Archiv der Mathematik

Rigidity of Willmore submanifolds and extremal submanifolds in the unit sphere

DENG-YUN YANG, HAI-PING FU, AND JIN-GUO ZHANG

Abstract. Let M be an n-dimensional $(n \geq 4)$ compact Willmore (or extremal) submanifold in the unit sphere S^{n+p} . Denote by Ric and H the Ricci curvature and the mean curvature of M, respectively. It is proved that if $(\int_M (\operatorname{Ric}^{\lambda})^{\frac{n}{2}})^{\frac{2}{n}} < A(n,\lambda,H,\rho)$ (or $B(n,\lambda,H,\rho)$), then M is a totally umbilical sphere, where $A(n,\lambda,H,\rho)$ and $B(n,\lambda,H,\rho)$ are two explicit positive constants depending on n,λ,H , and ρ . This extends parts of the results from a pointwise Ricci curvature lower bound to an integral Ricci curvature lower bound.

Mathematics Subject Classification. Primary 53C40; Secondary 53C24.

Keywords. Willmore submanifold, Sobolev inequality, Integral Ricci curvature, Extremal submanifold.

1. Introduction. Let $x: M \to S^{n+p}$ be an n-dimensional submanifold in an (n+p)-dimensional unit sphere S^{n+p} . Choose a local orthonormal frame field $\{e_1, \ldots, e_{n+p}\}$ in S^{n+p} such that, restricted to M, the $\{e_1, \ldots, e_n\}$ are tangent to M. We will make the following convention on the range of indices:

$$1 \le i, j, k, \ldots \le n;$$
 $n+1 \le \alpha, \beta, \gamma, \ldots \le n+p.$

Denote by H and S the mean curvature and the squared length of the second fundamental form of M, respectively. Then we have

$$S = \sum_{\alpha,i,j} (h_{ij}^{\alpha})^2, \quad \mathbf{H} = \sum_{\alpha} H^{\alpha} e_{\alpha}, \quad H^{\alpha} = \frac{1}{n} \sum_{k} h_{kk}^{\alpha}, \quad H = |\mathbf{H}|,$$

where h_{ij}^{α} are the components of the second fundamental form of M:

Supported by the National Natural Science Foundation of China #12061036, #11761049, and the Jiangxi Province Natural Science Foundation of China #20202ACB201001.

We define the following non-negative function on M:

$$\rho^2 = S - nH^2,\tag{1.1}$$

which vanishes exactly at the umbilic points of M, the Willmore functional is

$$W(x) = \int_{M} \rho^{n} dv = \int_{M} (S - nH^{2})^{\frac{n}{2}} dv.$$
 (1.2)

It was shown in [4] that the Willmore functional is an invariant under the Möbius transformation of S^{n+p} . The Willmore submanifold was defined by [10].

Definition 1.1. $x: M \to S^{n+p}$ is called a Willmore submanifold if it is a critical point of the Willmore functional W(x).

In particular, when n=2, the functional essentially coincides with the well-known Willmore functional W(x) and its critical points are the Willmore surfaces. The Euler-Lagrange equation (i.e., Willmore equation) can be found in [10, (1.2)].

Li [10] also proved the following pointwise pinching theorem for compact Willmore submanifolds.

Theorem A ([10]). Let M be an n-dimensional ($n \ge 2$) compact Willmore submanifold in S^{n+p} . If $\rho^2 \le \frac{n}{2-1/p}$, then either $\rho^2 \equiv 0$ and M is totally umbilical, or $\rho^2 \equiv \frac{n}{2-1/p}$. In the latter case, either p=1 and M is a Willmore torus $W_{m,n-m} = S^m(\sqrt{\frac{n-m}{n}}) \times S^{n-m}(\sqrt{\frac{m}{n}})$; or n=2, p=2, and M is the Veronese surface.

Define

$$F(x) = \int_{M} \rho^{2} dv = \int_{M} (S - nH^{2}) dv,$$
 (1.3)

which vanishes if and only if M is a totally umbilical submanifold. So the function F(x) measures the extent to which x(M) is a totally umbilical submanifold. Obviously, when n=2, F(x) reduces to the well-known Willmore functional W(x).

