
A note on sums of five almost equal prime squares
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Abstract. Let N be any sufficiently large positive integer satisfying the congruence
condition N � 5�mod 24�. It is shown that there exists a d > 0 such that N can be written as
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where the pi are prime numbers and U is chosen as U � N
1
2ÿd.

1. Introduction and statement of results. One of Hua’s outstanding contributions to prime
number theory was to prove that every sufficiently large integer N � 5�mod 24� can be
written as the sum of five prime squares ([3]). Recently, Liu and Zhan ([6]) were able to
sharpen this result in the following way:

Theorem 1. Assume the Great Riemann Hypothesis. Denote by R�N;U� the number of
solutions of the Diophantine equation with prime variables
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Then for U � N
9

20�"; we have

R�N;U� �

460
���

5
p

3
s�N�

U4

N
1
2log 5N

1 � o�1�� �;

where

s�N� �
X

1

q�1

1
f5
�n�

X

q

a�1
�a;q��1

C5
�a;q�e ÿ

aN
q

� �

with

C�a;q� �
X

q

a�1
�h;q��1

e
ah2

q

� �

:
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Here s�N� is the so-called singular series, which is convergent and satisfies s�N� > c > 0 for
N � 5 �mod 24�:

The proof uses the circle method. The unit interval is in the usual way split into major arcs
and minor arcs. The contribution derived from the minor arcs is estimated by the following
theorem which is also proved in [6]:

Theorem 2. Let " > 0 be arbitrary, 1 % y % x and

S2�x; y; a� �
X

x<n % x�y

L�n�e�n2a�:

Then

S2�x; y; a� � y1�" 1
q
�

x
1
2

y
�

x
4
3

y2 �
qx
y3

 !1
4

�1:1�

holds for a �

a
q
� l; �a;q� � 1 satisfying 1 % q % xy; jlj %

1
q2 :

We will show in this paper that Theorem 1 holds in a weaker form without assuming any
hypothesis on the distributions of the zeros of the L-functions. More precisely, we will prove:

Theorem. There exists a d > 0 such that every sufficiently large number N � 5 �mod 24�
can be written as

N � p2
1 � p2
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3 � p2

4 � p2
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with U chosen as

U � N
1
2ÿd

:�1:2�

We will adopt a method developed by Liu and Tsang ([4], [5]) to our problem in order to
calculate the contribution of the major arcs. Because we follow very closely the work of Liu
and Tsang we will often not give all the details of the proof, but refer to the corresponding
arguments in [4] and [5]. The minor arcs will be treated by Theorem 2 as in [6] .

2. Notation and structure of the proof. The most part of our notations will be chosen
similar to the notations in [5]. Throughout this paper p always denotes a prime number;
c1; c2; . . . are effective positive constants and d denotes a small positive number, which will
be specified later. U is defined by (1.2) and further let

L � log N; P � Nd1 ; T � P1=
����

d1

p

; Q � NTÿ1=4
;

where d1 � 104 d: It is a well known fact (see [1]) that there is at most one primitive
character to a modulus q % T for which the corresponding L-function has a zero in the
region

s < 1 ÿ h�T�; jtj % T; where h�T� �
c1

log T
;�2:1�
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for a small constant c1. If there is such an exceptional character, it is real and we denote it
by ~c. The corresponding exceptional zero is real, simple and unique, and we denote it by ~b.
If ~c exists, the zero-free region in (2.1) is widened to (see [2])

h�T� �
c2

log T
log

ec1

�1 ÿ ~b�log T

 !

:�2:2�

It is further known that for the exceptional modul ~r the estimates
c3

~r1=2log 2
~r

% 1 ÿ ~b %
c1

log T
�2:3�

hold. For any x > N1=4 and any c mod q with q % T we define:

Sc�x;T� �
X

0

jgj % T

xbÿ1
;

where
P

0

jgj % T
denotes the summation over all zeros � b� ig of L�s; c� lying inside the region:

jgj % T;
1
2 % b % 1 ÿ h�T� and h�T� is defined in (2.2) or (2.1) according as ~b exists or not.

Let

W�T� � �1 ÿ ~b�log T;

1;
if ~b exists;
otherwise:

�

�2:4�

Using these results it can be shown by applying Gallagher’s density estimate ([2]) that the
following lemma, which is shown in the same way as Lemma 2.1 in [4], is true.

Lemma 2.1. If x ^ N1=4 there exists an absolute constant c4 such that for a sufficiently
small d1

X

q % T

X

�

c mod q

Sc�x;T� � W5
�T�exp �ÿc4=d1�;

where
X

�

c mod q

denotes the summation over all primitive characters c �mod q�.

