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On finite groups in which the twisted conjugacy classes of the
unit element are subgroups
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Abstract. We consider groups G such that the set [G, ϕ] = {g−1gϕ|g ∈
G} is a subgroup for every automorphism ϕ of G, and we prove that
there exists such a group G that is finite and nilpotent of class n for
every n ∈ N. Then there exists an infinite not nilpotent group with the
above property and the Conjecture 18.14 of Khukhro and Mazurov (The
Kourovka Notebook No. 20, 2022) is false.
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1. Introduction. Let G be a group and ϕ be an endomorphism of G; we say
that elements x, y ∈ G are ϕ-conjugate if there exists an element z ∈ G such
that y = z−1xzϕ.

It is easy to check that the relation of ϕ-conjugation is an equivalence
relation in G. In particular, it is the usual conjugation if ϕ = idG and it is the
total equivalence relation if ϕ = 0G is the zero endomorphism.

Equivalence classes are called twisted conjugacy classes or ϕ-conjugacy
classes and their number R(ϕ) is called the Reidemeister number of the endo-
morphism ϕ.

The ϕ-conjugacy class [1]ϕ = {x−1xϕ|x ∈ G} of the unit element of the
group G is a subset whose cardinality is equal to the index |G : CG(ϕ)| of the
centralizer CG(ϕ) = {x ∈ G|xϕ = x} of ϕ in G; in what follows, we will put
[1]ϕ =: [G,ϕ] and we will write [x, ϕ] := x−1xϕ.

If ϕ = idG, then [G,ϕ] = {1} and if ϕ = 0G, then [G,ϕ] = G so, in these
cases, [G,ϕ] is a subgroup of G. However, in the general case, [G,ϕ] is not
a subgroup, it is not if we consider an automorphism ϕ ∈ Aut(G) and not
even if this automorphism ϕ ∈ Inn(G) is inner. For instance, if G = S3 is the

http://crossmark.crossref.org/dialog/?doi=10.1007/s00013-024-02025-6&domain=pdf


226 C. Nicotera Arch. Math.

symmetric group of degree 3 and ϕ = ḡ is the inner automorphism induced by
g = (123), then [1]ḡ = {1, (132)} �≤ G.

Notice that if ϕ ∈ AutC(G) is a central automorphism of a group G, that
is, if g−1gϕ ∈ Z(G) for every g ∈ G, then [G,ϕ] ≤ G. So, in particular, if
the group G is nilpotent of class ≤ 2, then [G,ϕ] is a subgroup for every
ϕ ∈ Inn(G).

As it is easy to verify, if a group G is abelian, then not only H = [G,ϕ] ≤ G
for every ϕ ∈ End(G), but for every element x ∈ G, its ϕ-conjugacy class is
equal to the coset [x]ϕ = xH, that is, ϕ-conjugation is a congruence in G.

It is possible to prove that this property characterizes abelian groups. In
fact, if ϕ-conjugation is a congruence for every ϕ ∈ End(G), then in particular,
conjugation is a congruence. This implies that every conjugacy class has order
1, that is, gx = g for every g, x ∈ G, hence G is abelian. Actually for a group
to be abelian, it is enough that there exists an inner automorphism ḡ ∈ Inn(G)
such that ḡ-conjugation is a congruence in G.

Proposition 1.1. A group G is abelian if and only if there exists g ∈ G such
that ḡ-conjugation is a congruence in G.

Proof. We only have to show that if ḡ-conjugation is a congruence for an
element g ∈ G, then the group is abelian.

If ḡ is a congruence, then |[x]ḡ| = |[1]ḡ| = |{h−1hg|h ∈ G}| for every x ∈ G.
In particular, |{h−1hg = [h, g]|h ∈ G}| = |[g]ḡ| so |{[h, g]|h ∈ G}| = 1, that
is, {[h, g]|h ∈ G} = {1} since [g]ḡ = {g}. This means that g ∈ Z(G) hence
ḡ = idG, conjugation is a congruence and so G is abelian. �

In the paper [1], the authors prove that every finite group G in which the ϕ-
conjugacy class of the unit element is a subgroup for every inner automorphism
ϕ ∈ Inn(G) is nilpotent. Anyway, it is not possible to bound the nilpotency
class of such groups; in fact, in [3], the authors construct, for any integer
n > 2 and for any prime p > 2, a finite p-group G nilpotent of class ≥ n
with this property. However, they notice that there exist automorphisms φ ∈
Aut(G)\Inn(G) such that [G,φ] is not a subgroup of G.