Definition 1.2. $x: M \to S^{n+p}$ is called an extremal submanifold if it is a critical point of the functional F(x).

Guo and Li [7] calculated the Euler–Lagrange equation of F(x) and proved the following rigidity theorem.

Theorem B ([7]). Let M be an n-dimensional ($n \ge 2$) compact extremal submanifold in S^{n+p} . If $\rho^2 \le \frac{n}{2-1/p}$, then either $\rho^2 \equiv 0$ and M is totally umbilical, or $\rho^2 \equiv \frac{n}{2-1/p}$. In the latter case, either p=1, n=2m, and M is a Clifford torus $C_{m,m} = S^m(\sqrt{\frac{1}{2}}) \times S^m(\sqrt{\frac{1}{2}})$; or n=2, p=2, and M is the Veronese surface.

Both of the above results are pointwise pinching theorems. It seems to be interesting to study the L^q -pinching condition. In [18] and [19], the authors obtain the following global pinching theorems for compact Willmore submanifolds and extremal submanifolds in a sphere.

Theorem C ([18]). Let M be a compact Willmore surface in the unit sphere S^{2+p} . There exists an explicit positive constant $C = \frac{(\sqrt{2}-1)\sqrt{\pi}}{12\sqrt{3}}B$ such that if $(\int_M \rho^4)^{\frac{1}{2}} < C$, then $\rho^2 = 0$ and M is a totally umbilical sphere, where B is a constant.

Theorem D ([19]). Let M be an n-dimensional ($n \ge 3$) compact extremal submanifold in S^{n+p} . There exists an explicit positive constant A_n depending only on n such that if $(\int_M \rho^n)^{\frac{2}{n}} < A_n$, then M is a totally umbilical submanifold.

For each $x \in M$, let $R_m(x)$ be the smallest eigenvalue of the Ricci tensor at x, and $\mathrm{Ric}^{\lambda}(x) = \max\{0, (n-1)\lambda - R_m(x)\}$ for $\lambda \in \mathbf{R}$. Define

$$\|\operatorname{Ric}_{-}^{\lambda}\|_{q} = \left(\int_{M} (\operatorname{Ric}_{-}^{\lambda})^{q}\right)^{\frac{1}{q}}.$$

It is obvious that $\|\operatorname{Ric}_{-}^{\lambda}\|_{q} = 0$ if and only if $\operatorname{Ric} \geq (n-1)\lambda$. Chen and Wei proved the following rigidity theorem.

Theorem E ([5]). Let M be an n-dimensional $(n \ge 4)$ closed submanifold in a space form M_c^{n+p} with parallel mean curvature. Denote by H the norm of the parallel mean curvature of M. Assume $c + H^2 > 0$. Given λ satisfying $(n-2)(c+H^2) < (n-1)\lambda \le (n-1)(c+H^2)$, if $\|\operatorname{Ric}_{-}^{\lambda}\|_{n/2} < \epsilon(n,c,\lambda,H)$, then M is a totally umbilical sphere $S^n(\frac{1}{\sqrt{c+H^2}})$. Here

$$\epsilon(n,c,\lambda,H) = \frac{P_n}{1 + \frac{c_+ + H^2}{(n-1)\lambda - (n-2)(c+H^2)} P_n} \frac{1}{C^2(n)},$$

where $P_n = \frac{(n+2)(n-2)^2}{4n^2(n-1)^2}$.

In [14], Shu studied the rigidity of Willmore submanifolds in terms of Ricci curvatures and obtained the following theorem.

Theorem F ([14]). Let M be an n-dimensional ($n \geq 5$) compact Willmore submanifold in the unit sphere S^{n+p} . If the Ricci curvature Ric, H, and ρ of M satisfy

$$Ric \ge (n-2) + (n-2)H\rho + (n-1)H^2$$
,

then either M is totally umbilic, or M is a Willmore torus $W_{m,m} = S^m(\sqrt{\frac{1}{2}}) \times S^m(\sqrt{\frac{1}{2}})$.

