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Abstract. Nittka gave an efficient criterion on a form defined on L2(Ω)
which implies that the associated semigroup is Lp-invariant for some given
p ∈ (1,∞). We extend this criterion to the Hilbert space valued L2(Ω, H).
As an application, we consider elliptic systems of purely second order.
Our main result shows that the induced semigroup is Lp-contractive for
all p ∈ [p−, p+] for some 1 < p− < 2 < p+ < ∞.
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1. Introduction. Let (St)t>0 be a C0-semigroup on L2(Ω), with Ω ⊂ R
d, which

is associated with a closed sesquilinear form. Ouhabaz [16] gave a convenient
criterion on the form characterising when the semigroup is L∞-contractive. It
is more complicated to describe Lp-contractivity if 1 < p < ∞. The reason
is the fact that there is no explicit formula which describes the orthogonal
projection from L2(Ω) to the closed convex set {u ∈ L2(Ω) : ‖u‖p ≤ 1} if
1 < p < ∞ and p �= 2.

Nonetheless, Nittka [15] succeeded to overcome the difficulty by a structural
analysis and developed an efficient criterion for the Lp-contractivity of a C0-
semigroup on L2(Ω) which is associated with a form.

The purpose of this paper is twofold. Our first aim is to present Nittka’s
result. We do this within the more general setting of the vector-valued space
L2(Ω,H), where H is a Hilbert space. The result is the following.

Theorem 1.1. Let (Ω,B, μ) be a σ-finite measure space. Let H be a Hilbert
space. Fix p ∈ (1,∞). Define

C = {u ∈ L2(Ω,H) ∩ Lp(Ω,H) : ‖u‖Lp(Ω,H) ≤ 1}.
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Let P be the orthogonal projection of L2(Ω,H) onto C. Let V be a Hilbert space
which is continuously and densely embedded in L2(Ω,H). Let a : V × V → C

be a continuous elliptic sesquilinear form, let A be the operator in L2(Ω,H)
associated with a, and let S be the semigroup generated by −A. Then the
following are equivalent.

(i) ‖Stu‖Lp(Ω,H) ≤ ‖u‖Lp(Ω,H) for all u ∈ L2(Ω,H) ∩ Lp(Ω,H) and t > 0.
(ii) PV ⊂ V and Re a(u, ‖u‖p−1

H sgn u) ≥ 0 for all u ∈ V with ‖u‖p−1
H sgn u ∈

V.
Our proof in Sect. 2 is slightly different from Nittka’s since we exploit the

strict convexity of the space Lp(Ω,H) for all 1 < p < ∞, which we prove in
Appendix B.

Our second aim is to apply the criterion to purely second order Hilbert
space valued elliptic operators with Neumann boundary conditions. They gen-
erate a contractive C0-semigroup (St)t>0 on L2(Ω,H). Of particular interest
are systems, that is, H = C

d. In Sect. 3, we show that there is an interval
[p−, p+], with 1 < p− < 2 < p+ < ∞, such that the semigroup S extends to a
contractive C0-semigroup on Lp(Ω,H) for all p ∈ [p−, p+]. To prove the needed
estimates, we use a chain rule formula, which is quite delicate and will be
proved in Appendix A. In [2], related results are obtained and further interest-
ing references are given. In the scalar case, our results may be compared with
Cialdea–Maz’ya [7], who introduced an algebraic version of Lp-dissipativity
and presented an algebraic characterisation for scalar-valued elliptic opera-
tors. This algebraic characterisation was refined by Carbonaro–Dragičević [6]
and they used the result of Nittka to describe contractive C0-semigroups on
Lp(Ω) via the notion that they called p-ellipticity.

2. Nittka’s criterion for Lp -contractivity. Let (Ω,B, μ) be a σ-finite measure
space. Let H be a Hilbert space. For all p ∈ [1,∞), we write Lp = Lp(Ω,H).
If u ∈ Lp, then we write ‖u‖p = ‖u‖Lp(Ω,H) and ‖u‖H : Ω → R is the function
from Ω into R such that

‖u‖H(x) = ‖u(x)‖H

for all x ∈ Ω. Further we write H = L2 = L2(Ω,H). Throughout this paper,
we fix p ∈ (1,∞). Define

C = {u ∈ H ∩ Lp : ‖u‖p ≤ 1}.

Clearly C is convex and it follows from Fatou’s lemma that C is closed in H.
Let P : H → C be the orthogonal projection. For all u ∈ H, define

N(u) = {h ∈ H : Re (h, v − u)H ≤ 0 for all v ∈ C}.

