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Abstract. We give a necessary condition for a convex body in Rn to have minimal
volume in the class of all convex sets with prescribed constant brightness.

Such a condition permits us to prove that in the class of all convex bodies of revolution
with given constant brightness the unique element of minimal volume is a body described
by Blaschke as an example of a non-spherical solid of constant brightness.

1. Introduction. In this paper we deal with the class BB of convex bodies in Rn having
prescribed constant brightness. The simplest example of a body of this kind is a ball.
Constant brightness means that the �nÿ 1�-dimensional volume of the orthogonal projection
onto a hyperplane does not change under rotations of the body.

The first example of a non-spherical three-dimensional convex body of constant
brightness was given by Blaschke in 1916 ([1], pp. 151 ± 154). This body, which we call the
Blaschke-Firey body, is a body of revolution, whose principal section reminds one of a
Reuleaux triangle.

Inspired by the work of Blaschke, Firey ([4], 1965) introduced a special addition for
convex bodies, called the Blaschke addition. This new operation involves the area measure
of the bodies and is based on the existence and uniqueness theorems for the Minkowski
problem (see [7] Sections 7.1 and 7.2).

Modulo the group of translations, under the Blaschke addition the class BB can be seen as
a compact convex subset of the whole class of convex bodies with the classical Hausdorff
topology.

The volume, as a continuous function, has a maximum and a minimum in BB. Since each
body in BB has the same surface area, we deduce from the isoperimetric inequality that the
ball with prescribed brightness is the unique body of maximum volume.

As far as the minimum of the volume is concerned, only the solution in the two-
dimensional case is available; in 1914 Lebesgue ([5]) proved the minimality property of the
Reuleaux triangle.

According to the Kneser-SuÈ ss inequality (see [7], Theorem 7.1.3), a certain power of the
volume is a concave function with respect to the Blaschke addition. It follows from the
Kneser-SuÈ ss inequality and its equality condition that a convex body of minimal volume in
BB must be indecomposable in the Blaschke sense. This argument leads to the necessary
condition proved in [2].
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In Section 3 we strengthen such a condition and we eliminate some elements of BB from
the list of possible minimizers. It turns out that in the class of bodies of revolution all the
possible minimizers can be represented in a suitable parametric form. By using such a
representation, in Section 4, we show that the unique (up to a rigid motion) rotationally
symmetric minimizer in BB is just the Blaschke-Firey body.

The author wishes to express his gratitude to Prof. S. Campi, A. Colesanti and the referee
for many valuable advices.

2. Preliminaries. Let us start with recalling some basic results from the Brunn-Minkowski
theory we shall use. For more details we refer to [7].

We denote by kn the class of all compact convex sets of Rn with nonempty interior. For
every K 2kn the support function of K is defined by:

hK�z� � sup
x2K
hx; zi for z 2 Snÿ1;

where Snÿ1 � fz 2 Rn : kzk � 1g and h�; �i, k � k denote the usual scalar product and the
induced norm.

The support function of a translate of K by a vector v 2 Rn satisfies
hK�v�z� � hK�z� � hz; vi, for every z 2 Snÿ1.

It can be seen that hK is a Lipschitz function; this implies the existence of the spherical
gradient rShK almost everywhere on Snÿ1.

If hK is differentiable at z, both hK�z� and rShK�z� uniquely determine the point of K
lying on the support plane to K with exterior normal vector z. This point is the reverse image
of z through the Gauss map, thus the reverse Gauss map is well defined almost everywhere
on Snÿ1.

For every Borel subset w of Snÿ1 we define the area measure of K 2kn, SK�w�, as the
�nÿ 1�-dimensional Hausdorff measure of the reverse image of w through the Gauss map.

Such a measure is a finite non-negative Borel measure, having support with affine
dimension n and satisfying the relation:�

Snÿ1

z dSK�z� � 0:

Conversely, if a measure m, defined on Snÿ1, verifies all the above conditions then, by the
Minkowski existence and uniqueness theorem, there exists a unique (up to translation)
convex body K such that SK � m.

If B denotes the unit ball of Rn, we see that SB coincides with hnÿ1, the �nÿ 1�-
dimensional Hausdorff measure.

The Blaschke sum of two convex bodies K and L is the body whose area measure is
SK � SL. We shall write r �K#s � L, r; s ^ 0, to denote the convex body having area measure
equal to rSK � sSL. Such a body is only determined up to a translation. Therefore, when we
use the Blaschke addition, it is meant that we consider the equivalence classes with respect
to the group of translations.