When n=2, all minimal surfaces are Willmore surfaces (see [10, (1.3)]). But there are many compact non-minimal Willmore surface (see [1,2,6,11,13]). When $n \geq 3$, minimal submanifolds are not Willmore submanifolds in general,

for example, Clifford minimal tori $S^m(\sqrt{\frac{m}{n}})\times S^{n-m}(\sqrt{\frac{n-m}{n}})$ are not Willmore submanifolds when $n\neq 2m$. In [8], the authors proved that all n-dimensional minimal Einstein submanifolds in a sphere are Willmore submanifolds. Motivated by everything above, we shall prove the following global pinching theorems for compact Willmore and extremal submanifolds in S^{n+p} .

The PhD thesis [20] of the first author studied the rigidity of extremal submanifolds in terms of the Ricci curvature.

Theorem G ([20]). Let M be an n-dimensional ($n \ge 4$) compact extremal submanifold in the unit sphere S^{n+p} . If the Ricci curvature of M, H, and ρ satisfy

$$Ric \ge (n-2) + (n-2)H\rho + (n-1)H^2$$

then M is either totally umbilic, a Clifford torus $S^m(\sqrt{\frac{1}{2}}) \times S^m(\sqrt{\frac{1}{2}})$ in S^{n+1} , or $CP^2(\frac{3}{4})$ in S^7 . Here $CP^2(\frac{3}{4})$ denotes the 2-dimensional complex projective space minimally immersed in S^7 with constant holomorphic sectional curvature.

Now we extend parts of Theorems F and G from a pointwise Ricci curvature lower bound to an integral Ricci curvature lower bound. Our main result in this paper is the following:

Theorem 1.3. Let M be an n-dimensional $(n \ge 4)$ Willmore submanifold in the unit sphere S^{n+p} . Given λ satisfying

$$(n-2) + (n-2)H\rho + (n-1)H^2 < (n-1)\lambda \le (n-1)(1+H_0^2) + (n-2)H_0\rho_0, (1.4)$$

where $H_0 = \max_{x \in M} H$ and $\rho_0 = \max_{x \in M} \rho$, if

$$\|\operatorname{Ric}_{-}^{\lambda}\|_{\frac{n}{2}} < A(n, \lambda, H, \rho),$$

then M is a totally umbilical sphere. Here

$$A(\lambda, n, H, \rho) = \frac{1}{\frac{n^3(n-1)}{(n-2)^2} + \frac{(1+H_0^2)}{(n-1)(\lambda-H_0^2) - (n-2)(1+H_0\rho_0)}} \frac{1}{C^2(n)}.$$

Corollary 1.4. Let M be a 4-dimensional compact Willmore submanifold in the unit sphere S^{4+p} . If

$$Ric > 2 + 2H\rho + 3H^2,$$

then M is totally umbilic.

Remark 1.5. It is easy to see that $\|\operatorname{Ric}_{-}^{\lambda}\|_{\frac{n}{2}} = 0$ if and only if $\operatorname{Ric} \geq (n-1)\lambda$. From (1.4), we know this means $\operatorname{Ric} > (n-2) + (n-2)H\rho + (n-1)H^2$. When $n \geq 5$, this generalizes Theorem F in the sense of strict inequality. Theorem 1.3 extends Theorem F to n = 4.

Theorem 1.6. Let M be an n-dimensional ($n \ge 4$) extremal submanifold in the unit sphere S^{n+p} . If

$$\|\operatorname{Ric}_{-}^{\lambda}\|_{\frac{n}{\alpha}} < B(\lambda, n, H, \rho),$$

then M is a totally umbilical sphere, where

$$B(\lambda, n, H, \rho) = \frac{1}{\frac{4n(n-1)^2}{(n-2)^2} + \frac{1}{(n-1)(\lambda - H_0^2) - (n-2)(1 + H_0\rho_0)}} \frac{1}{C^2(n)}.$$

Remark 1.7. It is easy to see that this generalizes Theorem G in the sense of strict inequality.

