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A reciprocity law in function fields
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Abstract.We generalize Gauss’ lemma over function fields, and establish a
reciprocity law for power residue symbols. As an application, a reciprocity
law for power residue symbols is established in totally imaginary function
fields.
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1. Introduction. Let p be an odd prime, and let S be a subset of Z such that
{0, S,−S} is a complete set of representatives modulo p. Let s ∈ S and let
a ∈ Z be coprime to p. Then, there exist ε(a, s) ∈ {±1} and sa ∈ S such that
as = ε(a, s)sa. Gauss’ lemma states that the Legendre symbol

(
a
p

)
can be

written as follows: (
a

p

)
=

∏
s∈S

ε(a, s).

For distinct odd primes p and q, it holds that
(

p

q

) (
q

p

)
= (−1)

p−1
2

q−1
2 ,

which is called the quadratic reciprocity law in the field of rational numbers.
A quadratic reciprocity law for a quadratic number field was first estab-

lished by Gauss, who provided the quadratic reciprocity law for Q(
√−1). The

quadratic reciprocity law in imaginary quadratic number fields using elliptic
functions was put forth by Herglotz, Niemeyer, Bayad [2], and Hajir and Vil-
legas [8]. In particular, Bayad [2] constructed certain elliptic functions and
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proved the product formulas for them. As an application, he used the prod-
uct formulas to establish the quadratic reciprocity law in imaginary quadratic
number fields. Hayashi [11] corrected and refined Bayad’s reciprocity law.

The analogies between number fields and function fields have several in-
teresting aspects. Artin [1] established a rational function field analog of the
quadratic reciprocity law, and Schmidt [16] proved a more general reciprocity
law over rational function fields. Carlitz [3–5] provided another proof of the
general reciprocity law using an analog of Gauss’ lemma. In [10], we general-
ized the analog of Gauss’ lemma over the rational function fields, and provided
another proof of the general reciprocity law for power residue symbols. For de-
tails of the general reciprocity law over rational function fields, we refer to
[15,17]. The purpose of this paper is to provide an analog of Gauss’ lemma
over general function fields, and establish a reciprocity law for power residue
symbols. As an application, a reciprocity law for power residue symbols in
totally imaginary function fields is established.

In Section 2, Gauss’ lemma is generalized over function fields. In Section
3, a reciprocity law in function fields is established using Gauss’ lemma. The
last section is devoted to the proof of the theorems in the previous section.

2. Gauss’ lemma. Let F be a function field in one variable over the field of
constants Fq, a finite field of q elements. Let ∞ be a place of F . We express R as
the ring of elements of F that are regular outside ∞. Let F∞ be the completion
of F with respect to ∞, and let C∞ be the completion of an algebraic closure
of F∞ with respect to ∞. In this section, we introduce certain symbols to
establish Gauss’ lemma. The ideas of Reichardt are used (see [12,13]).

2.1. Generalized Gauss’ lemma. We assume that F contains a primitive n-th
root of unity ζn. This implies that n divides q − 1. The group F

∗
q contains the

n-th roots of unity μn := {1, ζn, . . . , ζn−1
n }. Let p be a prime ideal of R, and

let ϕ(p) be the order of the unit group (R/p)∗. When α ∈ R is coprime to p,
there exists a unique element

(
α
p

)
n

∈ μn such that

αϕ(p)/n ≡
(

α

p

)

n

(mod p).

When α ∈ R is contained in p, let
(

α
p

)
n

= 0. For any ideal a in R having

the prime ideal decomposition a = pe1
1 · · · per

r , we extend the above symbol

multiplicatively by setting
(

α
a

)
n

=
(

α
p1

)e1

n
· · ·

(
α
pr

)er

n
. This symbol is called

the n-th power residue symbol.
The function field F contains the n-th roots of unity μn = {1, ζn, . . . , ζn−1

n }.
Let a be a non-zero ideal of R. A subset S = {s1, . . . , sm} of R such that
{0, S, ζnS, . . . , ζn−1

n S} is a complete set of representatives modulo a is called
a 1/n-system modulo a. Let α ∈ R be coprime to a and let S be a 1/n-system
modulo a. There exists a permutation π of {1, . . . , m} such that for any sj ∈ S,
there exists an element ζ

a(j)
n ∈ μn such that

αsj ≡ ζa(j)
n sπ(j) (mod a). (2.1)



Vol. 123 (2024) A reciprocity law in function fields 51

We write ε(α, sj) for ζ
a(j)
n .

The following theorem is an analog of Gauss’ lemma:

Theorem 2.1 (Generalized Gauss’ lemma). For any element α ∈ R coprime to
a, (α

a

)
n

=
∏
s∈S

ε(α, s),

where S is a 1/n-system modulo a.

2.2. Proof of Theorem 2.1. Set{α

a

}
n

=
∏
s∈S

ε(α, s),

which is independent of the choice of S. Indeed, let S′ = {s′
1, . . . , s

′
m} be

another 1/n-system modulo a. There exist permutations π and π′ of {1, . . . , m}
such that for any j,

αsj ≡ ε(α, sj)sπ(j) (mod a), αs′
j ≡ ε(α, s′

j)sπ′(j) (mod a).