Then N(u) is a closed cone in H with 0 ∈ N(u). We state an easy property
regarding C and N(u).

Lemma 2.1. For all f ∈ H, there exist unique u ∈ C and h ∈ N(u) such that
f = u + h. Actually, u = Pf .
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Proof. Let u = Pf and h = f − Pf . Then u ∈ C and Re (h, v − u)H =
Re (f − Pf, v − Pf)H ≤ 0 for all v ∈ C. This proves existence. Let also ũ ∈ C

and h̃ ∈ N(ũ) be such that f = ũ + h̃. Then Re (h, ũ − u)H ≤ 0 and similarly
Re (h̃, u − ũ)H ≤ 0. Hence Re (h − h̃, ũ − u)H ≤ 0. Since h − h̃ = ũ − u, this
implies that Re ‖h − h̃‖2

H ≤ 0 and the statement follows. �

If u : Ω → H is a function, then define sgnu : Ω → H by

(sgn u)(x) =
{ 1

‖u(x)‖H
u(x) if u(x) �= 0,

0 if u(x) = 0.

Note that sgn u = limε↓0 uε pointwise, where the function uε : Ω → H is
defined by uε(x) = 1√

‖u(x)‖2
H+ε

u(x). Hence sgn u is (Bochner) measurable if

u is (Bochner) measurable. Then also ‖u‖p−1
H sgn u is (Bochner) measurable

whenever u is (Bochner) measurable.
For a description of N(u), we use that Lp(Ω,H) is strictly convex. See

Appendix B for a proof. Recall that a Banach space E is called strictly convex
if for all ξ, η ∈ E with ‖ξ‖E = 1 = ‖η‖E and ξ �= η, it follows that ‖ξ+η‖E < 2.

Lemma 2.2. Let E be a Banach space. Assume that E∗ is strictly convex and let
x ∈ E. Then there exists a unique f ∈ E∗ such that Re f(x) = ‖x‖2

E = ‖f‖2
E∗ .

This unique f satisfies f(x) = ‖x‖2
E.

Proof. The existence of an f ∈ E∗ such that f(x) = ‖x‖2
E = ‖f‖2

E∗ is a well-
known consequence of the Hahn–Banach theorem. For the uniqueness, we may
assume without loss of generality that ‖x‖E = 1. Suppose also g ∈ E∗ with
Re g(x) = ‖x‖2

E = ‖g‖2
E∗ and g �= f . Define h = 1

2 (f + g). Then ‖h‖E∗ < 1 by
the strict convexity of E∗. But then

1 = 1
2 Re (f(x) + g(x)) = Re h(x) ≤ ‖h‖E∗ ‖x‖E < 1.

This is a contradiction. �

Now we are able to give a characterisation for N(u).

Proposition 2.3. Let u ∈ C. Then the following are equivalent.
(i) N(u) �= {0}.
(ii) ‖u‖p = 1 and ‖u‖p−1

H sgn u ∈ H.

If these conditions are valid, then N(u) = {t ‖u‖p−1
H sgn u : t ∈ [0,∞)}.

Proof. ‘(ii)⇒(i)’. Let v ∈ C. Then the Cauchy–Schwarz inequality and the
Hölder inequality give

Re (‖u‖p−1
H sgn u, v)H ≤

∫
Ω

‖u‖p−1
H ‖v‖H

≤
( ∫

Ω

‖u‖(p−1)p′

H

)1/p′

‖v‖p

≤ ‖u‖p/p′
p = 1 = Re (‖u‖p−1

H sgn u, u)H.
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So ‖u‖p−1
H sgn u ∈ N(u) and {t ‖u‖p−1

H sgn u : t ∈ [0,∞)} ⊂ N(u). In particu-
lar, N(u) �= {0}.

‘(i)⇒(ii)’. We first show that ‖u‖p = 1. Suppose that ‖u‖p < 1. Let h ∈
N(u). Let w ∈ L2∩Lp with ‖w‖p ≤ 1−‖u‖p. Then u+w ∈ C. Since h ∈ N(u),
one deduces that Re (h,w)H ≤ 0. Because L2 ∩ Lp is dense in H, it follows
that h = 0. Hence (i) implies that ‖u‖p = 1.

Next let h ∈ N(u) with h �= 0. If v ∈ L2(Ω,H)∩Lp(Ω,H), then Re (h, v)H ≤
‖v‖p Re (h, u)H. So h ∈ Lp′(Ω,H) and ‖h‖p′ ≤ Re (h, u)H. If Re (h, u)H = 0,
then ‖h‖p′ = 0 and h = 0, which is a contradiction. So Re (h, u)H �= 0. Multi-
plying h with a strictly positive constant, we may assume that Re (h, u)H = 1.
Then

‖h‖p′ ≤ 1 = Re (h, u)H ≤ ‖h‖p′ ‖u‖p ≤ ‖h‖p′ .