Further for any real l we set e�l� � e2pil and

N1 �

����

N
5

r

ÿ U; N2 �

����

N
5

r

� U;

which we use to define

S�a� �
X

N1<n % N2

L�n�e�n2a�; Sc�a� �
X

N1<n % N2

L�n�c�n�e�n2a�;

for every character c �mod q) with q % T.

I�a� �
�

N2

N1

e�x2a�dx; ~I�a� �
�

N2

N1

x~bÿ1e�x2a�dx;

and

Ic�a� �
�

N2

N1

e�x2a�
X

0

jgj % T

x�ÿ1 d:
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For any character c mod q let

Cc�m� �
X

q

l�1

c�l�e
ml2

q

� �

; Cq�m� � Cc0
�m�:

We write
X

�

q

a�1

�

X

q

a�1
�a;q��1

; recall Q � NTÿ1=4 and define the major arcs and minor arcs as
follows:

M �

X

q % P

X

�

q

a�1

I�a; q�; I�a; q� �
a
q
ÿ

1
Qq

;
a
q
�

1
Qq

� �

;

m �

1
Q
; 1 �

1
Q

� �

n M:

The major arcs are obviously disjoint subintervals of
1
Q
; 1 �

1
Q

� �

. Writing

I�n� �
X

N1<n1 ;...;n5 % N2
n2

1
�...�n2

5
�N

L�n1� . . . L�n5�;�2:5�

we obtain

I�N� �
�

1� 1
Q

1
Q

e�ÿna�S5
�a�da �

�

�

M
�

�

m

�

e�ÿna�S5
�a�da

�: I1�N� � I2�N�:

�2:6�

We will first treat the integral over the major arcs.

3. Simplification of I1�N�. For any a in I�a;q� we have a �

a
q
� h with jhj %

1
qQ

: In a well
known way we obtain

S�a� � �
ÿ1
�q�

X

c mod q

Cc�a�Sc�h�:�3:1�

Following the arguments in [4] we will now give four lemmas which we will use to simplify
the contribution of the major arcs: Their proofs will not always be given completely because
some of them can be shown in exactly the same way as Lemma 3.1. to 3.4. in [4].

Lemma 3.1. For any real a and any c mod q with q % T, we obtain

Sc�h� � dc0
I�h� ÿ d

~c
~I�h� ÿ Ic�h� � O��1 � jhjN�N1=2L2Tÿ1

�;

where

dc0
�

1; if c � c0 �mod q�

0; otherwise;

�

; d
~c �

1; if c � ~cc0 �mod q�

0; otherwise:

���

Proof . We note that for 2 % T % x the identity (see [1], p. 109 and p. 120.)

X

n % x

c�n�L�n� � dc0
x ÿ d

~c
x~b

~b
ÿ

X

0

jIm�j % T

x�

�
� R�x;q��3:2�
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is valid with R�x;q� �
xL2

T
� L and the summation is running over all zeros of L�s; c� with

0 % Re��� % 1; jIm���j % T and the possible Siegel – zero is excluded. Then Lemma 3.1.
follows by using partial summation if we note that

�

N2

N1

e�x2h� d�R�x; q�� N1=2L2Tÿ1
�

�

N2

N1

jR�x;q�j
d
dx

e�x2h�

�

�

�

�

�

�

�

�

� �1 � jhjN�N1=2L2Tÿ1
:

Lemma 3.2. Let � � b � ig; 1=2 % b % 1: Then for any real h it is known that

�

N2

N1

e�x2h�x�ÿ1dx �

min Nb
2 ; jhj

ÿ

b�1
2 Nÿ1

1

� �

; if g � 0;

Nb
2 jgj

ÿ1
; if jhj %

jgj

8pN2
2

;

N2
2 Nbÿ2

1 jgjÿ1=2
; if

jgj

8pN2
2

% jhj %
jgj

2pN2
1

;

Nbÿ2
1 jhjÿ1

; if
jgj

2pN2
1

< jhj:
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<

>

>
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>
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>

>

>

>

>
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>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

The proof of this lemma is literally the same as the one of Lemma 3.2 in [4].

Lemma 3.3. For any real h we obtain

I�h� � min N2; jhj
ÿ1Nÿ1

1

� �

; ~I�h� � min N
~b
2 ; jhj

ÿ

~b�1
2 Nÿ1

1

� �

;

Ic�h� �

N2; for any real h;

N2
2Nÿ2

1 �jhj�ÿ1=2
; for Nÿ2

2 < jhj %
T

2pN2
1

;

jhjÿ1Nÿ1
1 ; for

T
2pN2

1

< jhj:

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

Using lemma 3.2 this lemma is proved in exactly the same way as Lemma 3.3 in [4].

