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A short note on decay rates of odd partitions: an application of
spectral asymptotics of the Neumann–Poincaré operators

Yoshihisa Miyanishi

Abstract. Here, we introduce a theorem currently proved uniquely by the
asymptotic behaviors of eigenvalues of a compact operator. Specifically, a
problem of partitions is considered, and the Neumann–Poincaré operator
is employed as the compact linear operator. Then a theorem is proved by
the spectrum of the Neumann–Poincaré operator. Although the follow-
ing proposed problem looks artificial, our result in the partitions seems
to be proven uniquely by the spectral theory of the Neumann–Poincaré
operators: Odd partitions of the unit interval [0, 1] are considered, that
is, we divide the unit interval [0, 1] into 2N + 1 disjoint non-zero inter-
vals LN,k (k = 1, . . . , 2N + 1), and the sum of corresponding lengths
∑2N+1

k=1 |LN,k| = 1 for each N ∈ N≥0. Thus we obtain a countable set
of real numbers P = {|LN,k| k = 1, 2, . . . , 2N + 1, N ∈ N≥0} by odd
partitions of the unit interval. One can enumerate the set P in decreasing
order to obtain the non-increasing sequence

a1 = |L0,1| = 1 > a2 ≥ a3 ≥ · · · > 0.

We show that for any C ≥ 1/2, there exist odd partitions of the unit
interval such that

aj ∼ Cj−1/2 as j → ∞.

Here, the coefficient C = 1/2 corresponds to the optimal decay. We prove
this fact by a fundamental property of the Riemann zeta function and by
eigenvalue asymptotics for some compact linear operators known as the
Neumann–Poincaré operators.
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1. Introduction and Results. Although many sophisticated results have been
presented on the spectral theory of compact operators, their applications in
number theory often seem weaker than those in specific fields.

The well-known Gauss circle problem, which is the problem of determin-
ing how many integer lattice points N(r) there are in a circle centered at the
origin with radius r > 0, is a typical example, where N(r) = πr2 + O(r1/2+ε).
The estimate 0 < ε ≤ 1/2 can be proven by eigenvalue asymptotics of the
Laplace operator, whereas the improved estimate 0 < ε ≤ 27/208 can be
proven by analytic number theory [5,6,8]. Thus, spectral theory of linear op-
erators has brought about superior results. However, when spectrtal theory is
applied to mathematical problems of different fields, the obtained results often
seem weaker than those in specific fields.

Our purpose here is to present an application that seems to be currently
proven uniquely by spectral theory. This is shown by the behavior of partitions.
More precisely, when we divide the unit interval [0, 1] into 2N + 1 non–zero
length subintervals, finely divided partitions seem to appear. We call such
partitions “Odd Partitions”. Denoting odd partitions as LN,k (k = 1. . . . , 2N +
1) for each N ∈ N≥0, one can enumerate the countably infinitely many real
numbers {|LN,k| k = 1, 2, . . . , 2N + 1, N ∈ N≥0} in decreasing order. Here,
| · | denotes the Lebesgue measure (length). Thus, such procedure allows us to
give the non-increasing sequence

1 = |L0,1| = a1 > a2 ≥ a3 ≥ · · · > 0. (1.1)

For instance, equi-partitions of the unit interval yield the following diagram,
where the first partitioning yields 3 intervals, whose length is 1/3. Similarly, a
non-increasing sequence is produced.

1
1/3 1/3 1/3

1/5 1/5 1/5 1/5 1/5
1/7 1/7 1/7 1/7 1/7 1/7 1/7

...
...

...

In the above diagram, each row shows a partition of the unit interval, that
is, the sum of each row equals one. Thus, we obtain the following enumerated
sequence in decreasing order:

1, 1/3, 1/3, 1/3, 1/5, 1/5, 1/5, 1/5, 1/5, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7, . . .

(1.2)

After the N -th procedure, the diagram of partitions always consists of N2

numbers. One can easily find from (1.2) that the j = N2-th number aj is
1/(2N − 1) ∼ 1

2j−1/2 for large j. It is strongly expected that the optimal
decay rate is attained by such equi-partitions.

In fact, we have the desirable decay rates:
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Theorem 1.1 (Main Theorem). For all C ≥ 1
2 , there exist odd partitions of the

unit interval such that

aj ∼ Cj−1/2 as j → ∞.

Here, we emphasize that C = 1
2 is the minimum coefficient, namely, aj ⊀

1
2j−1/2 as j → ∞

To prove this, we recall the concept of unconditional sums, which are con-
venient here:

Proposition 1.2. For odd partitions, we define the infinite sum τ(p) by

τ(p) :=
∑

N∈N≥0
k=1,2,...,2N+1

|LN,k|p (p > 2). (1.3)

Then, τ(p) ≥ (1−21−p)ζ(p−1) (p > 2), where ζ(p) denotes the Riemann zeta
function.
The equality holds only for the case of equi-partitions.

We remark that Proposition 1.2 holds true even in the case that the sum
(1.3) diverges to ∞.

Proof of Proposition 1.2. Since the sum (1.3) consists only of positive values,
the sum is unconditional and independent of rearrangements.

