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Abstract. A group element is called a generalized torsion element if a
finite product of its conjugates is equal to the identity. We prove that in
a nilpotent or FC-group, the generalized torsion elements are all torsion
elements. Moreover, we compute the generalized order of an element in a
finite group G using its character table.
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1. Introduction. For a pair of elements x and y in a group G, we write xy =
y−1xy for the conjugate of x by y. The order of x, denoted by o(x), is the least
positive integer k such that xk = 1; the order is infinite if no such k exists. We
say that x is a torsion element if o(x) is finite. The set of all torsion elements
of G will be denoted by T(G). An element x ∈ G is said to be a generalized
torsion element if there exist g1, . . . , gk ∈ G such that

xg1xg2 · · · xgk = 1.

We will denote by T•(G) the set of all generalized torsion elements in G.
The generalized order of x ∈ T•(G), denoted by o•(x), is defined to be the
smallest positive integer n such xg1 · · · xgn = 1 for some g1, . . . , gn ∈ G. Hence,
the identity element, for example, has generalized order one. We say that G
has generalized exponent k, writing exp•(G) = k, if T•(G) = G and k is the
smallest positive integer such that Ck contains 1 for every conjugacy class C
of G. Here, Ck = {c1 · · · ck | ci ∈ C}.

The maximal generalized order max o•(G) of a group G is defined as
max o•(G) = max{o•(x) | x ∈ G}. We observe that max o•(G) ≤ exp•(G) ≤
exp(G). Both inequalities can be strict, as shown by the example of SL(2, 3)
whose maximal generalized order is 3, its generalized exponent is 6, while its
exponent is 12.
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Note that if x is a torsion element of G, then o•(x) ≤ o(x). Thus T(G) ⊆
T•(G). The reverse inclusion, however, does not hold. For example, in the
infinite dihedral group D∞, we have

T(D∞) = {g | g2 = 1} while T•(D∞) = D∞.

Moreover, there are finitely generated torsion-free groups where all elements
are generalized torsions (see [11, Problem 3.11], Gorchakov [5], or Goryushkin
[6]). Osin [15, Corollary 1.2] constructed an example of a torsion-free 2-generator
group G with exactly two conjugacy classes (in particular, exp•(G) = 2). More
recently, generalized torsion elements in knot groups were studied in a number
of papers (see [9], [10], [13], [14], and the references therein for further results).

In Section 2, we focus on groups whose generalized torsions are torsions.
We will prove that this holds in the class of FC-groups (that is, groups whose
conjugacy classes are finite) as stated in the following theorem.

Theorem 1.1. If G is an FC-group, then T•(G) = T(G).

In Section 3, we adapt some known results of Arad, Stavi, and Herzog [1]
to obtain bounds for the generalized exponent of a finite group in terms of the
conjugacy classes. Based on results of [1], we also present a practical method
for calculating the generalized order for groups whose character table is known.

In Section 4, we will prove the following theorem showing that certain
powers of generalized torsion elements lie deep in the lower central series.

Theorem 1.2. Let x be an element of a group G.
(1) If o•(x) = k, then xkm ∈ γm(G) for any positive integer m.
(2) If G is nilpotent, then T•(G) = T(G).

The first version of this text was published on arxiv.org on February 19,
2023. Later, in a private correspondence, T. Ito showed us alternative proofs
for Theorems 1.1 and 1.2(b) which, among other related results, can be found
in [8].

2. Generalized torsion elements. Observe that if G is an abelian group, then
o•(g) = o(g) for all g ∈ G. However, if G is non-abelian, then o•(g) need
not be equal to o(g). For example, in the symmetric group Sn, all elements
are conjugate to their inverse and so Sn has generalized exponent 2 for all n.
Thus, taking the n-cycle σ = (12 · · · n) ∈ Sn, we have that o•(σ) = 2, while
o(σ) = n, showing that an element of generalized order 2 can have arbitrarily
large order.

According to Corollary 4.4, if G is a finite p-group with exponent p, then
o•(g) = o(g) for all g ∈ G. It is worth mentioning that if G is finite, then o•(x)
does not need to divide the order of G (see Example 3.5). Nevertheless, the
following result holds.