It is therefore natural to ask if it is possible to bound the nilpotency class
of a finite group G such that the ϕ-conjugacy class of the unit element is a
subgroup for every ϕ ∈ Aut(G). In this regard, in [1], the conjecture is made
that such groups could be abelian (cfr. also [5, 18.14]). This conjecture is
certainly false, in fact, there exist finite non-abelian p-groups in which every
automorphism is central (see for instance [2,7]). Of course, such groups are
nilpotent of class 2 but we will prove the existence of nilpotent groups of
every class n with this property. So also the answer to the previous question
is negative.

Our main result is the following

Theorem 1.2 (Main Theorem). For every integer n ∈ N and for every odd
prime p, there exists a finite p-group G, of class n, in which the ϕ-conjugacy
class of the unit element is a subgroup for every ϕ ∈ Aut(G).

As we will see, these groups are abelian-by-cyclic, and this result will give
a negative answer also to Problem 3 of [3].



Vol. 123 (2024) On groups with a condition on twisted conjugacy classes 227

Moreover, from Theorem 1.2, it follows the existence of an infinite non-
nilpotent group G such that [G,ϕ] ≤ G for every ϕ ∈ Aut(G) and so Conjec-
ture 18.14 of [5] is false.

2. The proof of the main theorem. Let n be an integer n ≥ 2, p be an odd
prime, and G = A � 〈x〉, where A = 〈a〉 × 〈b〉 � Zpn × Zpn , 〈x〉 � Zpn−1 , and
cx = c1+p for every c ∈ A.

It is easy to verify that G′ = 〈ap〉 × 〈bp〉 and that G is nilpotent of class n.
Moreover, for every c ∈ A, we have that 〈c〉 is normal in G; in particular, for
every g1, g2 ∈ G, we have that 〈[g1, g2]〉 is normal in G, then 〈g1, g2〉′ = 〈[g1, g2]〉
and this implies that 〈g1, g2〉 is a regular p-group since its derived subgroup is
cyclic ([4, III 10.2 (c)]). Therefore G is a regular p-group.

Let ϕ ∈ Aut(G) be an automorphism of G, we will prove that [1]ϕ =
{g−1gϕ|g ∈ G} = [G,ϕ] is a subgroup.

First of all we have that

[c, ϕ] ∈ A ∀c ∈ A. (∗)

In fact, if there exists c ∈ A such that [c, ϕ] �∈ A, then either [a, ϕ] �∈ A or
[b, ϕ] �∈ A. Without loss of generality. we may assume that [a, ϕ] �∈ A, that is,
[a, ϕ] = yxα with y ∈ A and α ∈ Z such that pn−1 does not divide α.

Observe that aϕ = ayxα, (aϕ)pn−1
= (ay)pn−1

(xα)pn−1
zpn−1

with z ∈ G′

since G is regular, and then (aϕ)pn−1
= (ay)pn−1

because G′ has exponent
pn−1 and, in particular, ay has order pn.

Let [b, ϕ] = txβ with t ∈ A and β ∈ Z, then bϕ = btxβ and we have that
also bt has order pn since (bϕ)pn−1

= (bt)pn−1
.

Now 1 = [a, b] = [aϕ, bϕ] = [ayxα, btxβ ] = [ay, xβ ]x
α

[xα, bt]x
β

and this
implies that [ay, xβ ]x

α

= [bt, xα]x
β

. Therefore there exist integers γ, δ ∈ Z

such that (ay)γ = (bt)δ because [ay, xβ ]x
α ∈ 〈ay〉 and [bt, xα]x

β ∈ 〈bt〉.
From 〈a〉 ∩ 〈b〉 = {1}, it follows that 〈aϕ〉 ∩ 〈bϕ〉 = {1}, then

〈(aϕ)pn−1〉 ∩ 〈(bϕ)pn−1〉 = 〈(ay)pn−1〉 ∩ 〈(bt)pn−1〉 = {1}.

This implies that 〈ay〉∩〈bt〉 = {1} because the intersection between the unique
subgroups of order p of the cyclic p-groups 〈ay〉 and 〈bt〉 is the trivial subgroup.
Hence pn divides both γ and δ, so xβ ∈ CG(ay) and xα ∈ CG(bt). In partic-
ular, (bt)xα

= (bt)(1+p)α

= bt, then (1 + p)α ≡ 1 (mod pn) and, since the
multiplicative order of (p + 1) in Zpn is pn−1, we have that pn−1 divides α,
that is a contradiction. From (∗), it follows that cϕ ∈ A for every c ∈ A, and
in particular, aϕ ∈ A.