Lemma 3.4.

�

1

ÿ1

jI�h�j4 dh �

N6
2

N4
1
;

�

1

ÿ1

j
~I�h�j4 dh �

N3�~b�1�
2

N4
1

;

�

1

ÿ1

jIc�h�j
4 dh �

N10
2

N8
1

:

Proof . The first estimate follows from Lemma 3.3, if we split up the integral in the
following way:

�

1

ÿ1

jI�h�j4 dh �
�

jhj % Nÿ2
2

N4
2 dh�

�

Nÿ2
2 <jhj

jhjÿ4Nÿ4
1 dh �

N6
2

N4
1

:
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The second estimate is proved in the same way whereas for the proof of the third estimate
we split the integral in the following way:

�

1

ÿ1

jIc�h�j
4 dh �

�

jhj % Nÿ2
2

N4
2 dh �

�

Nÿ2
2 <jhj % T

2pN2
1

N8
2Nÿ8

1 �jhj�ÿ2 dh

�

�

T
2pN2

1

< jhj

jhjÿ4Nÿ4
1 dh � N2

2 �
N10

2

N8
1

�

N2
1

T3 �
N10

2

N8
1

:

We now simplify I1�N� in the same way as it is done in [4]. Set

G�a;q; h� �
X

c mod q

Cc�a�Ic�h�

and

H�a;q; h� � Cq�a�I�h� ÿ dqC
~cc0
�a�~I�h� ÿ G�a;q;h�;

where

dq �
1; if ~rjq;

0; otherwise.

� �

For any a �

a
q
� h 2 I�a;q� we obtain by applying Lemma 3.1 to (3.1)

S�a� � �
ÿ1
�q� H�a;q;h� � O

X

c mod q

�1 � jhjN�jCc�a�jN
1=2L2Tÿ1

 ! !

:

From the definition of the major arcs we see that jhjN % T1=4 and trivially we find that

X

c mod q

Cc�a�

�

�

�

�

�

�

�

�

�

�

% �
2
�q�:

So the O-term above is � ��q�N1=2L2Tÿ3=4
: Together with the definition of I1�N� we obtain

I1�N� �
X

q % P

�
ÿ5
�q�
X

�

q

a�1

e ÿ

a
q

N
� �

�

�

1=qQ

1=qQ
e ÿhN� �

ÿ

H�a;q; h� � O���q�N1=2L2Tÿ3=4
�

�5 dh:

It is easily deduced from Lemma 3.3 that H�a;q;h� � �
2
�q�N1=2

: Using this relation we see
that the grand error term in the last expression for I1�N� may be estimated by

�

X

q % P

�
ÿ5
�q�
X

�

q

a�1

�

1=qQ

1=qQ
��

2
�q�N1=2

�

4
��q�N1=2L2Tÿ3=4dh

� N3=2Pÿ2 % U4Nÿ1=2Pÿ1

for a sufficiently small d1 and because of d1 � 104 d: Hence we reach

I1�N��
X

q % P

�
ÿ5
�q�
X

�

q

a�1

e ÿ

a
q

N
� �

�

1=qQ

1=qQ
e ÿhN� �H5

�a; q;h� dh�O�U4Nÿ1=2Pÿ1
�:�3:3�
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The next step will be to extend the range of integration in (3.3) to �ÿ1 ; 1�: The product

H5
�a; q;h� is a sum of ���q� � 2�5 terms of the form

Q

5

j�1
Ej, where each Ej is

Cq�a�I�h�;ÿdqC
~cc0
�a�~I�h� or ÿCc�a�Ic�h�: We note that for jhj ^ �qQ�ÿ1 among the

estimates for I�h�; ~I�h� and Ic�h� in Lemma 3.3 the weakest one is the estimate in the middle
range for Ic�h�: So we obtain

�

jhj>�qQ�ÿ1

Y

5

j�1

Ej dh � ��q��qQ�1=2 �

1

ÿ1

jE1E2E3E4jdh:

Because of Lemma 3.4 this is � �
5
�q�N�qQ�1=2

: Thus extending the integration to
�ÿ1 ; 1�, the total error induced is

�

X

q % P

�
ÿ5
�q���q����q� � 2�2

�
5
�q�q1=2N3=2Tÿ1=8

� N3=2Pÿ2 % U4Nÿ1=2Pÿ1

for a sufficiently small d1 and because of d1 � 104d: So (3.3) can now be written as

