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Abstract. In this paper we prove that first-order degenerate ordinary differential
operators generate analytic semigroups in spaces of continuous functions if Ventcel�s
boundary conditions are assumed. Some applications to different types of degeneration
are also discussed.

1. Introduction. In this paper we prove the analyticity for the semigroups generated by
some degenerate ordinary differential operators in spaces of continuous functions on a real
interval I. We deal with first-order degeneracy, in the sense that we allow either the
coefficient of the second order term to vanish at the endpoints like the distance from the
boundary of I, or the coefficient of the first order term to behave as the inverse of the above
distance.

We assume Ventcel�s boundary conditions, i.e., if �L; �D�L�� is our operator, we impose
that lim

x!@I
Lu�x� � 0 for every u 2 D�L�. Observe that for the evolution problem ut � Au,

u�0� � u0, Ventcel�s conditions are equivalent to the classical homogeneous Dirichlet
conditions provided that the initial datum u0 vanishes at the boundary.

The study of one-dimensional degenerate evolution problems under Ventcel�s boundary
conditions started with the work of Feller (see [11] and [12]) and is motivated by some
diffusion problems. It turned out to be useful in many fields both in pure and in applied
mathematics. Applications to models in genetics can be found in [8] and connections with
approximation processes in [4] and in [1]. The subsequent work of CleÂment and Timmermans
(see [6]) characterized exactly when a second order differential operator generates a
C0-semigroup in spaces of continuous functions under the above boundary conditions.

The problem of the regularity of the semigroup has been left open for a long time.
Recently the analyticity has been proved for operators like a�x�D2 � b�x�D on C��0; 1�� if
a�x� > 0 on �0; 1�, a�0� � a�1� � 0,

���
a
p 2 C1��0; 1�� and b=

���
a
p

bounded (see [10]). These
assumptions force a to have at least double zeros at 0; 1 and exclude first order degeneration
which is the most natural and important in the applications (see however [9] for a special
case of simple degeneration in weighted Lp-spaces).

The analyticity of semigroups generated by self-adjoint second order degenerate
operators like D�a�x�D� has been proved in [5] in the Lp setting, 1 < p < �1 , for general
a. The case of first-order degeneracy in spaces of continuous functions has been studied in
[14] which is the starting point of the present investigation.

Arch. Math. 70 (1998) 377±390
0003-889X/98/050377-14 $ 4.30/0
� Birkhäuser Verlag, Basel, 1998 Archiv der Mathematik

Mathematics Subject Classification (1991): 35K65, 35B65, 35B40.



Our operators have the form

A � m�x�
h
D2 � b�x�

x
D
i

or B � a�x��xaD2 � b�x�xsD� c�x��
on the half-line �0;�1�, and

A1 � m�x��x�1ÿ x�D2 � b�x�D� or A2 � m�x�
h
D2 � b�x�

x�1ÿ x�D
i

on the interval �0; 1�. We shall suppose m, a, b, c continuous and bounded with inf
x2I

m�x� > 0
and inf

x2I
a�x� > 0.

By CleÂment and Timmermans� result, the possibility of assuming Ventcel�s conditions
depends on the values of the function b at the boundary of I. In particular, for the operator A
we have to require b�0� < 1 and, under this condition, it generates a C0-semigroup. Similar
conditions hold for the operators A1, A2 and B. The operator A (as well as A1 and A2) has
been considered in [14] where it is proved that it generates an analytic semigroup under
Ventcel�s conditions but only in the case where b�0� % ÿ 1 while different boundary
conditions have been assumed if b�0� > ÿ1 (see also [2]). In Sections 2 and 3 we extend the
results of [14] for the operator A to the case b�0� < 1 using similar but slightly modified
techniques, showing that it generates analytic semigroups on different spaces of continuous
functions on �0;�1�. These changes allow us to drop the assumption of Hölder continuity
of the function b at the endpoints and to assume only Dini continuity. The analyticity of the
semigroups generated by the operators A1 and A2 is deduced from that of the semigroup
generated by A via a localization procedure described in Proposition 2.4 which can be of
independent interest. Applications to more general degree of degeneracy are described in
Section 4.