So ‖h‖p′ = 1 = Re (h, u)H = Re 〈h, u〉Lp′ ×Lp
. We proved that

Re 〈h, u〉Lp′ ×Lp
= ‖h‖2

p′ = ‖u‖2
p.

On the other hand,∫
Ω

∥∥∥‖u‖p−1
H sgn u

∥∥∥p′

H
=

∫
Ω

‖u‖(p−1)p′

H =
∫
Ω

‖u‖p
H = 1,

so ‖u‖p−1
H sgn u ∈ Lp′ and furthermore

Re 〈‖u‖p−1
H sgn u, u〉Lp′ ×Lp

=
∫
Ω

‖u‖p
H = 1 =

∥∥∥‖u‖p−1
H sgn u

∥∥∥2

p′
= ‖u‖2

p.

By Lemma 2.2, we obtain that ‖u‖p−1
H sgn u = h ∈ H. Moreover, N(u) ⊂

{t ‖u‖p−1
H sgn u : t ∈ [0,∞)}. �

Let V be a Hilbert space that is continuously and densely embedded in
H = L2(Ω,H). Let a : V × V → C be a sesquilinear form such that a is
continuous, that is, there is an M > 0 such that

|a(u, v)| ≤ M ‖u‖V ‖v‖V
for all u, v ∈ V, and a is elliptic, that is, there are μ > 0 and ω ∈ R such that

Re a(u, u) + ω ||u‖2
H ≥ μ ‖u‖2

V (1)

for all u ∈ V. Then there is a unique operator A in H whose graph is

graph (A) = {(u, f) : u ∈ V, f ∈ H, and a(u, v) = (f, v)H for all v ∈ V}.

We call A the operator associated with the form a. Then −A generates a holo-
morphic C0-semigroup (St)t>0 in H satisfying ‖St‖H→H ≤ eωt for all t > 0,
where ω is as in (1).

Proof of Theorem 1.1. ‘(i)⇒(ii)’. It follows from [16, Theorem 2.2 1)⇒2)], that
PV ⊂ V and Re a(Pf, f−Pf) ≥ 0 for all f ∈ V. Since ‖u‖p−1

H sgn u ∈ L2(Ω,H)
by assumption, one deduces that∫

Ω

‖u‖p
H =

∫
Ω

(‖u‖p−1
H sgn u, ‖u‖H sgn u)H < ∞.
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So u ∈ Lp. Without loss of generality, we may assume that ‖u‖p = 1. Then
u ∈ C and ‖u‖p−1

H sgn u ∈ H, so ‖u‖p−1
H sgn u ∈ N(u) by Proposition 2.3. Set

f = u + ‖u‖p−1
H sgn u ∈ V ⊂ H. Then the uniqueness of Lemma 2.1 gives

u = Pf . Consequently Re a(u, ‖u‖p−1
H sgn u) = Re a(Pf, f − Pf) ≥ 0.

‘(ii)⇒(i)’. Let v ∈ V. We shall show that Re a(Pv, v − Pv) ≥ 0. If v ∈ C,
then this is trivial, so we may assume that v �∈ C. Set u = Pv and h = v − u.
Then h ∈ N(u) by Lemma 2.1. Also h �= 0, so Proposition 2.3 implies that
‖u‖p = 1 and ‖u‖p−1

H sgn u ∈ H. Moreover, there exists a t ∈ [0,∞) such that
h = t ‖u‖p−1

H sgn u. Then t �= 0. Since u = Pv ∈ PV ⊂ V by assumption,
one deduces that ‖u‖p−1

H sgn u = 1
t (v − u) ∈ V. Hence Re a(Pv, v − Pv) =

tRe a(u, ‖u‖p−1
H sgn u) ≥ 0. Now it follows from [17, Theorem 2.2 2)⇒1)], that

StC ⊂ C for all t > 0. This obviously implies statement (i). �

3. Application to Hilbert space valued parabolic problems. Let Ω ⊂ R
d be

an open set. Let H be a separable Hilbert space. For all k, l ∈ {1, . . . , d},
let ckl : Ω → L(H) be a bounded function such that x �→ (ckl(x) ξ, η)H is
measurable from Ω into C for all ξ, η ∈ H. Let μ > 0. We assume that