An interesting aspect of the Blaschke addition is its link with the brightness function of
convex bodies. We recall that by the brightness of K in the direction v we mean the �nÿ 1�-
dimensional Hausdorff measure of the orthogonal projection of K onto v?. Let us denote it
by V�Kjv?�.
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By the projection formula the brightness function at v can be expressed as follows:

V�Kjv?� �
1
2

�
Snÿ1

jhv; zij dSK�z� :

This formula relates the brightness of K to SK. In particular it shows that the class BK of
all convex bodies having the same brightness function as K can be seen as a convex subset of
kn endowed with the Blaschke addition.

Furthermore, since the subspace spanned by the functions z7!jhz; vij, v 2 Snÿ1, is dense in
the space of all real even continuous functions on Snÿ1, we have that two centered convex
bodies of dimension n having the same brightness function must coincide.

The projection formula even shows that V�Kjv?� is a mixed volume. Since we use just a
little part of the results on mixed volumes, we shall introduce some of them in the shortest
(even if unnatural) way.

For K; L 2kn, let us define the mixed volume V1�K;L� by means of

V1�K;L� � 1
n

�
Snÿ1

hL�z� dSK�z�:

The Minkowski inequality asserts that

V1�K;L� ^ V�K�nÿ1
n V�L�1n;

where equality holds if and only if K and L are homothetic. Setting L � K we deduce that
V1�K;K� � V�K�. Thus the volume can be expressed in terms of both the support function
and the area measure of the body.

Among all the consequences of the last inequality we are interested in the Kneser-Süss
inequality:

V�r �K#�1ÿ r� � L�nÿ1
n ^ rV�K�nÿ1

n � �1ÿ r�V�L�nÿ1
n ; 8r 2 �0; 1� ;

where equality holds if and only if K and L are homothetic. Hence a positive power of the
volume is a concave function on kn. Since BK is a convex set, it admits a unique body of
maximum volume (up to translation); furthermore we realize that it is 1

2 � �K#ÿK�, the only
centrally symmetric element of BK.

On the other hand, the bodies of minimum volume in BK must be indecomposable with
respect to the Blaschke addition. The class of all elements which are indecomposable in BK

is denoted by IK. A characterization of the elements of IK in terms of the support of their
area measures can be found in [2].

In the next section we shall give a further necessary condition for a body of constant
brightness to be of minimal volume.

3. Minimizers in BB. Now we deal with the problem of finding the bodies of minimal
volume in the class of all convex bodies of prescribed constant brightness in Rn.

As we have seen, every minimizer in BB is an element of IB. For our aim the following
characterization proved in [2] is needed.

Theorem 1 (see [2], Theorem A). A convex body K belongs to IB if and only if there exists
a Borel subset EK of Snÿ1 such that

(i) EK is antisymmetric, i.e. z 2 EK if and only if ÿz2j EK, 8z 2 Snÿ1;
(ii) SK�w� � 2 hnÿ1�EK \ w�, for every Borel subset w of Snÿ1.
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Consequently, the volume of a body K 2 IB is given by
2
n

�
EK

hK�z� dz, where EK is an

antisymmetric subset of Snÿ1 and dz denotes integration with respect to hnÿ1. In order to
minimize the volume we expect to integrate hK over the subset of Snÿ1 where its values are
as small as possible.

More precisely we assert:

Theorem 2. Let K be a minimizer in BB. Then there exists an open set E � Snÿ1 and a
vector v 2 Rn such that

(i) SK�w� � 2 hnÿ1�E \ w�, for every Borel subset w of Snÿ1;
(ii) hKÿv�z� < hKÿv�ÿz� if and only if z 2 E:

In order to prove this theorem we need some preliminary lemmas.

Lemma 1. Let K 2 IB. Then

hnÿ1� z 2 Snÿ1 : hKÿv�z� � hKÿv�ÿz�� 	� � 0 ;

for every v 2 Rn.