Observe that it is not true, in general, that the semigroup generated by an operator
�L; �D�L�� is always analytic when Ventcel�s boundary conditions are imposed. For example,
consider the space C��ÿ1 ;�1�� of all continuous functions on R having finite limits at
�1 and the operator �L; �D�L�� given by

L � D2 � xD; D�L� �
n

u 2 C��ÿ1 ;�1�� \ C2�R� : lim
x!�1

Lu�x� � 0
o
:

It is easy to see that CleÂment-Timmermans condition holds whence �L;D�L�� generates a
C0-semigroup on C��ÿ1 ;�1��. In fact this semigroup is just the Ornstein-Uhlenbeck
semigroup considered in [7] and the same computations as in [7, Lemma 3.3] show that the
semigroup is not analytic. By a change of variable one can produce similar counterexamples
on a bounded interval, e.g., putting x � tan s one obtains that the operator

�cos 4s�D2 � sin s cos s�1� 2cos 2s�D
generates a C0-semigroup on C��ÿp=2;p=2�� which is not analytic. Note that the
degeneration is of order 4 at the endpoints and that the sufficient condition of [10] for
the analyticity in presence of high-order zeros does not hold.

Not at ion . We shall study our differential operators on a space E��a; b�� of continuous
functions defined on a real (bounded or not) interval.

If ÿ1 < a < b < �1 , the space E��a; b�� is defined by putting E��a; b�� � C��a; b��.
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If one of the endpoints is infinite, say b � �1 , we prescribe for u 2 E��a; b�� one of the
following conditions at �1 :

1) lim
x!�1 u�x� � 0;

2) there exists lim
x!�1 u�x� 2 C;

3) u is bounded on a neighborhood of �1 ;
4) u is bounded and uniformly continuous on a neighborhood of �1

and we define the corresponding spaces

Ei��a;�1�� �
�

u 2 C��a;�1�� : u satisfies �i�	; i � 1; . . . ; 4;

endowed with the sup norm k � kEi��a;b��.
Similar definitions hold if a � ÿ1 . We shall drop the index i and write E��a; b�� if it is not

necessary to distinguish between the different boundary conditions at infinity.
Occasionally we shall write C��0;�1�� for E2��0;�1�� and Cb��0;�1�� for

E3��0;�1��.
With Ck��0;�1�� we denote the set of all functions u 2 Ck��0;�1�� such that the limits

lim
x!�1 u�i��x� exist finite for i � 0; . . . ; k.

The symbol 1 denotes the constant function of value 1.

We thank Prof. V. Vespri for calling our attention on the problems dealt in this paper and
for many helpful discussions.

2. First-order degeneracy on [0, +1 [. In this section we study the operator

A � m�x�
h
D2 � b�x�

x
D
i

and we shall assume the following hypotheses on the coefficients m and b:

(i) m uniformly continuous and bounded on �0;�1� with inf
x ^ 0

m�x� > 0;

(ii) b continuous on �0;�1�, b�0� < 1 and b�x�=x bounded on a neighborhood of �1 ;
in the case of E4��0;�1�� we also assume b�x�=x uniformly continuous on a
neighborhood of �1 ;

(iii)
b�x� ÿ b�0�

x
summable on a neighborhood of 0.

As remarked in the introduction, the hypothesis b�0� < 1 is necessary and sufficient to
impose Ventcel�s condition at x � 0. Accordingly, we define

D�A� � �u 2 E��0;�1�� \ C2��0;�1�� : u0; u00 2 E��1;�1��; lim
x!0

Au�x� � 0
	
:�2:1�

Clearly D�A� is dense in E��0;�1�� and �A;D�A�� is a linear operator on E��0;�1��.

Lemma 2.1. The operator �A;D�A�� is closed and dissipative.

P roof. Let d > 0 and C be such that
b�x�

x

���� ���� % C for x ^ d. Then, for every " > 0, we can
find a constant C" such that, for x ^ d,

b�x�
x

u0�x�
���� ���� % Cju0�x�j % " sup

x ^ d

ju00�x�j � C" sup
x ^ d

ju�x�j:
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Since u00�x� � 1
m�x�Au�x� ÿ b�x�

x
u0�x� we obtain

sup
x ^ d

ju00�x�j % C sup
x ^ d

jAu�x�j � " sup
x ^ d

ju00�x�j � C" sup
x ^ d

ju�x�j:

If we take " < 1, we get for a suitable constant K (depending on d)

sup
x ^ d

ju00�x�j % K
�

sup
x ^ d

jAu�x�j � sup
x ^ d

ju�x�j
�
:�2:2�

Consider now a sequence �un� in D�A� converging to u in E and such that Aun ! v. By
(2.2) we obtain the uniform convergence of u0n and u00n on the interval �d;�1�; since d is
arbitrary we deduce u 2 C2��0;�1�� and Au � v. Moreover v�0� � lim

n
Aun�0� � 0. It

follows that u 2 D�A� and Au � v, that is A is closed.
In order to prove the dissipativity of A, we fix l > 0 and show that the following

inequalities hold:

inf
x ^ 0

ÿ
lu�x� ÿAu�x�� % l inf

x ^ 0
u�x�; l sup

x ^ 0
u�x� % sup

x ^ 0

ÿ
lu�x� ÿAu�x��:�2:3�

Assume that u�x0� � sup
x ^ 0

u�x� for some 0 % x0 < �1 ; then Au�x0� % 0 (indeed, this

follows by Au�0� � 0 if x0 � 0 and by u0�x0� � 0 and u00�x0� % 0 if x0 > 0), and hence the
second inequality in (2.3) holds.

Now, suppose that sup
x ^ 0

u�x� � lim sup
x!�1

u�x� and that the supremum is not attained at any
point.

If u0 is definitively positive, we have sup
x ^ 0

u�x� � lim
x!�1 u�x�. Suppose by contradiction that

lim inf
x!�1 Au�x� > 0; then there exist d > 0 and M > 0 such that

Au�x�
m�x� ^ d for every x ^ M.

Let c > 0 be such that
��� b�x�

x

��� % c for x ^ M and observe that u0�x� % d=�2c� implies

u00�x� ^ d=2 for x ^ M. Since u 2 E��0;�1�� we can find x1 > M and x2 > x1 such that
u0�x1� > d=�2c� and u0�x2� < d=�2c�. Hence the number

x3 � inf
n

x > x1 : u0�x� %
d

2c

o
is well defined and satisfies x3 > x1, u0�x3� � d=�2c� and u00�x3� ^ d=2, contradicting the
definition of x3.

This shows that lim inf
x!�1 Au�x� % 0 and consequently we can find a sequence �xn� tending

to �1 such that lim
n!�1 Au�xn� % 0. Then

sup
x ^ 0

lu�x� � lim
n!�1 lu�xn�

% lim
n!�1

ÿ
lu�xn� ÿAu�xn�

�
% sup

x ^ 0

ÿ
lu�x� ÿAu�x��:

Suppose now that u0 is not definitively positive; we can find an increasing sequence �yn�
tending to �1 and such that

u�yn� > sup
x ^ 0

u�x� ÿ 1
n
:
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For every n, we consider a point zn > yn satisfying u�zn� > u�yn� and a point wn > zn such
that u0�wn� < 0. Denote by xn the maximum of u in the interval �yn;wn�. The point xn is in the
interior of �yn;wn� and satisfies u0�xn� � 0, Au�xn� % 0; moreover, the sequence �u�xn��
converges to the supremum of u and thus we can proceed as before to obtain

sup
x ^ 0

lu�x� % sup
x ^ 0

ÿ
lu�x� ÿAu�x��:

The first inequality in (2.3) follows by the second one applied to ÿu. h

Re ma r k 2 . 2. Inequalities (2.3) show that for every l > 0 the operator �lÿA�ÿ1 is
positive whenever it exists. In the case of E1 and E2 the proof of dissipativity of A is easier
since lim

x!�1 Au�x� � 0 for every u 2 D�A� (see [6] in the case of E1).

In order to prove that �A;D�A�� generates an analytic semigroup we consider first the
case of constant coefficients, i.e., we assume m �1 and b�x� � b < 1. The following theorem
is stated in [14, Lemma 2.6 and Proposition 2.7] in the case b % ÿ 1. Nevertheless, the same
proof still holds in our case as one can easily check; moreover no new problems can arise at
�1 since A is regular on �d;�1� for d > 0. For these reasons we omit the details.

Theorem 2.3. Let A � D2 � b
x

D with b < 1 and D�A� defined by (2.1). Then A generates

an analytic semigroup of angle p=2 on E��0;�1��. The semigroup is positive and contractive.

The following proposition allows us to localize near the endpoints the problem of
analyticity under separated boundary conditions (see also [2]).

Proposition 2.4. Let L � p�x��D2 � q�x�D� be a dissipative second order differential
operator on E��a; b��, ÿ1 % a < b % � 1 , such that D�L� contains all C2-functions
compactly supported in �a; b�.

