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Abstract. We give the best estimate in the comparison of the volume of the section of
a convex body inRn through its centroid by a k-dimensional affine subspace Ek with the
volume of the section by any affine subspace parallel to Ek.

1. Introduction. In this paper, we answer a conjecture of Makai and Martini [2]. Namely,
we prove the following: let K be a convex body in Rn, let Ek be a k-dimensional affine
subspace of Rn passing through the centroid of K and denote by F�K;Ek� the ratio between
the k-dimensional volume of the section of K by Ek and the k-dimensional volume of the
maximal section of K parallel to Ek. Then

F�K;Ek� ^
k� 1
n� 1

� �k

and the equality case is solved. For example, there is equality if K is a simplex with a k-face
parallel to Ek.

For k � 1, the answer goes back to Bonnesen and Fenchel [1] or even further; it consists in
comparison of length of chords. For k � nÿ 1, the result is due to Makai and Martini [2].

In the general case, we express the problem in terms of concave functions. Afterwards we
give two proofs. Each of them has its interest. In the first one, which is geometric, we reduce
the problem to the case when the concave function is affine. In the second one, more
analytic, we reduce to a one-dimensional problem.

In the following, volk denotes the k-dimensional Lebesgue measure; h ; i denotes the usual
scalar product with respect to the canonical Euclidean structure of Rn. If A � Rn, the
orthogonal of A is A? � fx 2 Rn; 8y 2 A; hx; yi � 0g, the convex hull of A is denoted by
conv�A�, its affine hull by aff�A� and the positive convex cone generated by A, with x0 2 Rn

as vertex is denoted by pos�x0;A�.
If A � Rn and f : A! Rn, then

�
f �x�dx 2 Rn denotes the vector obtained by integration

of the coordinates of f . If A � Rn and f : A! R, then the positive part of f is denoted by
f� � max �f; 0�.

For general references on convex bodies and the Brunn-Minkowski theory, we refer to
Schneider [3].
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Theorem 1. Let Ek be a k-dimensional subspace of Rn, with 1 % k % nÿ 1 and K � Rn be
a convex body with gK as centroid. Then

max
x2Rn

volk�K \ �Ek � x�� %
n� 1
k� 1

� �k

volk�K \ �Ek � gK�� ;

with equality if and only if there exist xo 2 Rn, Fnÿk a subspace of Rn such that
Fnÿk�Ek � Rn and two convex bodies K1 and K2 satisfying K1 � Ek, K2 � Fnÿk and
dim �aff�K2�� � nÿ kÿ 1 such that

K � x0 � conv�K1;K2�:
We will first prove that this theorem is a consequence of the following:

Theorem 2. Let q ^ 1 be an integer and p > 0. Let C � Rq be a convex body and
f : C! R, f ^ 0, f �j 0, such that f

1
p is concave. Then

max
x2Rq

f �x� %
p� q� 1

p� 1

� �p

f �xf � where xf �

�
Rq

xf �x� dx�
Rq

f �x� dx
;

with equality if and only if there exist x0 2 Rq, a 2 R, a �j 0 and u 2 Rq, u �j 0 such that

f �x� � f �x0� 1ÿ hxÿ x0; ui
a

� �p

for all x 2 C; with C � conv�x0;C0�;

where C0 is a convex body in the affine hyperplane fx 2 Rq; hxÿ x0; ui � ag.