Re
d∑

k,l=1

(ckl(x) ξl, ξk)H ≥ μ

d∑
k=1

‖ξk‖2
H

for all x ∈ Ω and ξ1, . . . , ξd ∈ H. Further let M > 0 be such that

d∑
k=1

∥∥∥
d∑

l=1

ckl(x) ξl

∥∥∥2

H
≤ M2

d∑
k=1

‖ξk‖2
H

for all x ∈ Ω and ξ1, . . . , ξd ∈ H. For simplicity, we consider Neumann bound-
ary conditions. Define V = H1(Ω,H) and a : V × V → C by

a(u, v) =
d∑

k,l=1

∫
Ω

(ckl(x) (∂lu)(x), (∂kv)(x))H dx.

Then a is a continuous elliptic sesquilinear form. Let A be the operator asso-
ciated with a and let S be the semigroup generated by −A.

Theorem 3.1. Let p ∈ (1,∞) and suppose that

μ

M
≥ 2

∣∣∣p − 2
p

∣∣∣ +
∣∣∣p − 2

p

∣∣∣2.
Then S extends consistently to a contraction semigroup in Lp(Ω,H).

Note that the condition in Theorem 3.1 is invariant by taking the dual
exponent, that is, if p ∈ (1,∞) satisfies the condition, then so does q, where
1
p + 1

q = 1. If one is satisfied with some small interval, 1 < p− < 2 < p+ < ∞
such that S is Lp-contractive for all p ∈ [p−, p+], then a significantly easier
and less technical proof than the following can be given.
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Proof. Using duality, without loss of generality, we may assume that p > 2.
We argue as in [7], [12], and [11]. Let u ∈ H1(Ω,H). For all n ∈ N, define

vn = (‖u‖
p−2
2

H ∧ n)u, wn = (‖u‖p−2
H ∧ n2)u, and χn = 1[‖u‖p−2

H <n2].

If follows from Proposition A.1 (cf. [4, Theorems 3.3 and 4.2]) that vn, wn ∈
H1(Ω,H) with

∇vn = n (1 − χn)∇u + χn ‖u‖
p−2
2

H

(
∇u + p−2

2 (∇‖u‖H) sgn u
)
, and

∇wn = n2 (1 − χn)∇u + χn ‖u‖p−2
H

(
∇u + (p − 2) (∇‖u‖H) sgn u

)
. (2)

Note that χn ‖vn‖H = χn ‖u‖p/2
H . Hence

(1 − χn)∇u =
1
n

(1 − χn)∇vn,

χn ‖vn‖
p−2

p

H ∇u = χn

(
∇vn − p−2

p (∇‖vn‖H) sgn vn

)
, and

∇wn = n (1 − χn)∇vn + χn ‖vn‖
p−2

p

H

(
∇vn + p−2

p (∇‖vn‖H) sgn vn

)
.

Therefore, for almost all x ∈ Ω, one obtains

d∑
k,l=1

Re (ckl ∂lu, ∂kwn)H

= (1 − χn)
d∑

k,l=1

Re (ckl ∂lu, n ∂kvn)H

+χn

d∑
k,l=1

Re (ckl ‖vn‖
p−2

p

H ∂lu,
(
∂kvn + p−2

p (∂k‖vn‖H) sgn vn

)
)H

= (1 − χn)
d∑

k,l=1

Re (ckl ∂lvn, ∂kvn)H

+χn

d∑
k,l=1

Re (ckl

(
∂lvn − p−2

p (∂l‖vn‖H) sgn vn

)
,

(
∂kvn + p−2

p (∂k‖vn‖H) sgn vn

)
)H

=
d∑

k,l=1

Re (ckl ∂lvn, ∂kvn)H + p−2
p χn Re ((ckl − c∗

lk) ∂lvn, (∂k‖vn‖H) sgn vn)H

−
(

p−2
p

)2

Re (ckl (∂l‖vn‖H) sgn vn, (∂k‖vn‖H) sgn vn)H

≥
(
μ − 2M p−2

p − M
(

p−2
p

)2) d∑
k=1

‖∂kvn‖2
H ,
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where we used that
∑d

k=1 |∂k‖vn‖H |2 ≤ ∑d
k=1 ‖∂kvn‖2

H and ‖sgn vn‖H ≤ 1 by
Lemma A.5. By the assumption on p, we obtain that

d∑
k,l=1

Re (ckl ∂lu, ∂kwn)H ≥ 0

almost everywhere. This is for all n ∈ N.
Next take the limit n → ∞ and use (2). Then

d∑
k,l=1

Re (ckl ∂lu, ‖u‖p−2
H (∂ku + (p − 2) (∂k‖u‖H) sgn u))H ≥ 0 (3)

almost everywhere.
We assume from now on that in addition ‖u‖p−2

H u ∈ V. Let k ∈ {1, . . . , d}.
We shall show that ∂k(‖u‖p−2

H u) = fk almost everywhere, where

fk = ‖u‖p−2
H

(
∂ku + (p − 2) (∂k‖u‖H) sgn u

)
.