Assume that p is continuous and strictly positive in �a; b�, q 2 C��a; b�� and that there exist
differential operators L0 : D�L0� ! E��a; c��, L2 : D�L2� ! E��d; b�� with a < c % � 1 ,
ÿ1 % d < b and cut-off functions �0, �2 with the following properties:

1. L0 and L2 generate analytic semigroups of angle V on E��a; c�� and E��d; b�� respectively.
2. �0 is a C1 -function supported in �a; b�, equal to 1 in a neighborhood of a and to 0 in a

neighborhood of c, such that for every u 2 E��a; c�� \ C2��a; c��, u�0 2 D�L0� implies
u�0 2 D�L� and L�u�0� � L0�u�0�.

3. �2 is a C1 -function supported in �a; b�, equal to 1 in a neighborhood of b and to 0 in a
neighborhood of d, such that for every u 2 E��d; b�� \ C2��d; b��, u�2 2 D�L2� implies
u�2 2 D�L� and L�u�2� � L2�u�2�.

Then L generates an analytic semigroup of angle V.

P roof. We may assume that 0 % �i % 1 for i � 0; 2 and that the supports of �0, �2 are
disjoint. Let �1 be another positive cut-off function such that �2

0 � �2
1 � �2

2 � 1. Let
c1; d1 2�a; b� be such that the support of �1 is contained in the interval �c1; d1� and observe
that c1 < c, d1 > d. Consider the operator L1 : D�L1� ! C��c1; d1�� defined as L with
Neumann boundary conditions at the endpoints c1 and d1; L1 generates an analytic
semigroup of angle p=2.
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By assumption 1., we can find a constant C and R ^ 0 such that for every jlj ^ R
satisfying jarg lj % V1 < V� p=2, we have

k�lÿ Li�ÿ1k % C=jlj; i � 0; 1; 2�2:4�
(we consider the operatornorm defined by the space where Li acts).

Consider the operator S�l� �P2
i�0
�i�lÿ Li�ÿ1�i : E��a; b�� ! D�L� which satisfies

kS�l�k % C1=jlj. We have L�i�lÿ Li�ÿ1�i � Li�i�lÿ Li�ÿ1�i and consequently

�lÿ L�S�l� � I ÿP2
i�0
�Li; �i��lÿ Li�ÿ1�i;

where �Li; �i� � Li�i ÿ �iLi is a first-order differential operator defined on D�Li� and
supported on a compact subset �ai; bi� of �a; b�. It follows

k�Li; �i�ukE��a;b�� % K
h
kukC��ai;bi�� �

ÿkukC��ai ;bi��ku00kC��ai;bi��
�1

2

i
�2:5�

for all u 2 D�Li�, with K a suitable positive constant. Since Li is non-degenerate on �ai; bi�
we have also

ku00kC��ai;bi�� % K1
�kukC��ai;bi�� � kLiukC��ai;bi��

�
; u 2 D�Li�:�2:6�

The estimate

k�Li; �i��lÿ Li�ÿ1�ifkE��a;b�� %
K2�����jljp kfkE��a;b��; f 2 E��a; b��

then follows from (2.4), (2.5) and (2.6) putting u � �lÿ Li�ÿ1f . Therefore if we take jlj ^ R1

for a suitable R1, we have k�lÿ L�S�l� ÿ Ik < 1=2.
It follows that for jlj ^ R1 and jarg lj % V1 the operator B � �lÿ L�S�l� is invertible

with kBÿ1k < 2. Consequently, the operator R�l� � S�l�Bÿ1 is a right inverse of lÿ L
satisfying

kR�l�k %
2C1

jlj :�2:7�

The above discussion shows that, for jlj ^ R1 and jarg lj % V1, the operator R�l�
coincides with �lÿ L�ÿ1 whenever lÿ L is injective, in particular for l > 0, since L is
dissipative.

Remembering that if l belongs to the resolvent of L and jwÿ lj < k�lÿ L�ÿ1kÿ1 then w

belongs to the resolvent of L, is not difficult to deduce, using (2.7) and a simple argument
based on connectness, that ��L� � �l 2 C : jarg lj % V1 and jlj > R1

	
: This last fact,

together with (2.7), conclude the proof. h

Re ma r k 2 . 5 . Observe that the above proof is still valid if we only require that ln ÿ L is
injective for a sequence ln ! �1 .