Now we prove that xϕ = sx with s ∈ A and so [x, ϕ] = x−1xϕ = sx =
s1+p ∈ A. Let xϕ = sxλ with λ ∈ Z and s ∈ A; from ax = a1+p, it follows
that (aϕ)xϕ

= (aϕ)(1+p), that is, (aϕ)xλ

= (aϕ)1+p and (aϕ)(1+p)λ

= (aϕ)1+p.
Therefore (1 + p)λ ≡ (1 + p) (mod pn), λ ≡ 1 (mod pn) and so xϕ = sx.

Since [x, ϕ] ∈ A, we have that [xα, ϕ] = [x, ϕ]β with β ∈ Z, that is, [xα, ϕ] ∈
〈[x, ϕ]〉 for every α ∈ Z and so V = {[xα, ϕ]|α ∈ Z} ⊆ 〈[x, ϕ]〉.

Put [x, ϕ] = c, that is, xϕ = xc. If |V | = |〈x〉 : C〈x〉(ϕ)| = pk, then
(xϕ)pk

= (xpk

)ϕ = xpk

, that is, (xc)pk

= xpk

. Hence xpk

= xpk

cpk

zpk

with
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z ∈ (〈x, c〉)′ = 〈cp〉, that is, xpk

= xpk

cpk

(clp)pk

= xpk

c(1+lp)pk

which implies
c(1+lp)pk

= 1 and so the order o(c) divides pk. Then pk = |V | ≤ |〈c〉| ≤ pk and
|V | = |〈c〉|. So we have that (∗∗) V = 〈[x, ϕ]〉.

Let B = {[c, ϕ]|c ∈ A}. From (∗), we have that B ⊆ A and we prove that
B ≤ A. In fact, for every c, d ∈ A, we get [cd, ϕ] = [c, ϕ]d[d, ϕ] = [c, ϕ][d, ϕ] and
[c−1, ϕ] = [c, ϕ]−1. Moreover, 〈[x, ϕ]〉 ≤ A since [x, ϕ] ∈ A. Then B〈[x, ϕ]〉 ≤ A,
and we show that B〈[x, ϕ]〉 = [G,ϕ] so in particular [G,ϕ] ≤ G.

For every g ∈ G, there exist f ∈ A and α ∈ Z such that g = fxα; then
[g, ϕ] = [fxα, ϕ] = [f, ϕ]x

α

[xα, ϕ] = [f, ϕ]ξ[x, ϕ]η with ξ, η ∈ Z and so [g, ϕ] ∈
B〈[x, ϕ]〉.

Conversely, if we consider [d, ϕ][x, ϕ]η with d ∈ A, then we have that there
exists ξ ∈ Z such that [d, ϕ][x, ϕ]η = [d, ϕ][xξ, ϕ] since (∗∗) implies that there
exists ξ ∈ Z such that [x, ϕ]η = [xξ, ϕ]. Let β ∈ Z be such that (1 + p)ξβ ≡
1 (mod pn), then

[dβxξ, ϕ] = [dβ , ϕ]x
ξ

[xξ, ϕ] = [d, ϕ]βxξ

[x, ϕ]η = [d, ϕ](1+p)ξβ [x, ϕ]η = [d, ϕ][x, ϕ]η,

that is, [d, ϕ][x, ϕ]η ∈ [G,ϕ] and this completes the proof.

3. Further remarks and open questions. From Theorem 1.2, it follows that
for every n ∈ N and for every odd prime p, there exists a finite p-group P of
class n such that [P,ϕ] ≤ P for every ϕ ∈ Aut(P ), let us denote such a finite
p-group by G(n, p). It is possible to construct an infinite non-nilpotent group
with the same property.

Corollary 3.1. There exists an infinite non-nilpotent group G such that [G,ϕ] ≤
G for every ϕ ∈ Aut(G).

Proof. For every n ∈ N, fix a prime pn such that pn �= pm for every m < n and
put Pn := G(n, pn). The restricted direct product ([8, p. 20]) G := Dirn∈NPn

is non-nilpotent and [G,ϕ] ≤ G for every ϕ ∈ Aut(G).
Note that, for every ϕ ∈ G and for every n ∈ N, we have that the restriction

ϕ|Pn
=: ϕn ∈ Aut(Pn), so [Pn, ϕn] is a subgroup of Pn. We will show that

[G,ϕ] = 〈[Pn, ϕn]|n ∈ N〉 so, in particular, it is a subgroup.
Let g ∈ G, then g = gn1 · · · gnt

with t, n1, . . . , nt ∈ N, and gni
∈ Pni

for
every i ∈ {1, . . . , t}. So [g, ϕ] = [gn1 · · · gnt

, ϕ] = g−1
nt

· · · g−1
n1

(gn1 · · · gnt
)ϕ =

g−1
n1

g
ϕn1
n1 · · · g−1

nt
g

ϕnt
nt = [gn1 , ϕn1 ] · · · [gnt

, ϕnt
] and [G,ϕ] ⊆ 〈[Pn, ϕn]|n ∈ N〉.