Pr oof o f Theo re m 1 . Under the hypotheses of Theorem 1, identify Rn with
�Ek�? � Ek, denote by P the orthogonal projection onto �Ek�? and define f by:

f �x� � volk�K \ �Ek � x�� � volk�fy 2 Rk; �x; y� 2 Kg�
for all x 2 Rnÿk. By the Brunn-Minkowski theorem, f

1
k is concave on P�K�. Therefore we

may apply Theorem 2 to f with p � k, q � nÿ k and C � P�K�. Noticing that
volk�K \ �Ek � gK�� � f �P�gK�� and using Fubini�s theorem, we get

P�gK� �

�
K

x dxdy�
K

dxdy
�

�
Rnÿk

x volk�fy 2 Rk; �x; y� 2 Kg�dx�
Rnÿk

volk�fy 2 Rk; �x; y� 2 Kg� dx

�

�
Rnÿk

xf �x� dx�
Rnÿk

f �x� dx
� xf :

Therefore

max
x2Rn

volk�K \ �Ek � x�� � max
x2Rn

f �x� %
n� 1
k� 1

� �k

f �xf �

%
n� 1
k� 1

� �k

volk�K \ �Ek � gK�� ;
which is the inequality of Theorem 1.
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Now we deduce the equality case of Theorem 1 from Theorem 2.
First, if K satisfies

max
x2Rn

volk�K \ �Ek � x�� � n� 1
k� 1

� �k

volk�K \ �Ek � gK��;

we get equality in Theorem 2 with f �x� � volk�K \ �Ek � x��. Therefore there exist
x0 2 �Ek�?, a 2 R, a �j 0 and u 2 �Ek�?, u �j 0 such that for all x in P�K�

volk�K \ �Ek � x�� � volk�K \ �Ek � x0�� 1ÿ hxÿ x0; ui
a

� �k

;

and P�K� � conv�x0;C0�, where C0 is a convex body satisfying

C0 � fx 2 �Ek�?; hxÿ x0; ui � ag:
We first translate K such that x0 � 0. Then we denote by eK � S�K� the Schwarz symmetral
of K with respect to �Ek�?, that is the convex body such that for all x 2 �Ek�?, eK \ �Ek � x�
is a k-euclidean ball, centered at x, with same volume as K \ �Ek � x�. For all
x 2 conv�0;C0�, define eKx � eK \ �Ek � x�, then we have

vol� eKx� � vol� eK0� 1ÿ hx; ui
a

� �k

;�1�

which implies that there is equality in the Brunn-Minkowski theorem, hence eKx and eK0 are
homothetic. Therefore, for all x 2 conv�0;C0�, there exist lx 2 R and yx 2 Rn such thateKx � lx

eK0 � yx. Because of (1), we have lx � 1ÿ hx; ui
a

. Since P� eKx� � x, we have

P�yx� � x. From its definition, eK is symmetric with respect to �Ek�?, hence yx � x.

Finally, for all x 2 conv�0;C0�, eKx �
�

1ÿ hx; ui
a

� eK0 � x, hence eK � conv� eK0;C0�. And we

can conclude that K � x0 � conv�K1;K2�, with K1 � Ek, such that S�K1� � eK0 and
K2 � Fnÿk, a subspace of Rn which satisfies Fnÿk�Ek � Rn, with P�K2� � C0.

For the reverse implication, we see that if K � conv�K1;K2�, then S�K� � eK satisfieseK � conv�S�K1�;P�K2��. Since P�K2� is in an (nÿ kÿ 1)-dimensional affine subspace of
�Ek�?, there exist u 2 �Ek�?, u �j 0 and a 2 R such that P�K2� � fx 2 �Ek�?; hx; ui � ag.
And for all x 2 conv�0;P�K2�� we get

eKx �
�

1ÿ hx; ui
a

�
S�K1� � x ;

hence vol�K \ �Ek � x�� � vol� eKx� � vol�K1� 1ÿ hx; ui
a

� �k

; which means that the function

f �x� � vol�K \ �Ek � x�� satisfies the equality case of Theorem 2. This implies that

max
x2Rn

volk�K \ �Ek � x�� � n� 1
k� 1

� �k

volk�K \ �Ek � gK��.