2. Preliminaries. In this section, we review some fundamental formulas for submanifolds. Let M be an n-dimensional compact submanifold in S^{n+p} . Thus the Gauss equations are as follows

$$R_{ijkl} = (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) + \sum_{\alpha} (h_{ik}^{\alpha}h_{jl}^{\alpha} - h_{il}^{\alpha}h_{jk}^{\alpha}).$$
 (2.1)

Thus we have

$$R_{ij} = (n-1)\delta_{ij} + n\sum_{\alpha} H^{\alpha}h_{ij}^{\alpha} - \sum_{\alpha} h_{ik}^{\alpha}h_{kj}^{\alpha}, \qquad (2.2)$$

$$R = n(n-1) + n^2 H^2 - S = n(n-1)(1+H^2) - \rho^2.$$
 (2.3)

The Codazzi and Ricci equations are given by

$$h_{ijk}^{\alpha} = h_{ikj}^{\alpha},\tag{2.4}$$

$$R_{\alpha\beta ij} = \sum_{k} h_{ik}^{\alpha} h_{kj}^{\beta} - \sum_{k} h_{ik}^{\beta} h_{kj}^{\alpha}. \tag{2.5}$$

The Ricci identity shows that

$$h_{ijkl}^{\alpha} - h_{ijlk}^{\alpha} = \sum_{m} h_{mj}^{\alpha} R_{mikl} + \sum_{m} h_{im}^{\alpha} R_{mjkl} + \sum_{\beta} h_{ij}^{\beta} R_{\beta\alpha kl}.$$
 (2.6)

Denote by h_{ij}^{α} the components of the second fundamental form of M. Define the following tensors:

$$\tilde{h}_{ij}^{\alpha} = h_{ij}^{\alpha} - H^{\alpha} \delta_{ij}, \ \sigma_{\alpha\beta} = \sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta}, \ \tilde{\sigma}_{\alpha\beta} = \sum_{i,j} \tilde{h}_{ij}^{\alpha} \tilde{h}_{ij}^{\beta}.$$
 (2.7)

Then the $(p \times p)$ -matrix $(\tilde{\sigma}_{\alpha\beta})$ is symmetric and can be assumed to be diagonalized for a suitable choice of e_{n+1}, \ldots, e_{n+p} . Set

$$\tilde{\sigma}_{\alpha\beta} = \tilde{\sigma}_{\alpha}\delta_{\alpha\beta},\tag{2.8}$$

we have by a direct calculation

$$\sum_{k} \tilde{h}_{kk}^{\alpha} = 0, \ \sigma_{\alpha\beta} = \tilde{\sigma}_{\alpha\beta} + nH^{\alpha}H^{\beta}, \ \rho^{2} = \sum_{\alpha} \tilde{\sigma}_{\alpha} = S - nH^{2}, \tag{2.9}$$

$$\sum_{i,j,k,\alpha} h_{kj}^{\beta} h_{ij}^{\alpha} h_{ik}^{\alpha} = \sum_{i,j,k,\alpha} \tilde{h}_{kj}^{\beta} \tilde{h}_{ij}^{\alpha} \tilde{h}_{ik}^{\alpha} + 2 \sum_{i,j,\alpha} H^{\alpha} \tilde{h}_{ij}^{\alpha} \tilde{h}_{ij}^{\beta} + H^{\beta} \rho^2 + nH^2 H^{\beta}, \quad (2.10)$$

and

$$\sum_{\alpha,\beta} \tilde{\sigma}_{\alpha\beta}^2 = \sum_{\alpha} \tilde{\sigma}_{\alpha}^2 \le \left(\sum_{\alpha} \tilde{\sigma}_{\alpha}\right)^2 = \rho^4. \tag{2.11}$$

The above symbols and formulas are quoted from [10]. For the convenience of narration and the following proof, let us repeat it here.

