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Abstract. We obtain an existence theorem for generalized quasi-variational inequal-
ities in infinite-dimensional normed spaces which improves some aspects of a recent
result by P. Cubiotti [5], and gives a partial affirmative answer to a conjecture
formulated by B. Ricceri [8].

1. Introduction. The aim of this paper is to establish an existence theorem for a class of
generalized quasi-variational inequalities in normed spaces.

Let E be a real Hausdorff topological vector space with the topological dual E0. Let there
be given a closed convex set X 7 E, a multifunction G : X ! 2X , and a multifunction
F : X ! 2E0 . The generalized quasi-variational inequality defined by X, G and F, is the
problem of finding a pair �x̂; f̂� 2 X � E0 such that

x̂ 2 G�x̂�; f̂ 2 F�x̂�; sup
y2G�x̂�

hf̂; x̂ÿ yi % 0:�1:1�

It is convenient to denote this problem by GQVI (X, G , F). In a finite-dimensional setting,
such problem was considered firstly by D. Chan and J.S. Pang [2]. We refer to [5] and [8] for
detailed discussions on sufficient conditions for generalized quasi-variational inequalities to
have nonempty solution sets (the existence theorems). In [5], various applications of such
problems were discussed. A new application to control theory has been recently given in [4].

When G�x� � X for all x 2 X, problem (1.1) is said to be a generalized variational
inequality, and is denoted by GVI(X;F). In [7] B. Ricceri proved a general existence
theorem for generalized variational inequalities under the following assumptions on the
multifunction F:

(A1) For every x 2 X, the set F�x� is nonempty, convex, and weakly-� compact;
(A2) For each y 2 X ÿX, the set fx 2 X : inf

f2F�x�
hf; yi % 0g is compactly closed.

(A set W 7 E is called compactly closed if its intersection with any compact subset of E is
closed.) In [3] the finite-dimensional version of the just mentioned result was extended to
generalized quasi-variational inequalities. Namely, the following theorem was obtained.
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Theorem 1.1 ([3, Theorem 1]). Assume that E is a finite-dimensional Euclidean
space, X 7 E is a closed convex set, and K 7 X is a nonempty compact set. The problem
GQVI (X;G ;F) has at least one solution in K � E0 if the following conditions are satisfied:

(i) The set F�x� is nonempty and compact for each x 2 X, and convex for each x 2 K,
with x 2 G�x�;

(ii) for each y 2 X ÿX the set fx 2 X : inf
f2F�x�

hf; yi % 0g is closed;

(iii) G is a lower semicontinuous multifunction with closed graph, and, for each x 2 X, G�x�
is a convex set which meets K;

(iv) for each x 2 X nK, where x 2 G�x�, one has

sup
y2G�x�\K

inf
f2F�x�

hf; xÿ yi > 0:

The last assumption of the above theorem is called the coercivity condition. It is essential
in the case where the set X is unbounded. Note also that multifunctions having properties (i)
and (ii) were characterized in [11], where a different proof for Theorem 1.1 was given.

It is interesting to look for an infinite-dimensional version of Theorem 1.1. (Of course, it is
not easy to obtain such an extension.) To accelerate further research in this direction, the
following conjecture was formulated.

Conjecture (B. Ricceri [8]; see also [5]). Assume that: F satisfies assumptions (A1) and
(A2), G is lower semicontinuous, with closed graph and, for each x 2 X, G�x� is a convex set
which has nonempty interior in the affine hull of X. Moreover, let K, K1 be two nonempty
compact subsets of X, with K1 7 K and K1 finite-dimensional, such that G�x� has a nonempty
intersection with K1 for every x 2 X, and, for every x 2 X nK, with x 2 G�x�, one has

sup
y2G�x�\K1

inf
f2F�x�

hf; xÿ yi > 0:�1:2�

Then, GQVI (X; G ; F) has some solution in K � E0.

One of us [5, Theorem 3.1] has proved that the conjecture is true under the following
additional assumptions:

(a) E is a normed space;
(b) G : X ! 2X is a Lipschitzian multifunction;
(g) there is r > 0 such that the coercivity condition (1.2) holds for any x 2 X nK

satisfying d�x;G�x�� :� inf
y2G�x�

kxÿ yk % r.

In the sequel, by introducing a new technical construction we are able to remove condition
�g� and weaken condition �b�. But we have to assume E to be a Banach space (or to assume
that the closed convex hull of the set K is compact). In particular, we shall prove that the
conjecture is true under the following additional assumptions:

(a)0 E is a Banach space;
(b)0 G : X ! 2X is a Hausdorff lower semicontinuous multifunction.