Theorem 2.6. The operator �A;D�A�� generates an analytic semigroup of angle p=2 in
E��0;�1��. The semigroup is positive and contractive.

P roof. Since A degenerates only at x � 0 we can use Proposition 2.4 and give the proof
in the case where E��0;�1�� � C��0;�1��.
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Let d > 0 and consider a C1 -function 0 % �d % 1 such that �d is equal to 1 in a
neighborhood of 0 and to 0 for x ^ d.

Let c�x� � b�x� ÿ b�0�
x

and define the functions

cd�x� � c�x��d�x�; pd�x� �
�x
0

cd�t�dt:

Moreover, consider the function md defined by md�x� � m�x� for x % d and md�x� � md�d�
for x ^ d. If we put

vd�x� � epd�x�u�x� ÿ �x
0

u�t�epd�t�cd�t�dt;

we get
v0d�x� � epd�x�u0�x�; vd�0� � u�0�:

Hence we obtain

u�x� � vd�x�eÿpd�x� � �x
0

vd�t�eÿpd�t�cd�t� dt

and Adu � Bdvd, where

Adu�x� � md�x� u00�x� � b�0�
x
� cd�x�

� �
u0�x�

� �
;

Bdvd�x� � md�x�eÿpd�x� v00d�x� �
b�0�

x
v0d�x�

� �
:

Defining D�Ad� � D�A� and

D�Bd� �
n

v 2 C��0;�1�� \ C2��0;�1�� : lim
x!0

Bdv�x� � 0
o

we obtain u 2 D�A� � D�Ad� if and only if vd 2 D�Bd�.
Finally, consider the operator

B � m�0� D2 � b�0�
x

D
� �

; D�B� � D�Bd�;

by Theorem 2.3, the operator B generates an analytic semigroup of angle p=2 and then,
given V < p we can find M and R such that k�Bÿ l�ÿ1k % M=jlj if jlj ^ R and jarg lj % V.

We observe that, for every v 2 D�B�,
kBvÿ Bdvk % KdkBvk;

with Kd ! 0 as d! 0.
Moreover, we can write for jlj ^ R and j arg lj % V

lÿ Bd � �I � �Bÿ Bd��lÿ B�ÿ1��lÿ B�
with

k�Bÿ Bd��lÿ B�ÿ1uk % KdkB�lÿ B�ÿ1uk
% Kd

ÿkuk � lk�lÿ B�ÿ1uk�
% Kd�1�M�kuk %

1
2
kuk

for every d % d0, d0 small enough.
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It follows that, for jlj ^ R, j arg lj % V and d % d0, the operator lÿ Bd is invertible and
k�lÿ Bd�ÿ1k % 2M=jlj with M independent of d. These facts will be essential to show that
Ad generates an analytic semigroup for sufficiently small d.

To this aim we solve the equation Aduÿ lu � f . We have

Adu�x� ÿ lu�x� � Bdvd�x� ÿ lvd�x�eÿpd�x� ÿ l
�x
0

vd�t�eÿpd�t�cd�t�dt

� Bdvd�x� ÿ lvd�x� ÿ l

�ÿ
eÿpd�x� ÿ 1

�
vd�x� �

�x
0

vd�t�eÿpd�t�cd�t�dt
�
:

�2:8�

Consider the operator

Sdv�x� � ÿeÿpd�x� ÿ 1
�
v�x� � �x

0
v�t�eÿpd�t�cd�t� dt:

We have Aduÿ lu � f if and only if Bdvd ÿ lvd ÿ lSdvd � f , i.e., if and only if
�Bd ÿ l��I ÿ l�Bd ÿ l�ÿ1Sd�vd � f .