Write r = 2 p−1
p−2 ∈ (2,∞) and let q ∈ (1, 2) be such that 1

2 + 1
r = 1

q . Since
‖u‖p−1

H ∈ L2(Ω), one deduces that
∫
Ω
(‖u‖p−2

H )r =
∫
Ω
(‖u‖p−1

H )2 < ∞. So
‖u‖p−2

H ∈ Lr(Ω). If n ∈ N, then n2 (1−χn) ‖∂ku‖H ≤ (1−χn) ‖u‖p−2
H ‖∂ku‖H

and hence (2) gives

‖∂kwn‖H ≤ ‖u‖p−2
H

(
‖∂ku‖H + (p − 2)

∣∣∣∂k‖u‖H

∣∣∣). (4)

Note that the right hand side of (4) does not depend on n and is an element
of Lq(Ω). Also lim ∂kwn = fk almost everywhere. Hence lim ∂kwn = fk in
Lq(Ω,H). It is easy to see that lim wn = ‖u‖p−2

H u in L2(Ω,H) since ‖u‖p−2
H u ∈

L2(Ω,H). Let ϕ ∈ C∞
c (Ω,H). Then∫

Ω

(∂k(‖u‖p−2
H u), ϕ)H = −

∫
Ω

(‖u‖p−2
H u, ∂kϕ)H = − lim

n→∞

∫
Ω

(wn, ∂kϕ)H

= lim
n→∞

∫
Ω

(∂kwn, ϕ)H =
∫
Ω

(fk, ϕ)H .

So ∂k(‖u‖p−2
H u) = fk almost everywhere.

Finally (3) implies that
d∑

k,l=1

Re (ckl ∂lu, ∂k(‖u‖p−2
H u))H ≥ 0

almost everywhere. Integrating over Ω gives Re a(u, ‖u‖p−2
H u) ≥ 0. Now apply

Theorem 1.1.
By the way, with some more work, one can show that limn→∞ ∂kwn = fk

in L2(Ω,H). �

We comment on related results concerning the extension of S to a not nec-
essarily contractive C0-semigroup on Lp. Hofmann, Mayboroda, and McIntosh
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[14] showed for H = C, Ω = R
d, and d ≥ 3 that the semigroup S can be ex-

tended to a C0-semigroup on Lp(Ω) if p ∈ [ 2d
d+2 , 2d

d−2 ]. Conversely, for each
p ∈ (1, 2d

d+2 )∪ ( 2d
d−2 ,∞), they construct an elliptic operator such that the asso-

ciated semigroup (St)t>0 cannot be extended consistently to a bounded semi-
group Lp(Rd). The extension results are based on off-diagonal Davies–Gaffney
estimates; cf. also [8, Theorem 25], and [5, Section 3.1].

Davies had already pointed out in the introduction of [9] that his proof of [8,
Theorem 25] extends to the vector-valued case. Moreover, by [9, Theorem 10],
for each p ∈ (1, 2d

d+2 ) ∪ ( 2d
d−2 ,∞), there exists an elliptic system with H = C

d,
Ω = R

d, d ≥ 3, and with real symmetric coefficients such that the operator St

does not continuously extend to Lp for any t > 0.
We shall give a corresponding extension result for our setting, which we ob-

tain readily from standard estimates and tracing Auscher’s proof of [5, Propo-
sition 3.2].

Theorem 3.2. Suppose Ω = R
d or Ω ⊂ R

d is open and Lipschitz. Then the
semigroup S extends to a C0-semigroup with growth bound 0 on Lp(Ω,H) for
all p ∈ ( 2d

d+2 , 2d
d−2 ) if d ≥ 3 and for all p ∈ (1,∞) if d ∈ {1, 2}.