Observe that �b�0 is weaker than �b�, but stronger than the property that G is a lower
semicontinuous multifunction. The question whether the above conjecture remains true
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without assuming �a�0 and �b�0, is still open. The exact formulation of our result is given in
Section 2. The proof is given in Section 3.

2. The result. In what follows we shall keep all the notations of the preceding introductory
part. The multifunction G : X ! 2X is said to have closed graph if the set
f�x; y� 2 X �X : y 2 G�x�g is closed in X �X. A multifunction F : X ! 2Z from X into a
normed space Z is said to be Hausdorff lower semicontinuous on X if for every x 2 X and
every d > 0 there exists a neighborhood U�x� of x in X such that

F�x� 7 F�x� � dBZ for all x 2 U�x�;
where BZ denotes the closed unit ball in Z. F is said to be lower semicontinuous on X if, for
every x 2 X and for every open set W in Z such that F�x� \W �j ;, there is a neighborhood
U�x� of x with the property that F�x� \W �j ; for all x 2 U�x�. It is easily seen that
Hausdorff lower semicontinuity implies lower semicontinuity.

Our result can be stated as follows.

Theorem 2.1. Suppose that E is a real Banach space, X 7 E is a closed convex subset,
G : X ! 2X and F : X ! 2E0 are certain multifunctions, K and K1 are nonempty compact
subsets of X such that K1 is finite-dimensional and K1 7 K. The problem GQVI �X;G ;F� has
some solution in K � E0 if the following assumptions are valid:

(i) F�x� is a nonempty weakly-� compact set for every x 2 X, and F�x� is convex for each
x 2 K such that x 2 G�x�;

(ii) for every y 2 X ÿX, the set fx 2 X : inf
f2F�x�

hf; yi % 0g is compactly closed;

(iii) G is Hausdorff lower semicontinuous, with closed graph;
(iv) for every x 2 X, G�x� is a convex set whose interior in the affine hull of X is nonempty,

and G�x� has a nonempty intersection with K1;
(v) for every x 2 X nK, x 2 G�x�, one has

sup
y2G�x�\K1

inf
f2F�x�

hf; xÿ yi > 0:

The proof of Theorem 2.1 will be given in the next section. Here we want only to point out
that in our argument the completeness of the space E is used only to guarantee that the
closed convex hull of the set K (denoted by co K) is compact. Therefore, Theorem 2.1 also
holds if we assume E to be any (even non-complete) normed space and that co K is compact
in E.

3. Proof of Theorem 2.1. This proof is based on Theorem 1.1 and some well-known facts
from functional analysis. Assuming the fulfilment of the assumptions, we divide the proof
into a sequence of lemmas.

Let V denote the affine hull of X. (Note that V may not be closed). Let V0 be the linear
subspace corresponding to V. By G

�
�x� :� intVG�x� we denote the interior of G�x� in the

induced topology of V. By our assumption (iv), G
�
�x� �j ; for all x 2 X. Besides, G

�
�x� is

convex because G�x� is convex.
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Lemma 3.1. The map G
�

: X ! 2V has the following property: For every x 2 X and every
y 2 G

�
�x�, there exist h > 0 and a neighborhood U�x� of x in E such that

y� hBV0 7 G
�
�x� for all x 2 U�x� \X:�3:1�

For proving this useful fact one can argue as with Proposition 2.4 in [5], where a reference
to [10] was made. Here we give a simple direct proof.

Pr oof. Let x 2 X and y 2 G
�
�x� be given. Since G

�
�x� is open in V, there is d > 0 such that

y� 2dBV0 7 G
�
�x�:�3:2�

By assumption (iii), there exists a neighborhood U�x� of x in E such that

G�x� 7 G�x� � dBV0 for all x 2 U�x� \X:�3:3�
Combining (3.3) with (3.2) we obtain

y� 2dBV0 7 G�x� � dBV0 for all x 2 U�x� \X:�3:4�
We claim that

y� dBV0 7 G�x� for all x 2 U�x� \X:�3:5�
On the contrary, suppose that there exists x̂ 2 U�x� \X and v̂ 2 BV0 such that y� dv̂ 2j G�x̂�.
Then dv̂ 2j G�x̂� ÿ y. Since G�x̂� ÿ y is a closed convex subset of V0, the separation theorem
[9, Theorem 9.2, p. 65] shows that there is v� 2 V 00 satisfying

hv�; dv̂i > sup
�hv�; zÿ yi : z 2 G�x̂�	:�3:6�

By (3.4),

sup
�hv�; 2dvi : v 2 BV0

	
% sup

�hv�; zÿ y� dvi : z 2 G�x̂�; v 2 BV0

	
;

hence

2dkv�k % sup
�hv�; zÿ yi : z 2 G�x̂�	� dkv�k:

Thus,

hv�; dv̂i % dkv�k % sup
�hv�; zÿ yi : z 2 G�x̂�	;

contrary to (3.6). From (3.5) it follows that (3.1) holds for any h 2 �0; d�. h

We now describe a construction which will enable us to apply Theorem 1.1 to deal with
our infinite-dimensional problem GQVI (X, G , F).