P roof. Set F0
Kÿv � z 2 Snÿ1 : hKÿv�z� � hKÿv�ÿz�� 	

and suppose hnÿ1�F0
K� > 0. We

know that there exists an antisymmetric subset EK � Snÿ1, such that

SK�w� � 2 hnÿ1�w \ EK� ; for every Borel subset w of Snÿ1:

Since F0
K is symmetric, F0

K \ EK has positive measure. According to the Lebesgue-Besicovitch
differentiation theorem (see [3], Theorem 1, p. 43), applied to the indicator function of
F0

K \ EK and the restriction of hnÿ1 to @Snÿ1, there exist z0 2 Snÿ1 and r > 0 such that

hnÿ1�B�z0;�� \ F0
K \ EK�

hnÿ1�B�z0;���
^

2
3
; 8� 2 �0; r�;�3:1�

where B�z;r� is the set of all points of Snÿ1 whose spherical distance from z is less than r.
We denote by g : Snÿ1 ! @K the reverse of the Gauss map, which is a well defined map

almost everywhere on Snÿ1.
From the Lipschitz property of hK, it follows rShK�u� � ÿrShK�ÿu� a.e. in F0

K (see [3],
Corollary 1, p. 84); moreover, if hK is differentiable at u, then hK�u� and rShK�u� uniquely
determine g�u�. Hence we obtain

g�u� � ÿg�ÿu�; a.e in F0
K:�3:2�

Consider now the set I � g�B�z0;r�� \ ÿg�B�ÿz0;r��. We can write

hnÿ1�I� ^
�3:2�
hnÿ1�g�B�z0 ;r� \ F0

K�� � SK�B�z0;r� \ F0
K�

� 2hnÿ1�B�z0 ;r� \ F0
K \ EK� ^

�3:1� 4
3
hnÿ1�B�z0;r��:

On the other hand we have:

hnÿ1�I� %hnÿ1�g�B�ÿz0 ;r��� � SK�B�ÿz0 ;r�� � 2hnÿ1�B�ÿz0;r� \ EK�

� 2hnÿ1�B�z0 ;r�� ÿ 2hnÿ1�B�z0;r� \ EK� %
�3:1� 2

3
hnÿ1�B�z0;r��:

This contradiction concludes the proof of Lemma 1. h

492 P. GRONCHI ARCH. MATH.



Lemma 2. For every K 2 IB there exists a vector v 2 Rn such that�
FKÿv

z dz � 0;

where FKÿv � z 2 Snÿ1 : hKÿv�z� < hKÿv�ÿz�� 	
.

P roof. From the previous lemma we deduce that FKÿv is not empty for every v 2 Rn.

Let us define the map f : Rn ! knÿ1B, where knÿ1 is the �nÿ 1�-dimensional volume of
the unit ball in Rnÿ1, by

f �x� � �
FKÿx

z dz:

We have to prove that fÿ1�0� is not empty.
Let fxmg be a sequence in Rn converging to x. Outside of the set

fz 2 Snÿ1 : hKÿx�z� � hKÿx�ÿz�g, the indicator functions of the sets FKÿxm converge to the
indicator function of FKÿx. The previous lemma and Lebesgue�s bounded convergence
theorem then yield the continuity of f .

Moreover, there exists a constant l > 0 such that

hf �x�; xi > 0 ; 8x 2 @lB � fx 2 Rn : kxk � lg:�3:3�
To see this, let rB be a ball containing K; from the inequality hK�z� � hK�ÿz� ^ 0 we deduce

fz 2 Snÿ1 : hz; xi > rg � fz 2 Snÿ1 : hrBÿx�z� < 0g � FKÿx ; 8x 2 Rn :

So FKÿx approaches the hemisphere fz 2 Snÿ1 : hz; xi > 0g as kxk tends to infinity. This
implies (3.3).

From (3.3) and the PoincareÂ-Bohl theorem (Theorem 2.1.5 in [6]) it follows that the
degree of f at 0 relative to int �lB� is 1 as the degree of the identity map. Therefore
(Theorem 2.1.1 in [6]), fÿ1�0� is not empty. h

We notice that the vector of Lemma 2 is unique. This can be shown without difficulty, but
the proof is not carried out, since it is not needed.

P roof o f The or e m 2 . We take E � FKÿv and v the vector of Lemma 2. We have to
prove that EK and FKÿv coincide up to a negligible set.