Proof. We outline the arguments for d ≥ 3. Let ω > 0. Since a is elliptic for
this choice of ω, by [18, Lemma 3.6.2 (3.60)] there exists a c > 0 such that
‖e−ωt Stu‖V ≤ c t−1/2 ‖u‖2 for all u ∈ L2(Ω,H) and t > 0. Combining this
with the Sobolev embedding V ↪→ L2d/(d−2), we obtain that there exists a
C > 0 such that

‖e−ωt Stu‖2d/(d−2) ≤ C t−1/2 ‖u‖2

for all u ∈ L2(Ω,H) and t > 0. Then, by duality,

‖e−ωt S∗
t u‖2 ≤ C t−1/2 ‖u‖2d/(d+2)

for all u ∈ L2 ∩ L2d/(d+2) and t > 0.
Next, it follows from inspection of the proof of [5, Proposition 3.2] that

the parts (2) and (3) of [5, Proposition 3.2] extend to the vector-valued case
and general open sets Ω, and are applicable to the C0-semigroup (Tt)t>0 given
by Tt = e−ωt S∗

t . For the extension of part (2), one needs L2–L2 off-diagonal
estimates that can be obtained, for example, as in [3, Theorem 4.2]. More-
over, the vector-valued version of the Riesz–Thorin theorem follows from [13,
Lemma 2.6]. Let q ∈ ( 2d

d+2 , 2). By the extension of [5, Proposition 3.2 (2)],
we obtain that T satisfies Lq–L2 off-diagonal estimates, which implies by the
extension of [5, Proposition 3.2 (3)] that T is uniformly bounded in Lq. Du-
alizing again, we obtain the statement for all p ∈ (2, 2d

d−2 ). By considering the
adjoint form, applying the result for p > 2, and taking the dual, we obtain the
statement for p ∈ ( 2d

d+2 , 2). �
Remark 3.3. We comment on the admissible ranges for p in Theorems 3.1
and 3.2. Remarkably, it is possible that the range given in Theorem 3.1 for
contractive extensions is larger than the one given in Theorem 3.2 for exten-
sions with growth bound 0. For example, this occurs if μ

M ≥ 1
2 , say, and d is

sufficiently large.
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A. The derivative of a truncation. Let Ω ⊂ R
d be an open set. Let H be a

Hilbert space. The principal aim in this section is to prove the following chain
rule.

Proposition A.1. Let α > 0 and M > 0. Let u ∈ H1(Ω,H). Define v =
(‖u‖α

H ∧ M)u. Then v ∈ H1(Ω,H) and

∂kv = α1[‖u‖α
H<M ] ‖u‖α

H Re (sgn u, ∂ku)H sgn u + (‖u‖α
H ∧ M) ∂ku

for all k ∈ {1, . . . , d}.
The proof involves some work. We use the following approximation by

smooth functions.

Lemma A.2. The space C∞(Ω,H) ∩ H1(Ω,H) is dense in H1(Ω,H).

Proof. This follows as in the scalar case in [1, Theorem 3.17]. �

For an approximation argument, the next lemma is useful.

Lemma A.3. For all n ∈ N, let un ∈ H1(Ω,H). Let u, g1, . . . , gd ∈ L2(Ω,H).
Suppose that lim un = u in L2(Ω,H) and lim ∂kun = gk in L2(Ω,H) for all
k ∈ {1, . . . , d}. Then u ∈ H1(Ω,H) and ∂ku = gk for all k ∈ {1, . . . , d}.
Proof. Let ϕ ∈ C∞

c (Ω). Let k ∈ {1, . . . , d}. Then − ∫
Ω

un ∂kϕ =
∫
Ω
(∂kun)ϕ

for all n ∈ N. Then the lemma follows by taking the limit n → ∞. �

For the proof of Proposition A.1, we shall approximate the function t �→ tα∧
M with smooth functions. The next technical lemma gives sufficient conditions
in order to apply a chain rule. Note that we do not require that f ′ is bounded.

Lemma A.4. Let f ∈ C1(0,∞). Suppose that f is bounded, limt↓0 f(t) = 0,
limt↓0 t f ′(t) = 0, and supt∈(0,∞) t |f ′(t)| < ∞. Let u ∈ H1(Ω,H). Define
v = f(‖u‖H)u. Then v ∈ H1(Ω,H) and

∂kv =

{‖u‖H f ′(‖u‖H) Re (sgn u, ∂ku)H sgn u + f(‖u‖H) ∂ku on [u �= 0],

0 on [u = 0],

(5)

for all k ∈ {1, . . . , d}.
Proof. Let ε > 0. Define vε = f(

√‖u‖2
H + ε)u. If u ∈ C1(Ω,H), then vε ∈

C1(Ω,H) and

∂kvε =
√

‖u‖2
H + ε f ′(

√
‖u‖2

H + ε)
Re (u, ∂ku)H√‖u‖2

H + ε

1√‖u‖2
H + ε

u

+f(
√

‖u‖2
H + ε) ∂ku (6)

for all k ∈ {1, . . . , d}. Then, by Lemmas A.2 and A.3, this extends to all
u ∈ H1(Ω,H) and (6) is valid. Finally choose ε = 1

n , take the limit n → ∞,
and use again Lemma A.3. �

Now we are able to prove Proposition A.1.
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Proof of Proposition A.1. For all n ∈ N, define fn, f : (0,∞) → R by

f(t) = tα ∧ M,

fn(t) = 1
2 (tα +

√
M2 + n−1 −

√
|tα − M |2 + n−1).