As before, denote by co K the closed convex hull of K. We have co K 7 X. Given any
z 2 co K we choose a point y�z� 2 G

�
�z�. By Lemma 3.1, there exists an open neighborhood

U�z� of z in E such that

y�z� 2 G
�
�x� for all x 2 U�z� \X:�3:7�

As co K is compact (see [6, Theorem 6, p. 416]), we find some points z1; z2; . . . ; zm 2 co K
such that

co K 7
Sm
i�1
�U�zi� \ V� �: W0 :
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Since

� :� inf
�

d�a;V nW0� : a 2 co K
	
> 0 ;

then the set W :� co K � ��=2�BV0 is convex and closed in V, and W � W0. Let f be the
family of all the finite-dimensional subspaces in E which contain K1 and also the points
y�z1�; . . . ; y�zm�. Consider f as a directed set, with the set-theoretic inclusion. Fix any
S 2f. Note that XW :� X \W is convex, and closed in V. For every x 2 XW there is some
i 2 f1; . . . ;mg such that x 2 U�zi�. Hence y�zi� 2 G

�
�x�. Therefore, G

�
�x� \ S �j ;. Let us set

GS�x� � G�x� \XW \ S for every x 2 XW \ S;�3:8�
where, for any subset A 7 E, A denotes the closure of A. Since the subspace S is finite-
dimensional, it is closed in E, so S :� XW \ S is a closed convex subset of S. Since XW is
bounded, then S is also bounded, and hence it is a compact set in S. Every f 2 E0 generates a
unique element j�f� 2 S0 by the formula

hj�f�; vi :� hf; vi for all v 2 S:

For every x 2 X, we define ~F�x� � fj�f� : f 2 F�x�g.
The task is now to prove that Theorem 1.1 can be applied to the problem GQVI(S, GS, ~F).

Take K \ S as the nonempty compact set in Theorem 1.1. The fact that ~F�x� is nonempty and
compact for every x 2 S, and convex for each x 2 K \ S satisfying x 2 GS�x�, follows directly
from our assumption (i) and the definition of ~F. Also, it is easy to check that the coercivity
condition of Theorem 1.1 holds by our assumption (v). Now, take any y 2 S ÿ S 7 X ÿX.
Since �

x 2 S : inf
~f2 ~F�x�

h~f; yi % 0
�
�
�

x 2 S : inf
f2F�x�

hf; yi % 0
�

�
�

x 2 X : inf
f2F�x�

hf; yi % 0
�
\ S;

then condition (ii) in Theorem 1.1 follows from our assumption (ii). What is left is to show
that GS is a lower semicontinuous multifunction with closed graph, GS�x� is nonempty and
convex for each x 2 S.

Since G : X ! 2X has closed graph, (3.8) implies that GS is a multifunction with closed
graph. As G�x� \K1 �j ; for every x 2 X, and K1 � XW \ S, then (3.8) shows that GS�x� is
nonempty for every x 2 S. Given any x 2 S, we deduce from formula (3.8) and the convexity
property of G�x� and XW that GS�x� is a convex set.

Lemma 3.2. For every x 2 S, G
�
�x� \XW \ S is nonempty.

Pr oof. Let x 2 S � XW \ S. Obviously, there is some x0 2 XW \ S such that kxÿ x0k % �=4.
Hence xÿ x0 2 ��=4�BV0 . As x0 2 XW 7 co K � ��=2�BV0, then x 2 co K � �3�=4�BV0 7 W0.
So there exists i 2 f1; . . . ;mg such that x 2 U�zi�. By (3.7), y�zi� 2 G

�
�x�. In consequence,

G
�
�x� \ S �j ;. Fix any v0 2 G

�
�x� \ S and any v1 2 G�x� \K1. The convexity of G�x� implies

that xt :� v1 � t�v0 ÿ v1� is contained in G
�
�x� \ S for all t 2 �0; 1�. Since v1 � �d=2�BV0 7 W,

then xt 2 G
�
�x� \XW \ S for all sufficiently small t 2 �0; 1�. In particular, G

�
�x� \XW \ S is

nonempty. h
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Lemma 3.3. GS : S ! 2S is a lower semicontinuous multifunction.