Let L be the convex body whose area measure is given by

SL�w� � 2hnÿ1�w \ FKÿv� ; for every Borel subset w of Snÿ1:

Since FKÿv is, up to a negligible set, an antisymmetric subset of Snÿ1, Theorem 1 implies
that L 2 IB; besides we can write

V�K� � 2
n

�
EK

hKÿv�z� dz ^
2
n

�
FKÿv

hKÿv�z�dz � V1�L;K�:

From the Minkowski inequality we deduce V�K� ^ V�L�; since K is a minimizer, K and L
must be homothetic, that is EK and FKÿv coincide up to a negligible set. h

4. Bodies of revolution. In this section we shall see how Theorem 2 permits us to find the
unique (up to rigid motion) body of minimum volume in the class RB of all bodies of
revolution in BB.
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Let us try to give Theorem 2 a geometrical meaning. Henceforth we suppose v � 0.
Consider the convex hull MK of the union of K and ÿK, that is

MK � conv �K [ �ÿK�� :
Clearly MK is a centrally symmetric convex body. We state that it coincides with SK, the
closure of the convex hull of the singular points of both K and its reflection. Obviously
SK �MK, thus it is enough to prove that SK contains K.

Since ÿFK is an open subset of Snÿ1, Lemma 4.6.2 in [7] implies that the reverse Gauss
map carries every point of ÿFK in at least one singular point of K. Then for every direction
u 2 ÿFK we have hK�u� % hSK�u�; on the other hand, for u 2 FK, we have
hK�u� < hÿK�u� % hSK�u�. Lemma 1 implies hK % hSK almost everywhere on Snÿ1, and
thus K � SK.

Such a requirement is clear in the two-dimensional case. Indeed BB is the class of convex
sets of constant width, IB contains the class of Reuleaux polygons, while it is not hard to
prove that conditions (i) and (ii) of Theorem 2 are only satisfied by the regular Reuleaux
polygons.

Let us turn to the rotational case. It is evident how Theorem 1 and Theorem 2 can be
rephrased in this particular case.

We call n-dimensional Blaschke-Firey body the unique (up to rigid motion) element K of
RB whose area measure is given by

SK�w� � 2hnÿ1�w \ EK� ; for every Borel subset w of Snÿ1;

where

EK � z 2 Snÿ1 : hz; ui >
1ÿ

��
1
4

nÿ1
q

hz; ui

8<:
9=; ;

for some u 2 Snÿ1. Simple calculations show that
�

Snÿ1

z dSK�z� � 0.

In spite of the seemingly artificial definition this appears to be the most natural extension
of both the Reuleaux triangle and the body constructed in [1] to higher dimension. The n-
dimensional Blaschke-Firey body satisfies conditions (i) and (ii) of Theorem 2 and MK is the
revolution of a hexagon.

We state the following:

Theorem 3. The n-dimensional Blaschke-Firey body is the unique (up to rigid motion)
element of minimal volume in the class RB �kn.

P roof. Let K be an element of minimum volume in RB �kn. Consider a plane
through its axis of revolution and fix on it an orthogonal system �O; x; y� so that the origin is
just the symmetry center of MK (that is v in Lemma 2), and the y-axis is the axis of
revolution of K.

We call K0, MK0 and F 0K the intersections of the relevant sets with the xy plane. As an
open subset of S1, F 0K is the union of at most countably many connected open arcs.
Parametrize S1 by the angle formed with the y-axis and let �f1;f2� be a connected
component of F 0K. Suppose that 0 < f1 < f2 % p

2. The reverse Gauss map carries �f1;f2�
onto an arc g joining two points, P1 and P2, of @K0. Notice that the reverse Gauss map is well
defined everywhere on S1 since K0 is strictly convex.
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Rotating in Rn the arc g around the y-axis, gives a C1-regular and strictly convex
hypersurface G, whose surface area measure is twicehnÿ1. We shall prove that G is analytic.

Let �x�t�; y�t��, t 2 �f1;f2�, be the parametrization of the arc g induced by the reverse
Gauss map. Assuming G of class C2, we have y0�t� � ÿtan �t�x0�t� and we deduce a condition
on its gaussian curvature which corresponds to the following differential equation

cos t sin nÿ2t
x0�t�xnÿ2�t� �

1
2
:

Solving this system of differential equations in �f1;f2� with initial conditions x�f2� � x2,
y�f2� � y2 yields

~g�t� � �2 sin nÿ1t ÿ a� 1
nÿ1; y2 �

�f2

t

2 sin nÿ1t

�2 sin nÿ1tÿ a�nÿ2
nÿ1

dt

 !
;�4:1�

where a is determined by a � 2 sin nÿ1f2 ÿ xnÿ1
2 and where xi, yi are the coordinates of Pi,

i � 1; 2.
Form the surface ~G of revolution with ~g as meridian. The projections of ~G and G on y?

have the same �nÿ 1�-dimensional volumes and then 2 sin nÿ1f1 ÿ a � xnÿ1
1 . Therefore,

conv G and conv ~G have the same area measures, hence by Minkowski�s uniqueness theorem
they are translates of each other. This implies g � ~g.