The operator Bd ÿ l is invertible and kl�Bd ÿ l�ÿ1k % M. In order to estimate kSdk, we
observe that, if x > d,

Sdv�x� � ÿeÿpd�d� ÿ 1
�
v�x� � �d

0
v�t�eÿpd�t�cd�t� dt;

hence, for d small enough we obtain kSdk % 1=�2M� and consequently
kl�Bd ÿ l�ÿ1Sdk % 1=2. This yields

kÿI ÿ l�Bd ÿ l�ÿ1Sd

�ÿ1k % 2

and by (2.8) we obtain kuk % M1=jljkfk.
It follows that Ad generates an analytic semigroup of angle p=2; since A degenerates only

at x � 0, we can apply Proposition 2.4 with �L0;D�L0�� � �Ad;D�Ad��,
D�L2� � fu 2 C2��1;�1�� : u0�1� � 0g and L2u � Lu for u 2 D�L2� to deduce that the
same holds for A. Positivity and contractivity follow by Lemma 2.1. h

3. First-order degeneracy on [0,1]. We consider here the differential operators on C��0; 1��

A1 � m�x��x�1ÿ x�D2 � b�x�D�; A2 � m�x�
h
D2 � b�x�

x�1ÿ x�D
i
:

We assume m, b continuous on �0; 1� with m strictly positive and
b�x� ÿ b�0�

x
,

b�x� ÿ b�1�
1ÿ x

summable on neighborhoods of 0; 1 respectively. In order to impose Ventcel�s conditions at
x � 0; 1 we assume also that the function b satisfies b�0� < 1, b�1� > ÿ1. Accordingly, we
define the domains of Ai, i � 1; 2 in the following way:

D�Ai� �
n

u 2 C��0; 1�� \ C2��0; 1�� : lim
x!0;1

Aiu�x� � 0
o
:

A straightforward argument shows that �Ai;D�Ai�� is dissipative for i � 1; 2. Moreover, the
change of variable x � �1ÿ cos pt�=2 transforms �A1;D�A1�� into �A2;D�A2�� so that every
result for A2 still holds for A1.

Theorem 3.1. For i � 1; 2 the operator �Ai;D�Ai�� generates an analytic semigroup of angle
p=2. The semigroup is positive and contractive.
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P roof. It is sufficient to give the proof for A2.

Let m be extended on � ÿ 1 ;�1� by m�x� � m�1� for x ^ 1, m�x� � m�0� for x % 0 and
let y0, y2 be cut-off functions such that y0 � 1, y2 � 0 in a neighborhood of 0, y0 � 0,
y2 � 1 in a neighborhood of 1.

Consider the operators

L0 � m�x�
h
D2 � b�x�y0�x�

x�1ÿ x� D
i
; L2 � m�x�

h
D2 � b�x�y2�x�

x�1ÿ x� D
i

with domains

D�L0� �
�

u 2 C��0;�1�� \ C2��0;�1�� : lim
x!0

L0u�x� � 0
	
;

D�L2� �
�

u 2 C��ÿ1 ; 1�� \ C2��ÿ1 ; 1�� : lim
x!1

L2u�x� � 0
	
:

By Theorem 2.6, L0 and L2 generate analytic semigroups of angle p=2. Finally, apply
Proposition 2.4 with cut-off functions �0 and �2 such that �0 � 1 in a neighborhood of 0,
supp�0 � fx : y0�x� � 1g and similarly for �2 near x � 1. h

We investigate now the asymptotic behaviour of the semigroups �T1�t��t ^ 0 and �T2�t��t ^ 0
generated by A1 and A2. In the following lemma, which provides the compactness of the
above semigroups, we suppose D�A2� endowed with the graph norm.

Lemma 3.2. The inclusion D�A2� ,! C��0; 1�� is compact.

P roof. If b�0� % ÿ 1 and b�1� ^ 1 this fact is proved in [14, Theorem 4.1]. Suppose
ÿ1 < b�0� < 1 and consider the interval �0; 1=2�. The function

g�x� � exp
� �x

1=2

b�t�
t�1ÿt� dt

�
�3:1�

is equivalent to Cxb�0� as x! 0 for some C > 0 and therefore it is integrable near x � 0.
We can write

A2u�x� � m�x�
g�x�

d
dx

�
g�x�u0�x��:

Then we obtain

g�x�u0�x� ÿ u0�1=2� � �x
1=2

A2u�t�g�t�
m�t� dt

and hence, with K � �1
0

g�t�m�t�ÿ1 dt,

jg�x�u0�x�j % ju0�1=2�j �KkA2uk:�3:2�
Since A2 is regular in �0; 1� we can estimate u0�1=2� with the graph norm of u so obtaining

sup
x % 1=2

ju0�x�j % C
g�x�

�kuk � kA2uk�:
By g�x�ÿ1 2 L1�0; 1=2� we get the compactness of the inclusion of D�A2� into C��0; 1=2��. A
similar argument in �1=2; 1� yields the thesis. h
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Theorem 3.3. The semigroups generated by A1 and A2 are compact.