Then lim fn(t) = f(t) for all t ∈ (0,∞). Also limt↓0 fn(t) = 0 for all n ∈ N.
Let n ∈ N. Then fn ∈ C1(0,∞) and

f ′
n(t) = 1

2 α tα−1
(
1 − tα − M√

(tα − M)2 + n−1

)

for all t ∈ (0,∞). In particular, fn is increasing. Moreover, limt↓0 t f ′
n(t) = 0. In

addition, limn→∞ f ′
n(t) = α tα−1 if tα ≤ M and limn→∞ f ′

n(t) = 0 if tα > M .
Let n ∈ N and t ∈ (0,∞). If tα ≤ M , then

0 ≤ t f ′
n(t) = 1

2 α tα
(
1 +

M − tα√
(tα − M)2 + n−1

)
≤ α M.

Alternatively, if tα > M , then

0 ≤ t f ′
n(t) = 1

2 α
tα − M + M√

(tα − M)2 + n−1

(√
(tα − M)2 + n−1 −

√
(tα − M)2

)

≤ 1
2 α

(
1 +

M√
n−1

)√
n−1 ≤ 1

2 α (1 + M).

So

sup
n∈N

sup
t∈(0,∞)

t |f ′
n(t)| ≤ α (M + 1). (7)

If n ∈ N and t ∈ (0,∞), then

0 ≤ fn(t) ≤ 1
2 (tα + M + 1 −

√
|tα − M |2 + n−1)

≤ 1
2 (tα + M + 1 − |tα − M |) = 1

2 + f(t) ≤ 1
2 + M.

So fn is bounded and even

sup
n∈N

sup
t∈(0,∞)

|fn(t)| ≤ 1
2 + M. (8)

Hence all conditions of Lemma A.4 are satisfied for all the fn.
Let u ∈ H1(Ω,H). For all n ∈ N, define vn = fn(u)u. Then vn ∈ H1(Ω,H)

with derivatives given by (5) and f replaced by fn. The Lebesgue dominated
convergence theorem and the uniform bounds (8) and (7) imply that lim vn = v
and lim ∂kvn = ∂kv in L2(Ω,H) for all k ∈ {1, . . . , d}. Then the proposition
follows from Lemma A.3. �

Almost the same arguments show that the norm of an H1(Ω,H)-function
is in the Sobolev space.

Lemma A.5. Let u ∈ H1(Ω,H). Then ‖u‖H ∈ H1(Ω) and furthermore ∂k‖u‖H

= Re (sgn u, ∂ku)H for all k ∈ {1, . . . , d}.
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Proof. Let ε > 0. For all u ∈ H1(Ω,H), define uε : Ω → H by uε =
√‖u‖2

H + ε.
Let ϕ ∈ C∞

c (Ω) and k ∈ {1, . . . , d}. If u ∈ C∞(Ω,H) ∩ H1(Ω,H), then
uε ∈ C∞(Ω,H) with classical partial derivative ∂kuε = Re (u,∂ku)H

uε
. Hence

−
∫
Ω

uε ∂kϕ =
∫
Ω

Re (u, ∂ku)H

uε
ϕ. (9)

Using approximation and Lemma A.2, it follows that (9) is valid for all u ∈
H1(Ω,H). Finally choose ε = 1

n and take the limit n → ∞. �

B. Strict convexity of Lp(Ω,H). As before, let (Ω,B, μ) be a σ-finite measure
space and H a Hilbert space. In order to make this paper more self-contained,
we give a direct proof of the following theorem. At the end of this section, we
give information on more general results.

Theorem B.1. Let p ∈ (1,∞) and u, v ∈ Lp(Ω,H) with ‖u‖p = ‖v‖p = 1. If
‖u + v‖p = 2, then u = v.

For the proof of Theorem B.1, we use three lemmas.

Lemma B.2. Let ξ, η ∈ H and suppose that ‖ξ+η‖H = ‖ξ‖H +‖η‖H . If η �= 0,
then there is a λ ∈ [0,∞) such that ξ = λ η.