Proposition 2.1. Let G be a finite group.
(1) If G has an element with generalized order 2, then G has even order.
(2) G can be embedded into a finite group of generalized exponent 2.
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Proof. (1) Assume that a non-trivial element x ∈ G has generalized order 2.
By definition, there exists an element g in G such that xxg = 1. If g ∈ Z(G),
then x has order 2 and so G has even order. Thus, in what follows, we may
assume that g /∈ Z(G). The map

ρg : G → G, y �→ yg,

is a permutation of the elements of G. Since ρg(x) = x−1 and ρg(x−1) = x, we
may write ρg ∈ Sym(G) as a product of disjoint cycles and one of these cycles
is (x, x−1). Considering that disjoint cycles in Sym(G) always commute, ρg

has even order. Now, the map

ρ : G → Aut(G), y �→ ρy,

is a homomorphism whose kernel coincides with Z(G). Since g /∈ Z(G) and ρg

has even order, G has even order.
(2) Set n = |G|. It follows from Cayley’s theorem [16, 1.6.8] that G can be

embedded into the symmetric group Sn. Further, as was observed before this
result, exp•(Sn) = 2. �

Recall that a group element x ∈ G is said to be real if x−1 ∈ xG. In
particular, a non-trivial element x ∈ G has generalized order 2 if and only if
there exists g ∈ G such that xxg = 1; that is, x−1 = xg ∈ xG. Thus, x is real
if and only if o•(x) = 2.

In the next result, we collect some of the basic properties of generalized
torsion elements.

Proposition 2.2. Let G be a group.
(1) If H is a subgroup of G, then T•(H) ⊆ T•(G).
(2) If K is a group and ϕ : G → K is a homomorphism, then (T•(G))ϕ ⊆

T•(K).
(3) T•(G) is a normal (and characteristic) subset of G.
(4) If x ∈ T•(G) ∩ Z(G), then x ∈ T(G). Moreover, if G is abelian, then

T•(G) = T(G).
(5) If N is a normal subgroup of G and the quotient group G/N is abelian,

then exp•(G/N) divides exp•(G).

Proof. (1) If x ∈ T•(H), then there exist h1, . . . , hk ∈ H such that

1 = xh1 · · · xhk

and so, x ∈ T•(G).
(2) If x ∈ T•(G), then there exist g1, . . . , gr ∈ G such that

1 = xg1 · · · xgr .

Since ϕ is a homomorphism, it follows that

1 = (xϕ)gϕ
1 · · · (xϕ)gϕ

r

and so, xϕ ∈ T•(K).
(3) Given an element g ∈ G, conjugation by g induces an automorphism

on G. Now, the result follows from the previous item.
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(4) If x ∈ T•(G) ∩ Z(G), then there exist g1, . . . , gr ∈ G such that

1 = xg1 · · · xgr = x · · · x
︸ ︷︷ ︸

r times

= xr.

In particular, x ∈ T(G).
(5) Let exp•(G) = n and let x ∈ G. By definition, there exist elements

g1, . . . , gn in G such that xg1 · · · xgn = 1. Since the quotient group G/N is
abelian, we obtain 1 = (xN)g1N · · · (xN)gnN = xnN , and so exp(G/N) =
exp•(G/N) divides n. �

We are now in the position to prove Theorem 1.1.

Proof of Theorem 1.1. It is clear that T(G) ⊆ T•(G). Choose arbitrarily an
element x ∈ T•(G). Then, there exist g1, . . . , gk ∈ G such that xg1xg2 · · · xgk =
1. In particular, by construction, x ∈ T•(H), where H = 〈x, g1, . . . , gk〉. Since
G is an FC-group, so is H. Thus, all centralizers of x, g1, . . . , gk in H have
finite index. Since the intersection of a finite set of subgroups each of which
has finite index is itself of finite index [16, 1.3.12], the center Z(H), being
the intersection of the centralizers of the generators of H, has finite index
in H. Therefore H is central-by-finite. Set n = |H : Z(H)|. Define the map
θ∗ : H → H as follows:

θ∗ :H −→ H,
h �−→hn.

By Schur’s theorem [16, 10.1.3], θ∗ is an endomorphism of H. By Proposition
2.2(2), xn = xθ∗ ∈ T•(H). Since Im(θ∗) � Z(H), xn is a torsion element
(Proposition 2.2(4)) and so, x is also a torsion element. �

We obtain the following result as a corollary; this result is somewhat sim-
ilar to Dietzmann’s lemma [16, 14.5.7] that if X ⊆ G is a finite normal set
consisting of torsion elements, then 〈X〉 is finite.

Corollary 2.3. In a group G, a finite normal subset consisting of generalized
torsion elements generates a finite normal subgroup.