2. Geometric proof of Theorem 2. Because of the translation invariance, we may assume
that max

x2Rq
f �x� � f �0�. Moreover, if f �0� � f �xf �, the result is obvious, therefore we now

assume f �0� > f �xf �.
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We first prove that there exists a section H \ C of C passing through xf satisfying
max
H\C

f � f �xf �. In fact, more generally, we have:

Lemma 1. Let q ^ 1 be an integer, and p > 0. Let C be a convex body ofRq and f : C! R,
f ^ 0, f �j 0, such that f

1
p is concave. Let x0 be in the interior of C. Then there exists an affine

hyperplane H in Rq, passing through x0, such that:

f �x0� � max
x2H\C

f �x� :

Pr oof. We define eK � f�x; t� 2 Rq �R; x 2 C and 0 % t % f
1
p�x�g. Since f

1
p is concave,

it is clear that eK is a convex body in Rq�1. Since the point x0; f
1
p�x0�

� �
belongs to the

boundary of eK, eK admits a support hyperplane ~H at this point. Therefore there exists
�y; s� 2 Rq �R such that for all �x; t� 2 eK

hxÿ x0; yi � �t ÿ f
1
p�x0��s % 0 :

Let us prove that s > 0.
Since �x0; 0� 2 eK, we have f

1
p�x0�s ^ 0. Moreover, by definition, x0 is in the interior of C so

that f
1
p�x0� > 0; it follows that s ^ 0. But assume that s � 0; then hx; yi % hx0; yi for all x 2 C,

which implies that the affine hyperplane H � fx 2 Rq; hx; yi � hx0; yig, separates x0 from C.
This is a contradiction because x0 is in the interior of C and C is convex. Thus s > 0.

Now, for all x 2 H \ C, we have �x; f 1
p�x�� 2 eK so that �f 1

p�x� ÿ f
1
p�x0��s % 0, therefore

f
1
p�x� % f

1
p�x0� and we get f �x0� � max

x2H\C
f �x�.

Pr oof o f The or e m 2 . Since C is a convex body, xf belongs to the interior of C, so
that we may apply Lemma 1 to xf . Therefore, there exists an affine hyperplane H such
that f �xf � � max

x2H\C
f �x�. Since we assumed that max f � f �0� > f �xf �, it implies that 0 2j H.

Thus for some u 2 Rq, H � fx 2 Rq; hx; ui � 1g. Define Hÿ � fx 2 Rq; hx; ui % 1g,
H� � fx 2 Rq; hx; ui ^ 1g, D0 � C \H and D � pos�0;D0�.

Define f : Rq ! R� by f�rx� � ��1ÿ r�f 1
p�0� � rf

1
p�x��p� if x 2 D0 and r ^ 0, and f

vanishes outside of D. Since f
1
p is concave, we have for x 2 D0:

f
1
p�rx� % f

1
p�rx� for 0 % r % 1 hence f % f on Hÿ.

f
1
p�rx� ^ f

1
p�rx� for r ^ 1 hence f ^ f on H�.

Define now xf �

�
Rq

xf�x� dx�
Rq

f�x� dx
:

a) We first prove that xf 2 H�, with xf 2 H if and only if f � f, that is:

hxf; ui ^ hxf ; ui � 1 with equality if and only if f=f.�2�
We have

xf ÿ xf �

�
Rq

xf�x� dx�
Rq

f�x� dx
ÿ xf �

�
Rq
�xÿ xf �f�x� dx�
Rq

f�x� dx
;

hence

hxf ÿ xf ; ui �

�
Rq
hxÿ xf ; ui f�x� dx�

Rq
f�x� dx

�

�
Rq
�hx; ui ÿ 1�f�x� dx�

Rq
f�x� dx

:
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Since f % f on Hÿ and f ^ f on H�, we get that for all x 2 Rq�hx; ui ÿ 1�f�x� ^

�hx; ui ÿ 1�f �x�: Hence from the definition of xf :�
Rq
�hx; ui ÿ 1�f�x� dx ^

�
Rq
�hx; ui ÿ 1�f �x� dx �

D �
Rq
�xÿ xf �f �x� dx; u

E
� 0 :