P roof. Since A1 reduces to A2 by a change of variable it is sufficient to prove the
theorem for A2. However this is immediate since the semigroup is analytic and A2 has
compact resolvent by the above lemma. h

In order to state the following result we introduce the function y�x� � �x
0

g�t�ÿ1 dt and

observe that the conditions b�0� < 1 and b�1� > ÿ1 imply that y 2 D�Ai� and Aiy � 0 for
i � 1; 2.

Proposition 3.4. The semigroups �T1�t��t ^ 0 and �T2�t��t ^ 0 converge in norm as t ! �1
to the projection

Pu�x� � u�0� � u�1� ÿ u�0�
y�1� y�x�:

Pr oof. Let us consider only �T2�t��t ^ 0. Since �T2�t��t ^ 0 is compact, positive and
contractive, by [15, B-IV, Theorem 2.5] it converges in norm, as t ! �1 , to a projection P
such that Im �P� � Ker �A2�. The functions 1 and y generate Ker �A2� so that

Pu � c11� c2y

for suitable constants c1 and c2. Put U�x; t� � T2�t�u�x�; then
@

@t
U�x; t� � A2U�x; t� and so

@

@t
U�x; t� � 0 for x � 0; 1. Then U�0; t� � u�0� and U�1; t� � u�1� whence Pu�0� � u�0�,

Pu�1� � u�1� and the thesis follows. The proof for �T1�t��t ^ 0 is similar. h

We strengthen now Theorem 3.1 by showing that the semigroups generated by A1 and A2

are bounded analytic of angle p=2. To this aim we need the following result:

Lemma 3.5. The spectrum of A2 (hence of A1) is contained in � ÿ 1 ; 0�.
P roof. If b�0� % ÿ 1 and b�1� ^ 1 this fact is proved in [14, Theorem 5.5].
Suppose, for example, ÿ1 < b�0� < 1 and ÿ1 < b�1� < 1 and let l �j 0 be an eigenvalue

of A2. If u 2 D�A2� satisfies A2u � lu, then u�0� � u�1� � 0 because of the boundary
conditions.

We write, using the function g defined in (3.1),

d
dx

�
g�x�u0�x�� � l

g�x�
m�x�u�x�:

Multiplying both sides by �u and integrating by parts between e and 1ÿ e we get

ÿ �1ÿe

e

g�x�ju0�x�j2 dx� g�x��u�x�u0�x�
���1ÿe

e
� l

�1ÿe

e

g�x�
m�x� ju�x�j

2 dx:

By (3.2) the function gu0 is bounded and gju0j2 is summable on �0; 1�. Letting e! 0 the
boundary terms vanish and we obtain

ÿ �1
0

g�x�ju0�x�j2 dx � l
�1
0

g�x�
m�x� ju�x�j

2 dx

from which we deduce l 2 R and l < 0.
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The other cases are similar. h

Using Theorem 3.1, Theorem 3.3, Lemma 3.5 together with [14, Proposition 5.6] we obtain
the following result:

Theorem 3.6. The semigroups generated by �A1;D�A1�� and �A2;D�A2�� are bounded
analytic of angle p=2.

4. Applications to some degenerate evolution problems. In this section we apply the
results of Section 2 and Section 3 to some degenerate evolution problems on �0;�1� and on
�0; 1�. We shall consider more general degree of degeneracy and we shall see how, in many
cases, a suitable change of variable allows to use our preceding results. We start with the
following parabolic problem on �0;�1�:

ut � a�x��xauxx � b�x�xsux � c�x�u�;
u�x; 0� � u0�x�

�
�4:1�

with suitable boundary conditions at 0;�1 .
Problem (4.1) has been considered by Vespri [16] in the case a ^ 2; s � a=2; we consider

instead the case 0 < a < 2 which often occurs in the applications.
Considering the new variable s � x1ÿa=2, we observe that the operator

B � a�x��xaD2 � b�x�xsD� c�x��
transforms into

C � a1�s� 1ÿ a

2

� �2
D2 � 1ÿ a

2

� �
b1�s�s2sÿa

2ÿa ÿ a

2s
1ÿ a

2

� �� �
D� c1�s�

� �
where a1; b1; c1 are the functions a; b; c expressed in the variable s, that is, a1�s� � a�s2=�2ÿa��
and similarly for b1 and c1.