Proof. The equality implies that Re (ξ, η)H = ‖ξ‖H ‖η‖H . This gives equality
in the Cauchy–Schwarz inequality. Hence there is a λ ∈ C such that ξ = λ η.
Using again the equality, one deduces that |1 + λ| = |λ| + 1 and therefore
λ ∈ [0,∞). �

Let p, q ∈ (1,∞) and suppose that 1
p + 1

q = 1.

Lemma B.3. Let a, b ∈ [0,∞). Then a b ≤ 1
p ap + 1

q bq and the equality holds if
and only if ap = bq.

Proof. This follows from the concavity of the logarithm. �

Lemma B.4. Let f ∈ Lp(Ω) and g ∈ Lq(Ω) with f �= 0 and g �= 0. Suppose that∫
Ω

|f | |g| = ‖f‖Lp(Ω) ‖g‖Lq(Ω). Then there exists a λ > 0 such that |f |p = λ |g|q
almost everywhere.

Proof. We may assume that ‖f‖Lp(Ω) = 1 = ‖g‖Lq(Ω). Then

1 =
∫
Ω

|f | |g| ≤
∫
Ω

1
p |f |p + 1

q |g|q = 1
p ‖f‖Lp(Ω) + 1

q ‖g‖Lq(Ω) = 1.

Hence |f | |g| = 1
p |f |p + 1

q |g|q almost everywhere and the lemma follows from
Lemma B.3. �

Proof of Theorem B.1. Using the triangle inequality on H, twice the Hölder
inequality on Lp(Ω), and the assumption ‖u + v‖p = ‖u‖p + ‖v‖p, one obtains
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‖u + v‖p
p =

∫
Ω

‖u + v‖H ‖u + v‖p−1
H

≤
∫
Ω

‖u‖H ‖u + v‖p−1
H +

∫
Ω

‖v‖H ‖u + v‖p−1
H

≤
(∫

Ω

‖u‖p
H

)1/p(∫
Ω

‖u + v‖(p−1)q
H

)1/q

+
(∫

Ω

‖v‖p
H

)1/p( ∫
Ω

‖u + v‖(p−1)q
H

)1/q

= (‖u‖p + ‖v‖p) ‖u + v‖p/q
p = ‖u + v‖

p
q +1
p = ‖u + v‖p

p.

Hence all three inequalities are equalities. The first gives that there is a null-
set N1 ⊂ Ω such that ‖u + v‖H(x) = ‖u‖H(x) + ‖v‖H(x) for all x ∈ Ω\N1

such that ‖u + v‖H(x) �= 0. Recall that ‖u‖p = 1, so ‖u‖H �= 0 ∈ Lp(Ω).
Similarly ‖u+ v‖H �= 0 ∈ Lp(Ω) and therefore ‖u+ v‖p−1

H �= 0 ∈ Lq(Ω). Hence
the equality in the first Hölder inequality together with Lemma B.4 gives that
there are α > 0 and a null-set N2 ⊂ Ω such that ‖u‖p

H(x) = α ‖u+v‖(p−1)q
H (x)

for all x ∈ Ω\N2. Similarly there are β > 0 and a null-set N3 ⊂ Ω such that
‖v‖p

H(x) = β ‖u + v‖(p−1)q
H (x) for all x ∈ Ω\N3. Hence ‖u‖p

H = γ ‖v‖p
H on

Ω \ (N2 ∪ N3), where γ = α
β . Since ‖u‖p = ‖v‖p = 1, one deduces that γ = 1.

Now let x ∈ Ω \ (N1 ∪ N2 ∪ N3). If ‖u + v‖H(x) = 0, then subsequently
‖u‖p

H(x) = α ‖u + v‖(p−1)q
H (x) = 0 and u(x) = 0. Similarly v(x) = 0 and

therefore u(x) = v(x). Alternatively, if ‖u + v‖H(x) �= 0, then v(x) �= 0 since
x �∈ N3. Moreover, ‖u(x) + v(x)‖H = ‖u(x)‖H + ‖v(x)‖H and Lemma B.2
implies that there is a λ ∈ [0,∞) such that u(x) = λ v(x). But ‖u(x)‖p

H =
‖v(x)‖p

H and hence u(x) = v(x). Therefore u = v almost everywhere. �

With a small modification, one can prove that Lp(Ω, E) is strictly convex if
E is strictly convex and p ∈ (1,∞). In fact, a stronger result than Theorem B.1
is known. The space Lp(Ω, E) is uniformly convex if E is uniformly convex and
p ∈ (1,∞). See [10] and the references therein.
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