Thus hxf; ui ^ hxf ; ui � 1 with equality if and only if:�
Rq
�hx; ui ÿ 1��f�x� ÿ f �x�� dx � 0:

Since �hx; ui ÿ 1��f�x� ÿ f �x�� ^ 0, this implies that f � f.
b) We now prove that:

hxf; ui %
q

p� q� 1

� �
f

1
p�0�

f
1
p�0� ÿ f

1
p�xf �

;�3�

with equality if and only if f is constant on D0.
For all x 2 D, x �j 0, we have

f�x� �
�

1ÿ hx; ui
�

f
1
p�0� � hx; uif 1

p

� x
hx; ui

�� �p

�

� f �0� 1ÿ hx; ui 1ÿ
f

1
p

� x
hx; ui

�
f

1
p�0�

0B@
1CA

0B@
1CA

p

�

� f �0� 1ÿ hx; ui
y�x�

� �p

�
where y�x� � f

1
p�0�

f
1
p�0� ÿ f

1
p

x
hx; ui
� � :

Moreover for all x 2 D, x �j 0 and t > 0, we have y�tx� � y�x�. Thus,�
Rq
hx; uif�x� dx� f �0� �

D
hx; ui 1ÿ hx; ui

y�x�
� �p

�
dx

� f �0� ��1
0

�
hx;ui�t

t 1ÿ t
y�x�

� �p

�
dxdt :

The change of variable y � tx gives:

�
Rq
hx; uif�x� dx� f �0�

��1
0

�
D0

tq 1ÿ t
y�y�

� �p

�
dydt

� f �0�
�

D0

�y�y�
0

tq 1ÿ t
y�y�

� �p

dt

 !
dy

� f �0� �
D0

y�y�q�1 �1
0

sq�1ÿ s�p ds

 !
dy

� f �0� G�q� 1�G�p� 1�
G�p� q� 2�

�
D0

y�y�q�1 dy :
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The same calculation gives:
�
Rq

f�x� dx � f �0�G�q�G�p� 1�
G�p� q� 1�

�
D0

y�y�q dy. Finally,

hxf; ui � q
p� q� 1

�
D0

y�y�q�1 dy�
D0

y�y�q dy
%

q
p� q� 1

max
D0

y .

From Lemma 1, for all x 2 H \D we have:

y�x� � f
1
p�0�

f
1
p�0� ÿ f

1
p�x�

%
f

1
p�0�

f
1
p�0� ÿ f

1
p�xf �

:

Thus: hxf; ui %
q

p� q� 1

� �
f

1
p�0�

f
1
p�0� ÿ f

1
p�xf �

.

This proves inequality �3�.

The case of equality gives

�
D0

y�y�q�1 dy�
D0

y�y�q dy
� max

D0

y, which means that y is constant on D0. It

follows that there exist a real a �j 0, such that for all x 2 D

f�x� � f �0� 1ÿ hx; ui
a

� �p

�
:

c) Finally from �2� and �3�, we get:

1 % hxf; ui %
q

p� q� 1
� f

1
p�0�

f
1
p�0� ÿ f

1
p�xf �

:

Hence:

f �0� %
p� q� 1

p� 1

� �p

f �xf � :�4�

Moreover there is equality in (4) if and only if there is equality in �2� and �3� which

means that f �x� � f�x� � f �0� 1ÿ hx; ui
a

� �p

�
for all x in C and C � conv�0;C0� where

C0 � D \ fx ; hx; ui � ag.