Proof. Let X = {x1, . . . , xk} ⊆ T•(G) be a finite normal subset of G and set
N = 〈X〉. Since X is a normal set, all the conjugacy classes xN

i have at most
k elements and so the center Z(N) =

⋂k
i=1 CN (xi) has finite index. If g ∈ N ,

then Z(N) ≤ CN (g), and hence CN (g) has finite index; that is, the conjugacy
class gN is finite. Thereby, N is an FC-group. By Theorem 1.1, X ⊆ T(G).
Thus, Dietzmann’s lemma implies that N is a finite normal subgroup. �
3. The generalized order in a finite group. In this section, we link the gener-
alized order o•(g) of an element g ∈ G of a finite group to the characters of G.
This also provides a practical method for computing the generalized order in
groups for which the irreducible characters are known. Suppose in this section
that G is a finite group and let C1, C2, . . . , Cm be the conjugacy classes of G
such that C1 = {1}. A conjugacy class C is said to be real if C−1 = C, other-
wise C is non-real. Following [1], we denote by λ the number of real conjugacy
classes distinct from {1} and by 2μ the number of non-real conjugacy classes
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(which is always an even number). Hence the number m of conjugacy classes
of G can be written as m = 1 + λ + 2μ.

The two assertions of the following proposition are proved in [1, Lemmas 7.3
and 7.4 of].

Proposition 3.1. Suppose that G is a finite group and let g ∈ G.
(1) o•(g) is less than or equal to the number of conjugacy classes in G that

contain powers of g.
(2) o•(g) ≤ 2μ + 2.

Corollary 3.2. Let G be a finite group. If H is a core-free subgroup of G, then
max o•(G) ≤ 2|G:H|−1.

Proof. Let R be the set of all right cosets of H. Every element g in G induces
a permutation on R by right multiplication (Hx)g = H(xg). Since H is core-
free, G gets embedded into the symmetric group Sn where n = |G : H|. An
important result due to Liebeck and Pyber [12, Theorem 2] states that the
number of conjugacy classes of any subgroup of Sn is at most 2n−1. Now, the
result follows from Proposition 3.1(1). �

The generalized order of an element g of a finite group G can be calcu-
lated using the character table of G. Suppose that Irr(G) denotes the set of
irreducible characters of G. For a conjugacy class C ⊆ G and for k ≥ 1, let
αC,k be the number of k-tuples (g1, . . . , gk) ∈ Ck such that g1 · · · gk = 1. That
is, αC,k counts how many ways the identity can be written as a product of k
elements of C. For g ∈ C, we have that

o•(g) = min{k ≥ 1 | αC,k > 0}
and also that

exp•(G) = min{k ≥ 1 | αC,k > 0 for all conjugacy classes C ⊆ G}.

The following lemma appeared in [1, Lemma 10.10]; see also [17, Equation (1)].

Theorem 3.3. Using the notation in the previous paragraph,

αC,k =
|C|k
|G|

∑

χ∈Irr(G)

χ(g)k

χ(1)k−2
. (1)

Theorem 3.3 gives an computationally efficient method for calculating the
generalized order for elements in finite groups whose character tables are
known.

Example 3.4. Suppose that G is the group number 3 among the groups of
order 18 in GAP [4]. The group G has 9 conjugacy classes and 9 irreducible
representations. Suppose that C is the conjugacy class number 8 according to
the numbering given by GAP. Then one can compute, using (1), that αC,1 =
αC,2 = 0, but αC,3 = 243. Hence the identity element 1 ∈ G can be written as
a product g1g2g3 with gi ∈ C in 243 ways and in particular o•(g) = 3 for all
g ∈ C.
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Example 3.5. Suppose that G is the Suzuki group Sz(8) and assume that C
is the conjugacy class number three in the numbering by GAP. Using GAP,
we computed that αC,1 = αC,2 = 0, but αC,3 = 196, 560. Thus the identity
element of G can be written in 196, 560 ways as a product g1g2g3 with gi ∈ C.
In particular, o•(g) = 3 for all g ∈ C. Interestingly, 196, 560 coincides with
the kissing number of the 24-dimensional Leech lattice and is equal to the
coefficient of the first non-constant term of the modular form the lattice; [3,
Section 2].

Example 3.6. Let G be a group of order 2k for k = 1, . . . , 8. Using GAP, we
computed that the generalized exponent of G is a 2-power. However, there ex-
ists a finite 3-group whose generalized exponent is not a 3-power. For example,
SmallGroup(35, 4) has generalized exponent 6.