There exists a permutation σ of {1, . . . , m} such that for any j,

sj ≡ ζb(j)
n s′

σ(j) (mod a), αsj ≡ ζb(j)
n αs′

σ(j) ≡ ζb(j)
n ε(α, s′

σ(j))s
′
π′σ(j) (mod a).

Applying these congruences to the exponential function ea for a, we obtain

ea(αsj) = ε(α, sj)ea(sπ(j)), ea(αs′
j) = ε(α, s′

j)ea(sπ′(j)),

ea(αsj) = ζb(j)
n ε(α, s′

σ(j))ea(sπ7σ(j)).

Hence, we have
m∏

j=1

ε(α, sj) =
m∏

j=1

ea(αsj)
ea(sj)

=
m∏

j=1

ζ
b(j)
n ε(α, s′

σ(j))ea(s
′
π′σ(j))

ζ
b(j)
n ea(s′

σ(j))
=

m∏
j=1

ε(α, s′
j).

Let S∗ = {sj ∈ S | sj coprime to a}, and set
{α

a

}∗

n
=

∏
s∈S∗

ε(α, s),

which is independent of the choice of S. This can be proven in the similar way
as the case

{
α
a

}
n
. For any ideal b of R containing a, set

Sb = {sj ∈ S | sjR + a = b}.

We observe that Sa = φ and SR = S∗. The set S is a disjoint union of
Sb (a ⊂ b). A subset T of R such that {T, ζnT, . . . , ζn−1

n T} is a complete set
of the representatives of (R/a)∗ is referred to as a prime 1/n-system modulo
a. The following lemma is required to prove Gauss’ lemma.

Lemma 2.2. Let a be a non-zero ideal of R. For any element α ∈ R coprime
to a, {α

a

}
n

=
∏
b|a

{α

b

}∗

n
.
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Proof. Let Sb = {t1, . . . , tk}. There exists an element u1 ∈ b−1 such that
t1u1 ≡ 1 (mod ab−1).

It holds that {t1u1, . . . , tku1} is a prime 1/n-system modulo ab−1. Indeed,
we take any α ∈ R coprime to ab−1. For each i, there exists ζ

a(i)
n ∈ μn and

sj ∈ S such that

αti ≡ ζa(i)
n sj (mod a). (2.2)

We see easily that sj ∈ Sb and that

αtiu1 ≡ ζa(i)
n sju1 (mod ab−1). (2.3)

Next, we assume that there exist ζ, ζ ′ ∈ μn and ti, tj ∈ Sb such that ζtiu1 ≡
ζ ′tju1 (mod ab−1). Multiplying this congruence by t1, we obtain ζti ≡ ζ ′tj
(mod a), which implies ζ = ζ ′ and ti = tj .

Observing that (2.2) and (2.3) are equivalent and that S =
⋃

b⊂a Sb,
{α

a

}
n

=
∏
b|a

{ α

ab−1

}∗

n
=

∏
b|a

{α

b

}∗

n
.

�

Lemma 2.3. Let a be a non-zero ideal of R. For any element α ∈ R coprime
to a,

{α

a

}∗

n
≡ αϕ(a)/n (mod a). (2.4)

Proof. Since {S∗, ζnS∗, . . . , ζn−1
n S∗} is a complete set of representatives for

(R/a)∗, |S∗| = ϕ(a)/n. Using (2.1), we have⎛
⎝ ∏

sj∈S∗
sj

⎞
⎠ αϕ(a)/n ≡

∏
sj∈S∗

αsj ≡
∏

sj∈S∗
ε(α, sj)sπ(j) (mod a)

≡
⎛
⎝ ∏

sj∈S∗
sπ(j)

⎞
⎠

⎛
⎝ ∏

sj∈S∗
ε(α, sj)

⎞
⎠ (mod a)

≡
⎛
⎝ ∏

sj∈S∗
sj

⎞
⎠

{α

a

}∗

n
(mod a),

where π is a permutation of {1, . . . , ϕ(a)/n}. This yields (2.4). �

For any non-zero ideal b of R, it holds that
{α

b

}∗

n
=

{(
α
p

)
n

if b = pa,

1 otherwise.
(2.5)

Indeed, when there exist coprime ideals c, d of R such that b = cd, αϕ(c) ≡
1 (mod c) implies αϕ(b)/n ≡ (

αϕ(c)
)ϕ(d)/n ≡ 1 (mod c). Similarly, we have

αϕ(b)/n ≡ 1 (mod d), which yields αϕ(b)/n ≡ 1 (mod b). Next, we consider
a case in which there exists a prime ideal p and a positive number a such
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that b = pa. If the cardinality of R/p is pf , then ϕ(b) = pf(a−1)
(
pf − 1

)
. As

pf ≡ 1 (mod n), using Lemma 2.3,

{α

b

}∗

n
≡ αϕ(b)/n ≡

(
α

p

)pf(a−1)

n

≡
(

α

p

)

n

(mod p),

which yields (2.5).
When a = pe1

1 · · · per
r , using Lemma 2.2 and (2.5), we obtain

{α

a

}
n

=
∏
b|a

{α

b

}∗

n
=

r∏
i=1

ei∏
j=1

{
α

pj
i

}∗

n

=
r∏

i=1

(
α

pi

)ei

n

=
(α

a

)
n

.