Pr oof. Suppose that x 2 S and W is an open set in V such that GS�x� \W �j ;. By Lemma
3.2, there exists some v0 2 G

�
�x� \XW \ S 7 GS�x�. Let v be a point from

GS�x� \W � G�x� \XW \ S \W. Repeating the argument which has been used in the proof
of Lemma 3.2, we find t 2 �0; 1� such that

xt :� v� t�v0 ÿ v� 2 G
�
�x� \XW \ S \W:�3:9�

By Lemma 3.1, there is a neighborhood U�x� of x such that

xt 2 G
�
�x� for all x 2 U�x�:�3:10�

From (3.9) and (3.10) it follows that

G
�
�x� \XW \ S \W �j ; for all x 2 U�x�:

Consequently, GS�x� \W �j ; for all x 2 U�x�, as desired. h

For the problem GQVI (S, GS, ~F), all the assumptions of Theorem 1.1 have been verified.
By that theorem, there exists a pair �xS; ~fS� 2 �K \ S� � S0 with the property that

xS 2 GS�xS�; ~fS 2 ~F�xS�; sup
y2GS�xS�

h~fS; xS ÿ yi % 0:�3:11�

Of course, ~fS � j�fS� for some fS 2 F�xS�. Clearly, the inequality in (3.11) implies

sup
y2G�xS�\XW\S

hfS; xS ÿ yi % 0:�3:12�

Then we must have

sup
y2G�xS�\S

hfS; xS ÿ yi % 0:�3:13�

Indeed, for any y 2 G�xS� \ S, since xS 2 K 7 co K 7 X 7 V, y 2 G�xS� 7 X 7 V,
V ÿ V 7 V0, and X is a convex set, then yt :� xS � t�yÿ xS� belongs to
XW � X \ �co K � ��=2�BV0� for a sufficiently small t 2 �0; 1�. By (3.12),

hfS; xS ÿ yti � thfS; xS ÿ yi % 0;

hence hfS; xS ÿ yi % 0, and (3.13) is proved.
It follows from (3.11) and the above arguments that: For every S 2f there exists

�xS;fS� 2 �K \ S� � E0 such that

xS 2 G�xS�; fS 2 F�xS�; sup
y2G�xS�\S

hfS; xS ÿ yi % 0:�3:14�

Since K is compact, then the net fxSgS2f has a cluster point x̂ 2 K. As G has closed graph, it
follows from the first inclusion in (3.14) that x̂ 2 G�x̂�.

The following lemma will complete the proof of Theorem 2.1.

Lemma 3.4. There exists f̂ 2 F�x̂� such that �x̂; f̂� is a solution of the problem
GQVI �X;G ;F�.
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Pr oof. (We shall use the same method of reasoning as in [5] and in [7].) Let us first show
that

inf
f2F�x̂�

hf; x̂ÿ yi % 0 for every y 2 G
�
�x̂�:�3:15�

By contrary, assume that there exists ~y 2 G
�
�x̂� such that

inf
f2F�x̂�

hf; x̂ÿ ~yi > 0:

By Lemma 3.1, there is d > 0 such that

~y� dBV0 7 G�x� for all x 2 �x̂� dBE� \X:�3:16�
By our assumption (ii), there exists m 2 �0; d� such that

inf
f2F�x�

hf; x̂ÿ ~yi > 0 for all x 2 �x̂� mBE� \K:

Choose a subspace S1 2f such that ~y 2 S1 and x̂ 2 S1. Let S2 2f be such that S1 7 S2 and
kxS2 ÿ x̂k < m. Putting w � xS2 ÿ x̂� ~y, we have w 2 V and

kwÿ ~yk � kxS2 ÿ x̂k < m;

hence (3.16) yields w 2 G�xS2�. Since

inf
f2F�xS2 �

hf; xS2 ÿ wi � inf
f2F�xS2 �

hf; x̂ÿ ~yi > 0;

then hfS2
; xS2 ÿ wi > 0. As w 2 G�xS2� \ S2, then the last inequality is a contradiction to

(3.14). We have then obtained (3.15), which can be rewritten as

sup
y2G
�
�x̂�

inf
f2F�x̂�

hf; x̂ÿ yi % 0:

According to Theorem 5 on p. 216 in [1], there exists f̂ 2 F�x̂� such that

sup
y2G
�
�x̂�
hf̂; x̂ÿ yi � sup

y2G
�
�x̂�

inf
f2F�x̂�

hf; x̂ÿ yi % 0:

This yields sup
y2G�x̂�

hf̂; x̂ÿ yi % 0, which completes the proof. h
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