Consider now the upper part of K n conv G. Estimating its brightness in the direction y by
means of the projection formula, we find

2knÿ1sin nÿ1f1 ^ knÿ1xnÿ1
1 ;

hence the constant a in (4.1) is non-negative and the function x�t� is concave in �f1;f2�.
Conditions (i) and (ii) of Theorem 2 imply that the point Q, intersection of the tangent

lines at P1 and P2, belongs to ÿK0. Furthermore the segments P1Q and P2Q are in the
boundary of MK0.

Let xQ be the x-coordinate of Q. We have

y1 ÿ y2 ��xQ ÿ x1�tan f1 � �x2 ÿ xQ�tan f2

� x�t� ÿ xQ
ÿ �

tan t
���t�f2

t�f1

� �f2

f1

x�t� ÿ xQ

cos 2t
dt � �f2

f1

x0�t�tan t dt

� �f2

f1

x�t� ÿ xQ

cos 2t
dt ÿ �f2

f1

y0�t� dt:

Therefore �f2

f1

x�t�
cos 2t

dt � �f2

f1

xQ

cos 2t
dt:�4:2�

Since x�t� is a concave increasing function in �f1;f2�, we can write�f2

f1

x�t�
cos 2t

dt � 1
2

�f2

f1

x�t�
cos 2t

� x�f1 � f2 ÿ t�
cos 2�f1 � f2 ÿ t�

� �
dt

� 1
2

�f2

f1

x�t�
cos 2t

� x�f1 � f2 ÿ t�
cos 2t

� x�f1 � f2 ÿ t�
�
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� 1
cos 2�f1 � f2 ÿ t� ÿ

1
cos 2t

�� �
dt

^
1
2

�f2

f1

x1 � x2

cos 2t
dt � 1

2

�f1�f2
2

f1

�x�f1 � f2 ÿ t� ÿ x�t��

� 1
cos 2�f1 � f2 ÿ t� ÿ

1
cos 2t

� �
dt ^

1
2

�f2

f1

x1 � x2

cos 2t
dt :

Therefore, from (4.2), we get

xQ ^
x1 � x2

2
:�4:3�

Let R be the projection on the x-axis of the singular points of MK0. The set R divides �0; 1�
in at most countably many intervals. Inequality (4.3) implies that every interval is larger than
any other on its right-hand side. Hence R has no cluster points in the interior of �ÿ1; 1�.

Thus in the half-plane fx > 0g there are two singular points of MK0 at a minimal distance
from the axis of revolution. Let Q1 be the one with positive y-coordinate and call r1 its
x-coordinate. We can assume Q1 2 K0.

The point Q1 is the endpoint of an analytic arc of @K0 which cuts orthogonally the y-axis.
Then such an arc is a circular arc of radius 2

1
nÿ1, and we deduce r1 �

���
2nÿ1
p

sin a1, where
�ÿa1;a1� is a connected component of F 0K.

Now we set r0 � a0 � 0 and we label the x-coordinates of the singular points of MK0 in the
increasing order. Let Qi be the point of @MK0 with ri as x-coordinate and positive
y-coordinate. Let ai denote the angle formed by the y-axis and the outward normal to MK0

at the edge Qiÿ1Qi.
The arc of @�ÿK0� joining Q0 to Q2 admits the parametrization (4.1) with f1 � a1,

f2 � a2 and x1 � 0. This implies a � rnÿ1
1 and x2 � r2 �

������������������������������������
2 sin nÿ1a2 ÿ rnÿ1

1
nÿ1
q

.
The arc of @�K0� joining Q1 to Q3 admits the parametrization (4.1) with f1 � a2, f2 � a3

and x1 � r1. This implies a � 2 sin nÿ1a2 ÿ rnÿ1
1 and then a � rnÿ1

2 .
Repeating the same argument, it is easy to verify by induction that the arc of @K0 or of

@�ÿK0� joining Qiÿ1 and Qi�1 is represented by

g�t� �
 
�2 sin nÿ1t ÿ rnÿ1

i � 1
nÿ1; y�Qi�1� �

�ai�1

t

2 sin nÿ1t

�2 sin nÿ1tÿ rnÿ1
i �nÿ2

nÿ1

dt

!
;

t 2 �ai;ai�1�; i ^ 1:

�4:4�

Rewriting (4.2) yields

�ai�1

ai

�2 sin nÿ1tÿ rnÿ1
i � 1

nÿ1

cos 2t
dt � �ai�1

ai

ri

cos 2t
dt ; i ^ 1 :�4:5�

From (4.4) we deduce

rnÿ1
iÿ1 � rnÿ1

i � 2 sin nÿ1ai ; i ^ 1 :�4:6�
Equalities (4.5) and (4.6) show that K is uniquely determined (up to rigid motion) by r1.
Next we shall write the volume of K as a function of the sequence frig and compare it with

the volume of the Blaschke-Firey body, which corresponds to the pair f0; 1g.
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For every x 2 �0; 1� let us denote with `K�x� the length of the chord of K0 at a distance x
from the y-axis and parallel to it. The inverse function of x�t� in (4.4) is given by

t � arcsin
xnÿ1 � rnÿ1

i

2

� � 1
nÿ1

; x 2 �riÿ1; ri�1� :

Recalling that
d
dx

y�t�x��� � � ÿtan t�x�, we obtain the explicit formula

`0K�x� � ÿ
xnÿ1 � rnÿ1

i

2

� � 1
nÿ1

�������������������������������������������
1ÿ xnÿ1 � rnÿ1

i

2

� � 2
nÿ1

s ÿ
xnÿ1 � rnÿ1

i�1

2

� � 1
nÿ1

�������������������������������������������
1ÿ xnÿ1 � rnÿ1

i�1

2

� � 2
nÿ1

s ; 8x 2 �ri; ri�1�:�4:7�

Taking into account the identity

V�K� � �nÿ 1�knÿ1
�1
0

xnÿ2`K�x� dx � ÿknÿ1
�1
0

xnÿ1`0K�x� dx

yields

V�K� �
X

i�0;1;...

knÿ1

�ri�1

ri

xnÿ1 xnÿ1 � rnÿ1
i

2

� � 1
nÿ1

�������������������������������������������
1ÿ xnÿ1 � rnÿ1

i

2

� � 2
nÿ1

s �
xnÿ1 xnÿ1 � rnÿ1

i�1

2

� � 1
nÿ1

�������������������������������������������
1ÿ xnÿ1 � rnÿ1

i�1

2

� � 2
nÿ1

s dx :�4:8�

In order to prove the minimality of the Blaschke-Firey body it is sufficient to show that the
right-hand side of (4.8) decreases eliminating r1 from the sequence frig. Notice that the
sequence f0; r2; r3; . . .g does not necessarily correspond to a convex body. In case frig is not
finite the conclusion will then follow by an asymptotic argument.

Writing f �x; y� �
xnÿ1 � ynÿ1

2

� � 1
nÿ1

����������������������������������������
1ÿ

xnÿ1 � ynÿ1

2

� � 2
nÿ1

s , what we have to prove is that

�ri�1

0
xnÿ1f �x; ri�dxÿ�ri

0
xnÿ1f �x; ri�1�dxÿ �ri�1

ri

xnÿ1f �x; 0�dx > 0 ; 8i ^ 1 :�4:9�

The left-hand side of (4.9), as a function of ri�1, is zero in ri and has positive derivative inh
ri;

�����������������
2ÿ rnÿ1

i
nÿ1
q �

. Indeed by differentiating (4.9) we get

rnÿ1
i�1 f �ri; ri�1� ÿ

�ri

0
xnÿ1 @f

@ri�1
�x; ri�1� dxÿ rnÿ1

i�1 f �ri�1; 0�

� rnÿ1
i�1 �f �ri; ri�1� ÿ f �0; ri�1�� ÿ

�ri

0
xrnÿ2

i�1
@f
@x
�x; ri�1� dx

� rnÿ1
i�1 �f �ri; ri�1�ÿf �0; ri�1�� ÿ rnÿ2

i�1

�
rif �ri; ri�1� ÿ

�ri

0
f �x; ri�1�dx

�
� rnÿ2

i�1

� �ri

0
f �x; ri�1� dx� �ri�1 ÿ ri�f �ri; ri�1� ÿ ri�1f �0; ri�1�

�
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which is clearly positive, since f �x; ri�1� is a positive and strictly increasing function with
respect to x.

This concludes the proof. h

As a final remark, if bn is the volume of the Blaschke-Firey body inRn, by using (4.8), it is

possible to see that the ratio
kn

bn
tends to 1 as n goes to infinity. Nevertheless the diameter of

the n-dimensional Blaschke-Firey body tends to infinity with n.
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