I1�N��
X

q % P

�
ÿ5
�q�
X

�

q

a�1

e ÿ

a
q

N
� �

�

1

ÿ1

e ÿhN� �H5
�a;q;h�dh�O�U4Nÿ1=2Pÿ1

�:�3:4�

4. Final treatment of the major arcs. The following treatment of the major arcs is nearly
identitical with the procedure in [5]. For the treatment of the singular series we can

completely refer to [5]. We recall the definitions N1 �

����

N
5

r

ÿ U; N2 �

����

N
5

r

� U: We use

the following lemma for the calculation of the contribution of the major arcs:

Lemma 4.1. For any complex numbers �i with 0 < Re��j� % 1; j � 1; :::; 5; it is known that

�

1

ÿ1

e�ÿNh�
Q

5

j�1

�

N2

N1

x�jÿ1e�hx2
�dx

 !

dh�2ÿ5N3
2

�

d

Q

5

j�1
�N2

2xj�
��jÿ1�=2xÿ1=2

j dx1 . . . dx4;�4:1�

where

x5 � NNÿ2
2 ÿ

X

4

j�1

xj�4:2�

and

d � f�x1; . . . ; x4� : �N1=N2�
2 % x1; . . . ; x5 % 1g:�4:3�

Furthermore the lower estimate

�

d

Q

5

j�1
xÿ1=2

j

 !

dx1 . . . dx4 � U4Nÿ2
�4:4�

holds.

Proof . (4.1) is shown in exactly the same way as (3.15) in [5]. For the proof of (4.4) we
note that because of (4.2) the condition for x5 in (4.3) is equivalent to

N
N2

2
ÿ 1 %

X

4

j�1

xj %
N ÿ N2

1

N2
2

:�4:5�
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We now define the region d1 by

d1 � �x1; . . . ; x4� : �N1=N2�
2 % x1; . . . ; x4 %

N ÿ N2
1

4N2
2

� �

and show that it lies in d. Taking into account that
N
N2

2

ÿ 1 < 0 we see from (4.3) and (4.5)

that the lower bounds of d1 are equal to those of d. This together with the relation

N ÿ N2
1

4N2
2

�

4
5

N � 2

����

N
5

r

U ÿ U2

4
5

N � 8

����

N
5

r

U � 4U2

< 1

shows that d1 lies in d. Using xÿ1=2
j ^ 1 we find that

�

d

Q

5

j�1
xÿ1=2

j

 !

dx1 . . . dx4 ^
�

d1

Q

4

j�1
xÿ1=2

j

 !

dx1 . . . dx4 ^
NÿN2

1
4N2

2
ÿ

N1
N2

� �2
� �4

�

N ÿ 5N2
1

4N2
2

� �4

�

10
���

N
5

q

U ÿ 5U2

4N2
2

0

@

1

A

4

� U4Nÿ2
;

which proves (4.4).
We know from the definition of H�a; q;h� that H5

�a;q;h� is a sum of 35 terms which can
be divided into three groups:

T1: the term �Cq�a�I�h��
5
;

T2: the 211 terms each of which has at least one G�a;q;h� as factor,
T3: the remaining 31 terms.

We further write for i � 1; 2; 3

Mi �
X

q % P

�
ÿ5
�q�
X

�

q

a�1

e
ÿNa

q

� �

�

1

ÿ1

e�ÿNh� fsum of the terms in Tigdh;

from which we deduce by using (3.4)

I1�N� � M1 � M2 � M3 � O�U4Nÿ1=2Pÿ1
�:�4:6�

We also define

p0 �
N3

2

25

�

d

Q

5

j�1
xÿ1=2

j

 !

dx1 . . . dx4;�4:7�

X

�q�

c1�n1� . . . c5�n5� �
X

1 % n1 ;...;n5 % q; �nj ;q��1

n2
1
�...�n2

5
�N �mod q�

c1�n1� . . . c5�n5�;

and

s�p� �

�
ÿ5
�23

�23 P

�23
�

1 for p � 2;

�
ÿ5
�p�p

P

�p�
1 for p ^ 3:

8

>

>

<

>

>

:

9

>

>

=

>

>

;

:

27Vol. 69, 1997 Sums of five almost equal prime squares



Without further mentioning it we will make use of the fact that
Q

p
s�p� � 1. Finally we know

from (4.10) in [5] that
Y

pj~r

s�p� � s~r�ÿ5
�s~r�

X

�s~r�

1�4:8�

holds, where s � 1; 4 and 2 for 2 j=~r, 2 k ~r and 4j~r respectively. We will now give estimates for
the respective contribution of the Mi to I1�N� from which we can easily calculate the
contribution of the major arcs. We first have

M1 � p0

Y

p

s�p� � O�N3=2Pÿ1log 60 P�;�4:9�

the proof of which is literally the same as the one of Lemma 4.1 in [5]. The next estimates are
given by

M3 � N3
2~rÿ1log P�4:10�

and

M1 � M3 � W5
p0

Y

p

s�p� � O�N3=2Pÿ1log 60P�:�4:11�

(4.10) corresponds to Lemma 4.2 b) in [5]. If ~b does not exist the term M3 does not appear
and (4.11) follows from (4.9) and the definition of W. In the other case we follow the proof of
Lemma 4.3 in [5] and derive in exactly the same way

M1 � M3 � s~r�ÿ5
�s~r�

Y

�p;~r��1

s�p�
N3

2

25

X

�s~r�

�

d

Q

5

j�1
xÿ1=2

j

 !

�

Y

5

j�1

�1 ÿ ~c�nj��N2
2xj�

�
~bÿ1�=2

�

 !

dx1 . . . dx4 � O�N3=2Pÿ1log 60P�:

�4:12�

Taking into account that for xj 2 d there is xj ^
N2

1

N2
2

we obtain

Y

5

j�1

�1 ÿ ~c�nj��N2
2xj�

�
~bÿ1�=2

�

 !

^
Y

5

j�1

�1 ÿ N
~bÿ1
1 �:

Using the mean value theorem of differential calculus we further obtain

1 ÿ N
~bÿ1
1 � �1 ÿ ~b�log N1 � �1 ÿ ~b�log T � W:

Thus we can conclude from (4.12)

M1 � M3 � W5s~r�ÿ5
�s~r�

Y

�p;~r��1

s�p�
N3

2

25

X

�s~r�

�

d

Q

5

j�1
xÿ1=2

j

 !

� O�N3=2Pÿ1log 60P�;�4:13�

which together with (4.7) and (4.8) proves (4.11). The contribution of M2 is estimated in the
same way as the corresponding term in [5]. Thus we reach

M2 � W5exp �ÿc=
�����

d1

p

�p0

Y

p

s�p� � O�N3=2Pÿ1log 60p�:�4:14�
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Finally we combine the above estimates and obtain a lower bound for I1�N�: For the error
term in (4.9). (4.11) and (4.14) the estimate

N3=2Pÿ1log 60p � U4Nÿ1=2Pÿ1=2
�4:15�

holds because of d1 � 104d. We distinguish two cases:
a) ~r > P1=13 or ~b does not exist. Using (4.6), (4.9), (4.10), (4.14), (4.15) and d1 � 104d we

obtain for a sufficiently small d1

I1�N� ^
1
2
p0

Y

p

s�p� � O�U4Nÿ1=2Pÿ1=27log P�:

Finally we derive from (4.4) and (4.7)

I1�N� � U4Nÿ1=2
:�4:16�

b) ~r % P1=13. Using (4.6), (4.11), (4.14) and (4.15) we see

I1�N� ^
1
2

W5
p0

Y

p

s�p� � O�U4Nÿ1=2Pÿ1=2
�:

From (2.3) we conclude

W � �1 ÿ ~b�log T ^ c3log T�~r1=2log 2
~r�ÿ1

� Pÿ1=26log ÿ2P;

from which we deduce

I1�N� � U4Nÿ1=2Pÿ5=26log ÿ10P:�4:17�

5. The minor arcs. Applying (1.1) we obtain

sup
a2m

jS�a�j � U1�e 1
P
�

N1=4

U
�

N2=3

U2 �

QN1=2

U3

� �1=4

� U1�ePÿ1=4
:

Now we can estimate I2�N� by

� sup
a2m

jS�a�
�

1

0
jS�a�j4 da � U1�ePÿ1=4U2�e % U4Nÿ1=2Pÿ3=13

;�5:1�

where in the the last step we have used

Pÿ1=4 % U1ÿ2eNÿ1=2Pÿ3=13
:

This is easily seen to be correct because of 104 d � d1 and thus

P
ÿ1
4 �

3
13
� N

ÿ1
52d1

� Nÿ2d % Uÿ2eNÿd
� U1ÿ2eNÿ1=2

:

The theorem follows from (2.6), (4.16), (4.17) and (5.1).
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