Moreover, we denote by B0 and respectively by C0 the operators B and C with c � 0.
In order to apply the results of Section 2, we assume the following conditions on the

coefficients a1; b1; c1:
a1 uniformly continuous and bounded on �0;�1� with inf

s ^ 0
a1�s� > 0;

b1 and c1 continuous and bounded on �0;�1�;
b1 Hölder-continuous at s � 0, if aÿ 1 � s.

Moreover, for the exponents a; s we have to require

aÿ 1 % s %
a

2

in order to get a degeneration like 1=s as s! 0 and bounded coefficients as s! �1 .
Turning back to the variable x we make the following assumptions:

(i) a; b; c continuous and bounded on �0;�1� with inf
x ^ 0

a�x� > 0;
(ii) a

ÿ
x2=�2ÿa�� uniformly continuous on �0;�1�;

(iii) aÿ 1 % s %
a

2
;

(iv) b Hölder-continuous at x � 0, if aÿ 1 � s.

387Vol. 70, 1998 Ventcel�s boundary conditions



We observe that the condition s % a=2 can be replaced by the boundedness of b�x�xsÿa=2

as x! �1 .
As regards the boundary condition at s � 0 for the operator C, we can impose Ventcel�s

conditions lim
s!0

Cu�s� � 0 if and only if

aÿ 1 < s or aÿ 1 � s; b�0� < 1:

In the sequel we shall always assume the above conditions on the exponents a

and s and consider for simplicity only the condition of boundedness at �1 . Accordingly we
define

D�C� � �u 2 Cb��0;�1�� \ C2��0;�1�� : u0; u00 bounded at � 1
and lim

s!0
C0u�s� � 0

	
:

By Theorem 2.6 and noticing that the term c�x�u is a bounded perturbation of the
generator, we obtain that �C;D�C�� generates an analytic semigroup on Cb��0;�1��.

With the above change of variable, it is easy to obtain

D�B� � �u 2 Cb��0;�1�� \ C2��0;�1�� : xa=2u0; xau00 bounded at � 1
and lim

x!0
B0u�x� � 0

	
:

By the above discussion, we obtain the following result:

Theorem 4.1. The operator �B;D�B�� generates an analytic semigroup of angle p=2 on
Cb��0;�1��. The semigroup is positive and contractive.

In the cases

a < 1; s > 0 or aÿ 1 � s; b�0� > aÿ 1;

we can also impose Neumann�s condition
du
ds
�0� � 0. Using the same method and the results

of [2] and [14], one can prove the analyticity of the corresponding semigroup.
As a second application we consider differential operators like L � a�x�D2 � b�x�D on

C��0; 1��. Supposing a�x� > 0 on �0; 1�, a 2 C1��0; 1�� and aÿ1=2 2 L1�0; 1� we can use the
change of variable

s � �x
0

aÿ1=2�t�dt

and look for conditions on the coefficients a; b which allow to apply our preceding methods.
For simplicity, we discuss only the case where the operator L has the form

L � m�x��xa�1ÿ x�bD2 � b�x�xs�1ÿ x�dD
�
;

which is the most frequently met in the applications. We assume m continuous and strictly
positive, b continuous and Hölder continuous at x � 0; 1. We require also 0 < a; b < 2 and,
in order to apply Ventcel�s conditions at x � 0; 1,

aÿ 1 < s or aÿ 1 � s; b�0� < 1;

bÿ 1 < d or bÿ 1 � d; b�1� > ÿ1:
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Observe that no condition on s and d is needed if b � 0. Accordingly we define

D�L� � �u 2 C��0; 1�� \ C2��0; 1�� : lim
x!0;1

Lu�x� � 0
	
:

Using the change of variable s � �x
0

tÿa=2�1ÿ t�ÿb=2 dt we can repeat with minor changes the

above discussion about the operator B obtaining the following result:

Theorem 4.2. The operator �L; �D�L�� generates an analytic semigroup of angle p=2. The
semigroup is positive and contractive.

In particular we can state the following corollary:

Corollary 4.3. The operator m�x��xa�1ÿ x�bD2
�

generates an analytic semigroup of angle
p=2 for every a; b > 0.

P roof. For a; b ^ 2 see [10]. For 0 < a; b < 2 the result is a consequence of the above
theorem. The general case is deduced from these by using Proposition 2.4, arguing as in
Theorem 3.1. h
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