�. But by Lemma 3.1, a 2j im�1ÿ rag�, since
a 2 ker �1ÿ rag� and a is not isotropic. Thus a is a non-zero vector which is in im�1ÿ g�,
but is not in im�1ÿ rag�. It follows that dim �im�1ÿ rag�� < dim �im�1ÿ g��.

On the other hand �1ÿ rag� � ra�ra ÿ g� and since ra is a reflection, the rank of �ra ÿ g�
differs from that of �1ÿ g� by at most 1. Hence the result. h

We are now in a position to give the

P roof o f Theor e m 1 . 5 . The equivalence of conditions (2) and (3) is clear from the
transitivity of the action of W on the set of simple systems. Suppose we know that (1) implies
(2). Then it follows that the smallest value of dim �im�1ÿ sw�� is dim �im�1ÿ s��, whence
(2) implies (1). Thus the proof is reduced to showing that (1) implies (2).

Assume w 2W is such that dim �im�1ÿ sw�� is minimal. By hypothesis, s permutes
the elements of P, whence conjugation by s permutes the generators of W. So s nor-
malises W.

Let D � fu 2 V j �u; a� ^ 0 for all a 2 Pg and recall that V � [
t2W

tD. Write

K � ker �1ÿ sw�. We wish to show that sw is conjugate to s by an element of W. Now
since a real vector space is not the union of a finite number of proper subspaces, there is an
element t 2W such that tÿ1D \K spans K. If we write w1 � sÿ1tswtÿ1 2W, then
sw1 � t�sw�tÿ1, so that K1 � ker �1ÿ sw1� � tK. Moreover D \K1 spans K1. We shall
show that w1 � 1.

If w1 �j 1, there exists a 2 P such that wÿ1
1 a 2 Fÿ. Write b � sa 2 P. Then for all

u 2 D \K1, we have

0 % �b; u� � �b; �sw1�u� � ��wÿ1
1 sÿ1�b; u� � �wÿ1

1 a; u� % 0:
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Hence b 2 �D \K1�? � K?1 � im�1ÿ sw1� (by Lemma 3.1). It follows from Proposition 3.2
that

dim �im�1ÿ rbsw1�� < dim �im�1ÿ sw1��;
contradicting the minimality of the right hand side. Hence w1 � 1, so that sw � tÿ1st, which
completes the proof of the Theorem. h

4. Application to reflection subgroups. Suppose that W is a finite Coxeter group on V, that
F is its root system in V and that F� and P are corresponding sets of positive and simple
roots in F. Let W1 be any reflection subgroup of W; the root system F1 of W1 is a subsystem
of F and it follows from [5, (3.3) and (3.4)] that F�1 � F� \F1 is a positive system in F1.
Denote by P1 � F�1 the corresponding simple system in F1. There is a length function `�w�
on W which is determined by the simple system P and Corollary (3.4)(ii) of [5] asserts that

(4.1) Each coset wW1 of W1 in W contains a unique element s with `�s� minimal.

Our main result Theorem 1.5 may be interpreted in this context as follows.

Corollary 4.2. Suppose that W is a finite Coxeter group on V with root system F � V. Let
W1 be any reflection subgroup of W and let w 2 NW�W1�. Then s 2 wW1 has minimal
reflection length in wW1 if and only if there exists a simple system P � F such that s is the
unique element of the coset wW1 with `�s� minimal (cf. (4.1)). Such elements are all conjugate
under W1.

P roof. Let P � F be a simple system and suppose s 2 wW1 with `�s�minimal. It follows
from [5, (3.4)] that sP1 � F� and since s normalises W1, sP1 � F1. So sP1 is a simple
system in F1 which is contained in F� \F1 � F�1 , whence sP1 � P1. We may now apply
Theorem 1.5, with W replaced by W1 and P by P1 to deduce that n�s� is minimal.

If s0 2 wW1 is such that n�s0� is minimal, then by Theorem 1.5, s0 is conjugate under W1

to s, which proves the remaining assertions. h

The following fusion result is an immediate consequence of Corollary 4.2.

Corollary 4.3. Suppose that W is a finite Coxeter group on V with root system F � V and
simple system P � F. Let W1 be any reflection subgroup of W. If s 2 NW�W1� is the shortest
element in sW1, then any W-conjugate of s which lies in sW1, is W1-conjugate to s.

Concluding Remarks.

(1) The last sentence of the statement Corollary 4.2 is stronger than Propositon 1.4.
(2) In Corollary 4.3, s could equally be assumed to have minimal reflection length in the

coset sW1. This form of the statement would eliminate specific reference to any
simple system P.

(3) The statement Corollary 4.3 may be reformulated in terms of commutators. For any
subgroup H of W, write �s;H� for the commutator set fsÿ1hÿ1sh j h 2 Hg. Then in
the the notation of Corollary 4.3, �s;W� \W1 � �s;W1�.

(4) The first part of the statement Corollary 4.2 is clearly false if the assumption that w
normalises W1 is dropped, as may be seen in the example when W1 � hri is generated
by a simple reflection. If s is another simple reflection which does not commute with r,
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then the element of rsW1 which has minimal length is rs, which has reflection length 2.
But rsr has reflection length 1.

(5) If W1 is a reflection subgroup of the finite Coxeter group W as in Corollary 4.2, it is
not always true that the elements of minimal reflection length in a coset wW1 are
conjugate even in W, without the assumption that w normalises W1. For example if W
is a Weyl group of type B4, write its elements as monomial matrices with non-zero
entries �1 and take W1 to be the reflection subgroup (of type A4

1) generated by the
reflections

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

26664
37775;

0 ÿ1 0 0

ÿ1 0 0 0

0 0 1 0

0 0 0 1

26664
37775;

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

26664
37775;

1 0 0 0

0 1 0 0

0 0 0 ÿ1

0 0 ÿ1 0

26664
37775:

The elements w �
1 0 0 0
0 0 1 0
0 ÿ1 0 0
0 0 0 1

2664
3775 and

1 0 0 0
0 0 ÿ1 0
0 ÿ1 0 0
0 0 0 ÿ1

2664
3775 are in the same

coset wW1; both have minimal reflection length 2 in the coset, but they have different
eigenvalues whence they are not conjugate.

(6) In [7], formulae were given for the number of rational semi-simple orbits of a given
ªtypeº (a type is defined by a conjugacy class in W) in the Lie algebra G of G (G as in
Section 1) (see, e.g. [7, Theorem (5.6)]). These formulae involve the number of
conjugates of s in the coset wW1 (notation as in the previous remark). This number is
easily seen to be equal to the cardinality of the commutator set �s;W1� �
fsÿ1uÿ1su j u 2W1g which in turn is equal to jW1=CW1�s� j, where CW1�s� denotes
the set of elements of W1 which commute with s.
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