It is known that many finite non-abelian simple groups have generalized
exponent less than or equal to 3 (see [18, Theorem 3] and [1, Chapters 1 and
2]). Using GAP, we computed that exp•(G) ≤ 3 whenever G = An for n ≤ 15
or G = PSL(2, q) for all q ≤ 49. Further, in [17, Theorem 2.6], Shalev showed
that if G is a finite non-abelian simple group and x ∈ G is chosen at random,
then the probability that (xG)3 = G tends to 1 as |G| → ∞. These facts
support the following conjecture.

Conjecture 3.7. If G is a finite non-abelian simple group, then max o•(G) ≤ 3.

4. Relations between generalized torsion and the terms of the lower cen-
tral series. We define recursively commutators of weight 1, 2, . . . in elements
x1, x2, . . . of a group G as follows. The elements x1, x2, . . . are commutators
of weight 1, [xi, xj ] = x−1

i x−1
j xixj , with i �= j, are commutators of weight

2 and if c1 and c2 are commutators of weight w1 and w2, respectively, then
[c1, c2] is a commutator of weight w1 + w2. Here, c1 and c2 are called left and
right sub-commutators, respectively. The first entry in a commutator [c1, c2]
is defined as the first entry of c1, while the first entry of a commutator x of
weight one is of course just x. In case brackets are omitted, the commutators
are assumed left-normed, for example, [x1, x2, x3] = [[x1, x2], x3]. The terms
γi(G) of the lower central series of G are defined recursively as γ1(G) = G
and γi+1(G) = [γi(G), G] for i ≥ 1. In particular, γ2(G) = G′ is the commu-
tator (or derived) subgroup. It is well-known that γi(G) is the subgroup of G
generated by all commutators of weight i in the elements of G.

We quote the following well-known lemma (see [16, Lemma 5.1.5 and Ex-
ercise 5.1.4] and [7, Chapter III, Section 9.4]). It will be used in the rest of the
paper, often without explicit reference.

Lemma 4.1. For elements x, y, z of a group G and a positive integer k, the
following identities are valid:
(1) xy = yx[x, y],
(2) xy = x[x, y],
(3) [xy, z] = [x, z][x, z, y][y, z],
(4) [xk, y] = [x, y]x

k−1
[x, y]x

k−2 · · · [x, y]x[x, y],
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(5) xkyk = (xy)kc
(k
2)

2 · · · c(
k
i)

i · · · ck
k−1ck, where ci ∈ γi(〈x, y〉) for each non-

negative integer i.

The item (5) above is known as the Hall-Petrescu formula.

Lemma 4.2. Let k ≥ 2, and let x, g1, . . . , gk be elements in a group G.
(1) We have that

xg1xg2 · · · xgk = xkσ2

where σ2 is a product of commutators of weight at least 2 and the element
x is the first entry of all the factors of σ2.

(2) If o•(x) = k, then xk = c1 · · · cr, where each ci = [ci,1, ci,2] is a commu-
tator of weight at least 2 such that the first entry of ci,2 is x.

(3) If o•(x) = k and cm is a commutator of weight m with x in some entry,
then ck

m is a product of commutators of weight at least m+1 and x appears
in some entry of all factors of ck

m.
(4) If o•(x) = k and σm is a product of commutators of weight at least m with

x in some entry of all its factors, then σk
m is a product of commutators

of weight at least m + 1 and x appears in some entry of all its factors.
(5) If o•(x) = k, then (xg1xg2 · · · xgk)km

= xkm+1
σm+1, where σm+1 is a

product of commutators of weight at least m+1 and the element x appears
in some entry of all factors of σm+1.

Proof. (1) We proceed by induction on k. If k = 2, then

xg1xg2 = x[x, g1]x[x, g2] = x2[x, g1][x, g1, x][x, g2].

Assuming the result holds for k ≥ 2, we get

(xg1xg2 · · · xgk)xgk+1 = (xkσ2)x[x, gk+1] = xk+1σ2[σ2, x][x, gk+1],

where σ2 is a product of commutators of weight at least 2 and the element x is
the first entry of the factors of σ2. Now, the result follows by applying Lemma
4.1(3) several times to the commutator [σ2, x].