It follows by Hölder’s inequality (e.g., see [13]) that

1 = |LN,1| + |LN,2| + · · · + |LN,2N+1|

≤ (1 + 1 + · · · + 1)1/q ·
(
|LN,1|p + |LN,2|p + · · · + |LN,2N+1|p

)1/p

≤ (2N + 1)
p−1
p ·

(
|LN,1|p + |LN,2|p + · · · + |LN,2N+1|p

)1/p

where p, q ∈ [1,∞] with 1/p + 1/q = 1. Thus

|LN,1|p + |LN,2|p + · · · + |LN,2N+1|p ≥ (2N + 1)(1−p) for p ≥ 1, (1.4)

and so

τ(p) ≥
∑

N∈N≥0

(2N + 1)(1−p) = (1 − 21−p)ζ(p − 1) for p > 2. (1.5)

The equality holds only for the case of equi-partitions
(i.e., |LN,1| = |LN,2| = · · · = |LN,2N+1| = 1/(2N + 1) for all N ∈ N). �

Proof of Theorem 1.1. Firstly, we show that 1
2 is the minimum coefficient.

Assuming C < 1
2 , then

∞∑

j=1

|aj |p �
∞∫

1

C2pj−p/2 dj =
2C2p

p − 2
for p > 2. (1.6)

It can be seen that 2C2p < 1/2 for p = 2 + ε with small ε > 0.
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Meanwhile, it follows from Proposition 1.2 that the sum of the p–th power
equi-partitions is

∞∑

j=1

|aj |p = τ(p) ≥ (1 − 21−p)ζ(p − 1) for p > 2. (1.7)

We then recall a property of the Riemann zeta function ζ(x) (e.g., see [3]):

lim
p→2+0

(

ζ(p − 1) − 1
p − 2

)

= γ, (1.8)

where γ is Euler’s constant. Thus, we have

lim
p→2+0

(
(
1 − 21−p

)
ζ(p − 1) − 1

2(p − 2)

)

= C (1.9)

for some constant C(= 1
2 (log 2 + γ)). Thus, it follows from (1.7) that

lim
p→2+0

⎛

⎝
∞∑

j=1

|aj |p − 1
2(p − 1)

⎞

⎠ ≥ lim
p→2+0

(
(
1 − 21−p

)
ζ(p − 1) − 1

2(p − 1)

)

= C

and from (1.6) that

lim
p→2+0

∞∑

j=1

|aj |p − 1
2(p − 1)

= −∞.

This is a contradiction, as desired.
To prove the existence of suitable partitions satisfying aj ∼ Cj−1/2 for C ≥

1/2, we use the spectral properties of the Neumann–Poincaré (NP) operator,
which is a boundary integral operator, defined on boundaries of a region in R

3

(e.g., see [2] and references therein for details). The NP operators on L2(∂Ω)
are compact if ∂Ω is in C1,α, that is, the corresponding non-zero spectrum
consists only of eigenvalues. We emphasize that corresponding eigenvalues on
prolate ellipsoids ∂Ω satisfy all properties of lengths for odd partitions of the
interval [0, 1/2] (see [1,9,12]):

M1,1

M2,1 M2,2 M2,3

M3,1 M3,2 M3,3 M3,4 M3,5

...
...

...

Here, each row represents a partition of [0, 1/2] and consists of an odd number
of non-zero subintervals. The sum

∑2N+1
k=1 |MN,k| = 1/2 for each N ∈ N≥0.

These novel facts are not elementary, but the results are available here. Fur-
thermore, it was recently proven [10,11] that NP eigenvalues satisfy the so-
called Weyl law, namely,

aj ∼ C̃j−1/2

for C̃ ≥ 1/4. Here, the coefficient C̃ is explicitly calculated using the Willmore
energy W (∂Ω) and the Euler characteristic χ(∂Ω) of the boundary surface ∂Ω.
It follows that the coefficient C̃ can take arbitrary real values larger than 1/4
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(see [10,11] for details). As a result, there exist odd partitions of a half interval
[0, 1/2] such that the enumerated sequence satisfies

aj ∼ C̃j−1/2

for all C̃ ≥ 1/4. When we consider the interval [0, 1] instead of the half interval
[0, 1/2], C = 2C̃ ≥ 1/2 automatically. �

2. Discussion. We proved the decay rates on odd partitions of the unit interval.
Theorem 1.1 is proven by a fundamental property of the Riemann zeta function
and the spectral theory of NP operators. If the partitions are permitted to have
zero-length sets, this fact is proved in an elementary manner. Can one give an
elementary proof of Theorem 1.1 as it is? To the best of my knowledge, we do
not know alternative proofs other than spectral theory.

The partitions of the unit interval have been considered for a number of
years from various viewpoints (e.g., see [4,7]). For more general partitions, can
one prove the existence of a decay sequence for suitable orders?

The difference sequence of the Farey sequence, for instance, is the partitions
of the unit interval [7]:

1
1/2 1/2

1/3 1/6 1/6 1/3
1/4 1/12 1/6 1/6 1/12 1/4

1/5 1/20 1/12 1/15 1/10 1/15 1/12 1/20 1/5
...

...
...

Thus the enumerated decreasing sequence {aj} is denoted as

1, 1/2, 1/2, 1/3, 1/3, 1/4, 1/4, 1/5, 1/5, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6, . . . , (2.1)

and its corresponding behavior seems to be aj ∼ Cj−1/3, as it is known that
the N -th row consists of N2 numbers asymptotically. The decreasing order
j−1/3 depends on the number of partitions. For general partitions of the unit
interval, can one prove analogous results to Theorem 1.1? The minimum decay
can be easily guessed, and it should be given by equi-partitions.
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