3. Analytic proof of Theorem 2. We prove the following version of Theorem 2:

Theorem 3. Let q ^ 1 be an integer, and p > 0. Let C � Rq be a convex body and let
g : C! R, g ^ 0, g �j 0 be a concave function. Then

g

�
Rq

xgp�x� dx�
Rq

gp�x� dx

0B@
1CA ^

p� 1
p� q� 1

� �
max
x2Rq

g�x� ;�5�

with equality if and only if there exist x0 2 Rq, a 2 R, a �j 0 and u 2 Rq, u �j 0 such that

g�x� � g�x0� 1ÿ hxÿ x0; ui
a

� �
for all x 2 C and C � conv�x0;C0�

where C0 is a convex body in the affine hyperplane fx 2 Rq; hxÿ x0; ui � ag.
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Pr oof. Since g is concave, it follows from Jensen�s inequality that

g

�
Rq

xgp�x� dx�
Rq

gp�x� dx

0B@
1CA ^

�
Rq

gp�1�x� dx�
Rq

gp�x� dx

with equality if and only g is affine.
Define f�t� � vol�fx 2 Rq; g�x� ^ tg� and M � max g; we have�

Rq
gp�x� dx�

�
Rq

�g�x�
0

ptpÿ1dt

 !
dx

� �M
0

ptpÿ1volq�fx 2 Rq; g�x� ^ tg�dt � p
�M
0

tpÿ1f�t�dt:

Thus to prove (5), it is enough to see that�M
0

tpf�t�dt ^
p

p� q� 1
M
�M
0

tpÿ1f�t�dt:�6�

We prove that f
1
q is concave on �0;M�:

Let x, y be in �0;M� satisfying g�x� ^ t and g�y� ^ s. Since g is concave,

g�lx� �1ÿ l�y� ^ lt � �1ÿ l�s :
Thus lfg ^ tg � �1ÿ l�fg ^ sg � fg ^ lt � �1ÿ l�sg. By the Brunn-Minkowski theorem
and the definition of f, this implies that

f
1
q�lt � �1ÿ l�s� ^ lf

1
q�t� � �1ÿ l�f1

q�s�;
which means that f

1
q is concave on �0;M�.

Moreover it is clear that f is non-increasing on �0;M�. Therefore, to prove inequality (6), it
is enough to show the following lemma and the case of equality in Theorem 3 follows from
the case of equality in the lemma.

Lemma 2. Let p > 0 and q > 0 be two real numbers. Let f : �0;M� ! R, f ^ 0, f �j 0 be a
non-increasing function such that f

1
q is concave. Then�M

0
tpf�t�dt ^

p
p� q� 1

M
�M
0

tpÿ1f�t�dt�7�

with equality if and only if f�t� � f�0�
�

1ÿ t
M

�q
:

Pr oof. Define c � p
p� q� 1

. Let h be the non-increasing function on �0;M� such that h
1
q is

affine, h�M� � 0 and h�cM� � f�cM�. For some a > 0, h�t� � a 1ÿ t
M

� �q
for all t in �0;M�.

Since f
1
q is concave on �0;M�, f�M� ^ h�M� � 0 and h�cM� � f�cM�, we get f % h on

�0; cM� and f ^ h on �cM;M�. Hence:�M
0
�t ÿ cM� tpÿ1f�t�dt ^

�M
0
�t ÿ cM� tpÿ1h�t�dt

with equality if and only if f � h.
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Therefore to prove (7), it is enough to prove that
�M
0
�t ÿ cM� tpÿ1h�t�dt � 0, which is clear

by a simple calculation.

Re ma r k . The same result is true if we assume that f is log-concave instead of
1
q

-concave.
Both proofs, almost without change, can be adapted to prove it.

Theorem 4. Let q ^ 1 be an integer. Let C � Rq be a convex and f : C! R, f ^ 0, f �j 0
such that log f is concave. Then

max
x2Rq

f �x� % eqf �xf � where xf �

�
Rq

xf �x� dx�
Rq

f �x� dx

with equality if and only if there exist x0 2 Rq, a 2 R, a > 0 and u 2 Rq, u �j 0 such that for
all x 2 C

f �x� � f �x0�exp ÿhxÿ x0; ui
a

� �
and C � pos�x0;C0�

where C0 is a convex body in the affine hyperplane fx 2 Rq; hxÿ x0; ui � ag.
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