This completes the proof of Theorem 2.1. �
3. Reciprocity laws. Let φ be a rank one Drinfeld R-module corresponding to
the R-lattice L = ξR. For coprime α, β ∈ R, let

(
α
β

)
n

=
(

α
βR

)
n
. The following

is a reciprocity law for the n-th power residue symbol.

Theorem 3.1. For coprime α, β ∈ R,
(

α

β

)

n

(
β

α

)−1

n

= (−1)
N(α)−1

n
N(β)−1

n ν(α)
N(β)−1

n ν(β)− N(α)−1
n , (3.1)

where N(α) = qdeg(α) is the norm of α, and ν(α) is the leading coefficient of
φα.

Remark 3.2. The value ν(α)
N(β)−1

n ν(β)− N(α)−1
n in the above theorem belongs

to μn. Indeed, for α, β ∈ R\{0}, the value φαβ of the Drinfeld module φ pro-
vides φαβ = φαφβ = φβφα, which yields ν(αβ) = ν(α)ν(β)N(α) = ν(α)N(β)ν(β).
Therefore, the claim follows from this.

From Theorem 3.1, we obtain another type of reciprocity law:

Theorem 3.3. There exists a multiplicative function κ : R\{0} → C∗
∞ such

that for coprime α, β ∈ R,
(

α

β

)

n

(
β

α

)−1

n

= (−1)
N(α)−1

n
N(β)−1

n κ(α)
N(β)−1

n κ(β)− N(α)−1
n . (3.2)

Remark 3.4. Let A = Fq[T ] be the polynomial ring over Fq, and let K = Fq(T )
be its quotient field. Let K∞ = Fq((1/T )) be the completion of K with respect
to ∞ = (1/T ), and let C∞ be the completion of an algebraic closure of K∞
with respect to ∞. A separable extension F/K is called totally imaginary if ∞
has only one prime over F . For details of such extensions, we refer the reader
to the papers Gekeler [6], Rosen [14], and Hamahata [9]. Let F be a totally
imaginary extension of K, and let OF be the integral closure of A in F . Using
Theorem 3.1 for R = OF , we have the analog of Bayad [2, Théorème 2.9].
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4. Proof of Theorems 3.1 and 3.3.

4.1. Proof of Theorem 3.1. Let Tβ = {y1, . . . , ym} be a 1/n-system modulo
βR, and set Sβ = ξβ−1Tβ . For each i, it holds that αyi ≡ ε(α, yi)yπ(i) (mod βR)
if and only if αξβ−1yi ≡ ε(α, yi)ξβ−1yπ(i) (mod L). Using eL(αξβ−1yi) =
ε(α, yi)eL(ξβ−1yπ(i)) and Theorem 2.1,

(
α

β

)

n

=
∏

z∈Sβ

eL(αz)
eL(z)

=
∏

z∈Sβ

φα(eL(z))
eL(z)

.

We can identify C∞{τ} with the non-commutative ring of additive polynomials
of X with coefficients in C∞, where the product is the composition of maps.
For φα ∈ C∞{τ}, we write φα(X) = αX + · · · + ν(α)XN(α). As

φα(X) = ν(α)
∏

y∈L/αL

(X − eL(y/α))

= ν(α)X
∏

ζ∈μn

∏
y∈Tα

(X − ζeL(y/α))

= ν(α)X
∏

z∈Sα

(Xn − eL(z)n) ,

(
α

β

)

n

=
∏

x∈Sβ

ν(α)
∏

z∈Sα

(eL(x)n − eL(z)n)

= ν(α)
N(β)−1

n (−1)
N(α)−1

n
N(β)−1

n

∏
x∈Sβ

∏
z∈Sα

(eL(z)n − eL(x)n) .

Similarly, we have
(

β

α

)

n

= ν(β)
N(α)−1

n

∏
x∈Sβ

∏
z∈Sα

(eL(z)n − eL(x)n) ,

which yields (3.1), as desired. �

4.2. Proof of Theorem 3.3. We retain the notations used in Theorem 3.1. Fix
a sign function sgn : F ∗

∞ → F
∗
∞, where F∞ is the field of constants of F∞.

Let sgn(0) = 0. There exists an element c ∈ C∞ such that ψ := cφc−1 is
a sgn-normalized Drinfeld R-module. When κ(α) is the leading coefficient of
ψα(X), κ : R → F∞ is a twisting of sgn. From κ(α) = c1−N(α)ν(α) (α ∈ R),
we have

ν(α)
N(β)−1

n ν(β)− N(α)−1
n = κ(α)

N(β)−1
n κ(β)− N(α)−1

n ,

which yields (3.2), as desired. �
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