Conversely, if y ∈ 〈[Pn, ϕn]|n ∈ N〉, then y = yn1 · · · ynk
for some k, n1, . . . ,

nk ∈ N, yni
= [zni

, ϕni
] ∈ [Pni

, ϕni
] and, as before, it is easy to see that

y = [zn1 · · · znt
, ϕ] ∈ [G,ϕ]. �

If n = 2, Theorem 1.2 gives an example of an abelian-by-(cyclic of order p)
p-group that is a conterexample to Problem 3 of [3] for every odd prime p.

Regarding the case where p = 2, in [2], there is an example of a 2-group of
class 2 such that [G,ϕ] ≤ G for every ϕ ∈ Aut(G), is it possible to have such
a 2-group of class > 2?

Remark 3.2. Notice that if we consider the 2-group G = A � 〈x〉, with A =
〈a〉 × 〈b〉 � Z2n × Z2n , 〈x〉 � Z2n−1 , n > 1, and cx = c3 for every c ∈ A, then
there exists ϕ ∈ Aut(G) such that [G,ϕ] �≤ G.
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In order to define such an automorphism, first of all, we prove, by induction,
that for every c ∈ A and for every t ≥ 1, we have that

(xc)2
t

= x2t

c2
t+1h for some h ∈ N.

For if t = 1, then

(xc)2 = xcxc = x2cxc = x2c4.

Suppose that, for some t ∈ N, we have

(xc)2
t

= x2t

c2
t+1h,

then (xc)2
t+1

= ((xc)2
t

)2 = x2t+1
(c2

t+1h)x2t

(c2
t+1h) = x2t+1

(c2
t+1h)3

2t

c2
t+1h =

x2t+1
c2

t+1h(32
t
+1) = x2t+1

c2
t+2k since 32

t

+ 1 is even.
Therefore, if c ∈ A has order 2n, then xc has order 2n−1 and we may

consider ϕ ∈ Aut(G) such that yϕ = y for every y ∈ A and xϕ = xc. We have
that [x, ϕ] ∈ A and, by induction, [xα, ϕ] = [x, ϕ]x

α−1
[xα−1, ϕ] ∈ A for every

α ∈ N. Therefore [G,ϕ] = [〈x〉, ϕ] because for every g = xαy ∈ G with α ∈ N

and y ∈ A, we have that [g, ϕ] = [xαy, ϕ] = [xα, ϕ] ∈ [〈x〉, ϕ]. This implies
that |[G,ϕ]| = |[〈x〉, ϕ]| = |〈x〉 : C〈x〉(ϕ)| ≤ 2n−1. Now x−1xϕ = c ∈ [G,ϕ], so
[G,ϕ] �≤ G since c has order 2n.

Remark 3.3. Also every dihedral 2-group G = D2n = A � 〈x〉 with A = 〈a〉 �
Z2n−1 and 〈x〉 � Z2 (n > 2) has an automorphism ϕ ∈ Aut(G) such that
[G,ϕ] �≤ G. In fact, if we consider the automorphism ϕ defined by aϕ = a and
xϕ = xa−1, then we have that [G,ϕ] = [〈x〉, ϕ] so |[G,ϕ]| ≤ 2. But a−1 =
x−1xϕ ∈ [G,ϕ], then it is not a subgroup because a−1 has order 2n−1 > 2.

Notice that, in particular, if n = 3, that is, G = D8, then ϕ|Z(G) = idZ(G)

because [a, x]ϕ = [a, xa−1] = [a, x].
Also the quaternion group Q8 = {1,−1, i, j, k,−i,−j,−k} has an auto-

morphism ϕ such that [Q8, ϕ] �≤ Q8 and ϕ|Z(Q8) = idZ(Q8). Actually, if we
consider the automorphism ϕ, defined by iϕ = i and jϕ = k, then we have
[Q8, ϕ] = {1,−i}.

Indeed, it is possible to prove the following result:

Proposition 3.4. For every prime p, if G is an extraspecial p-group, then there
exists ϕ ∈ Aut(G) such that [G,ϕ] �≤ G.