(2) If o•(x) = k, then there exist elements g1, . . . , gk ∈ G such that 1 =
xg1xg2 · · · xgk . By the previous item, we can write

1 = xg1xg2 · · · xgk = xkσ2,

where σ2 is a product of commutators of weight at least 2 and the element x
is the first entry of all the factors of σ2. Thus, xk = σ−1

2 .
(3) We proceed by induction on m. The basic step m = 1 follows by item

(2). Assume the result holds for all positive integers up to m. Let cm+1 be
a commutator of weight m + 1 with x in some entry. Write cm+1 = [ci, cj ]
where ci, cj are commutators of weight i and j, respectively, and i + j =
m + 1. Without loss of generality, we can assume that x occurs in the left
sub-commutator ci. By Lemma 4.1(4), we obtain

[ck
i , cj ] = [ci, cj ]c

k−1
i [ci, cj ]c

k−2
i · · · [ci, cj ]ci [ci, cj ]

= ([ci, cj ][ci, cj , c
k−1
i ]) · · · ([ci, cj ][ci, cj , ci])[ci, cj ]

= [ci, cj ]kσm+2
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where σm+2 is a product of commutators of weight at least m + 2 with x
in some entry of all factors. By the induction hypothesis, ck

i is a product of
commutators of weight at least i + 1 and x appears in some entry of all its
factors, say ck

i = ci,1 · · · ci,r. Since

ck
m+1 = [ci, cj ]k = [ck

i , cj ]σ−1
m+2,

the result follows by applying several times Lemma 4.1(3) to the commutator
[ck

i , cj ] = [ci,1 · · · ci,r, cj ].
(4) We proceed by induction on the number r of factors of σm. The basic

step r = 1 follows by the previous item. Assume that the result holds for all
positive integers up to r ≥ 1 and set σm = τ1 · · · τrτr+1 where each τi is a
commutator of weight at least m with x in some entry. By Lemma 4.1(5), we
can deduce that

σk
m = (τ1 · · · τrτr+1)k = (τ1 · · · τr)kτk

r+1σm+1

where σm+1 is a product of commutators of weight at least m + 1 with x
appearing in some entry in each factor. Thus, the result follows by applying
the induction hypothesis to (τ1 · · · τr)k and to τk

r+1.
(5) We show item (5) by induction on m. Firstly, we will show the basic

step m = 1. By item (1), we can write xg1xg2 · · · xgk = xkσ2. By parts (1) and
(5) of Lemma 4.1, we have

(xg1xg2 · · · xgk)k = (xkσ2)k = xk2
σ̃2

where σ̃2 is a product of commutators of weight at least 2 and the element x
appears in some entry of all factors.

Now, assume that the result holds for all positive integers up to m ≥ 1. By
the induction hypothesis, we get

(xg1xg2 · · · xgk)km+1
= ((xg1xg2 · · · xgk)km

)k = (xkm+1
σm+1)k

where σm+1 is a product of commutators of weight at least m + 1 and the
element x appears in some entry of all factors. By Lemma 4.1(5), we can
deduce that (xkm+1

σm+1)k = xkm+2
σk

m+1σm+2, where σm+2 is a product of
commutators of weight at least m+2 and the element x appears in some entry
of all the factors. Thus, the result follows applying item (4) to σk

m+1. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. (1) Let x be an element in a group G with general-
ized order o•(x) = k. Thus, there exist elements g1, . . . , gk in G such that
xg1xg2 · · · xgk = 1. By Lemma 4.2 (5), we have, for every positive integer m,

1 = (xg1xg2 · · · xgk)km−1
= xkm

σm

where σm is a product of commutators of weight at least m. Thus, xkm ∈
γm(G).

(2) Let c be the nilpotency class of G. We need to show that T•(G) ⊆ T(G).
Choose arbitrarily x ∈ T•(G). By the previous item,

xkc+1 ∈ γc+1(G) = {1}.
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As x ∈ T•(G) has been chosen arbitrarily, we conclude that T•(G) ⊆ T(G). �

A group G is said to be orderable if there is a total order on G such that
a ≤ b implies that xay ≤ xby for all a, b, x, y ∈ G. It is known that torsion-free
nilpotent groups are orderable; see [2].

Remark 4.3. If G is an orderable group, then T•(G) = {1}. It is known that
the converse does not hold in general (see [2]). We can deduce from the previous
result that if G is nilpotent with T•(G) = {1}, then G is orderable.

Corollary 4.4. If x is an element in a nilpotent p-group G, then p divides o•(x).

Proof. Let c be the nilpotency class of G. Since G is a p-group, we get that
x is a generalized torsion element. Setting o•(x) = k, it follows from Theorem
1.2(1) that xkc+1

= 1. Consequently, p divides kc+1 and so, p divides k. �

Remark 4.5. The previous result cannot be improved. In general, if G is a p-
group and g ∈ G, then o•(g) need not be a p-power. Let G be the 8-th group
of order 81 from the GAP Small Groups Library. Then G contains elements
with generalized torsion order 6.
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