In order to show this proposition, first of all, we recall that a group G is
the central product of two subgroups H and K if G = HK, [H,K] = 1, and
H ∩ K = Z(G). Then we prove the following two lemmas.

Lemma 3.5. Suppose that a group G is the central product of two subgroups
H and K; if there exists an automorphism φ ∈ Aut(H) such that zφ = z for
every z ∈ Z(G) and [H,φ] �≤ H, then there also exists ϕ ∈ Aut(G) such that
[G,ϕ] �≤ G.

Proof. The group G is the central product of H and K, hence for every g ∈ G,
we have that g = hk with h ∈ H and k ∈ K.
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Let φ ∈ Aut(H); if the restriction φ|Z(G) = idZ(G), then gϕ := (hk)ϕ = hφk
defines a map ϕ : G → G. In fact, hk = h1k1, with h, h1 ∈ H and k, k1 ∈ K,
if and only if h−1

1 h = k1k
−1 ∈ Z(G); so (h−1

1 )φhφ = (h−1
1 h)φ = (k1k−1)φ =

k1k
−1, that is, hφk = hφ

1k1.
It is easy to check that ϕ ∈ Aut(G), moreover [G,ϕ] = {g−1gϕ|g ∈ G} =

{k−1h−1hφk|h ∈ H, k ∈ K} = {h−1hφ|h ∈ H} = [H,φ]. �

Lemma 3.6. Let p be a prime, and G be a group of order p3. If G is non-
abelian, then there exists ϕ ∈ Aut(G) such that zϕ = z for every z ∈ Z(G) and
[G,ϕ] �≤ G.

Proof. If p = 2, then either G � D8 or G � Q8 and the claim is true, as
we have seen before. So we may suppose that p is odd and in this case we
have that either G = 〈x, y, z|xp = yp = zp = 1, [x, z] = [y, z] = 1, [x, y] = z〉,
that is, G = H � 〈y〉 with H = 〈x, z〉 � Zp × Zp, 〈y〉 � Zp, and xy = xz,
zy = z, or G = 〈x, y|xp2

= yp = 1, xy = x1+p〉, that is, G = 〈x〉 � 〈y〉
with xp2

= 1, yp = 1, and xy = x1+p. Observe that in both cases, G
is nilpotent of class 2, then for every n ∈ N such that n ≥ 2, we have
(yx)n = ynxn[x, y]

n(n−1)
2 , that is, (yx)n = ynxnz

n(n−1)
2 in the first case,

(yx)n = ynxnxp n(n−1)
2 = ynxn+p n(n−1)

2 in the second case (see [8, 5.3.5 p.
137]).

In the first case, we may consider ϕ ∈ Aut(G) defined by xϕ = x and
yϕ = yx and we have that zϕ = [x, y]ϕ = [x, yx] = [x, y] = z, that is, ϕ|Z(G) =
idZ(G). Moreover, if we consider g = ytxnzm ∈ G with 0 ≤ t, n,m ≤ p − 1,

then we have that gϕ = (yx)txnzm = ytxtz
t(t−1)

2 xnzm = ytxt+nz
t(t−1)

2 +m

and so g−1gϕ = (y−tx−nznt−m)(ytxt+nz
t(t−1)

2 +m) = (x−n)yt

xt+nznt+ t(t−1)
2 =

(xzt)−nxt+nznt+ t(t−1)
2 = xtz

t(t−1)
2 with 0 ≤ t ≤ p−1. Then [G,ϕ] = {xtz

t(t−1)
2 |

0 ≤ t ≤ p − 1} and this set is not a subgroup of G.
In the second case, we may consider the automorphism φ ∈ Aut(G) de-

fined by yφ = y and xφ = yx; since [x, y]φ = [yx, y] = [x, y], we have that
φ|Z(G) = idZ(G). Moreover, if we consider g = ynxm ∈ G with 0 ≤ n ≤ p−1 and

0 ≤ m ≤ p2−1, then we have that gφ = yn(yx)m = yn+mxm(1+p (m−1)
2 ). There-

fore g−1gφ = yp−nxp2−m(1+p)p−n

yn+mxm(1+p (m−1)
2 ) = ymxm(1−(1+p)m+p (m−1)

2 )

and the set of these elements, with 0 ≤ m ≤ p2 − 1, is not a subgroup of
G. �

For every prime p, an extra-special p-group is the iterated central product
of non-abelian groups of order p3 (see for instance Lemma 2.2.9 of [6]), then,
from the two previous lemmas, Proposition 3.4 follows.
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