From (2.2), we get

$$R_{ij} = (n-1)\delta_{ij} + (n-2)\sum_{\alpha} H^{\alpha}\tilde{h}_{ij}^{\alpha} + (n-1)H^{2}\delta_{ij} - \sum_{\alpha,k} \tilde{h}_{ik}^{\alpha}\tilde{h}_{kj}^{\alpha}.$$
 (2.12)

Let R_m be the smallest eigenvalue of the Ricci tensor. By using the Cauchy–Schwarz inequality $\sum_{\alpha} H^{\alpha} \tilde{h}_{ij}^{\alpha} \leq H \rho$ and (2.12), we have

$$\frac{\rho^2}{n} \le (n-1)(1+H^2) + (n-2)H\rho - R_m. \tag{2.13}$$

Given λ satisfying

$$(n-2) + (n-2)H\rho + (n-1)H^2 < (n-1)\lambda \le (n-1)(1+H_0^2) + (n-2)H_0\rho_0, \quad (2.14)$$

we can set

$$\Lambda := (n-1)\lambda = (n-2) + (n-2)H_0\rho_0 + (n-1)H_0^2 + \delta \tag{2.15}$$

for some $\delta > 0$. Put $\operatorname{Ric}_{-}^{\lambda} = \max\{0, (n-1)\lambda - R_m\}$. By definition,

$$(n-2) + (n-2)H\rho + (n-1)H^2 - R_m \le -\delta + \Lambda - R_m \le -\delta + \mathrm{Ric}_{-}^{\lambda}$$
. (2.16)

Lemma 2.1 ([5,17]). Let M^n $(n \ge 3)$ be a closed submanifold in S^{n+p} . Then for all t > 0 and $f \in C^1(M)$, $f \ge 0$, we have

$$\int_{M} |\nabla f|^{2} dv \ge k_{1} \left(\int_{M} f^{\frac{2n}{n-2}} dv \right)^{\frac{n-2}{n}} - k_{2} \int_{M} (1 + H^{2}) f^{2} dv, \qquad (2.17)$$

where

$$k_1 = \frac{(n-2)^2}{4(n-1)^2(1+t)} \frac{1}{C^2(n)}, \ k_2 = \frac{(n-2)^2}{4(n-1)^2t}, \ C(n) = 2^n \frac{(n+1)^{1+1/n}}{(n-1)\omega_n^{1/n}},$$

and ω_n is the volume of the unit ball in \mathbb{R}^n .

Lemma 2.2 ([19]). Let M be an n-dimensional compact Riemannian submanifold in S^{n+p} . Then

$$|\nabla \tilde{h}|^2 \ge |\nabla \rho_{\varepsilon}|^2,\tag{2.18}$$

where $|\nabla \tilde{h}|^2 = \sum_{\alpha,i,j,k} (\tilde{h}_{ijk}^{\alpha})^2$, $\rho_{\varepsilon} = \sqrt{\sum_{\alpha} \sum_{i,j} (\tilde{h}_{ij}^{\alpha} + \varepsilon \delta_{ij})^2} > 0$, $\varepsilon > 0$.

From (2.17) and (2.18), we have

$$\int_{M} |\nabla \tilde{h}|^{2} dv \ge \int_{M} |\nabla \rho_{\varepsilon}|^{2} dv \ge k_{1} \left(\int_{M} \rho_{\varepsilon}^{\frac{2n}{n-2}} dv \right)^{\frac{n-2}{n}} - k_{2} \int_{M} (1+H^{2}) \rho_{\varepsilon}^{2} dv. \quad (2.19)$$

Letting $\varepsilon \to 0$ in (2.19), we obtain

$$\int_{M} |\nabla \tilde{h}|^{2} dv \ge k_{1} \left(\int_{M} \rho^{\frac{2n}{n-2}} dv \right)^{\frac{n-2}{n}} - k_{2} \int_{M} (1 + H^{2}) \rho^{2} dv. \tag{2.20}$$

An argument similar to (2.20) shows that

$$\frac{n^2}{4} \int_{M} \rho^{n-2} |\nabla \tilde{h}|^2 dv \ge k_1 \left(\int_{M} \rho^{\frac{n^2}{n-2}} \right)^{\frac{n-2}{n}} dv - k_2 \int_{M} (1+H^2) \rho^n dv. \tag{2.21}$$

3. Proof of Theorem 1.3. By use of (2.4), (2.6), and the definition of Δ and ρ^2 , we have

$$\frac{1}{2}\Delta\rho^{2} = \frac{1}{2}\Delta\left(\sum_{\alpha,i,j}(h_{ij}^{\alpha})^{2}\right) - \frac{1}{2}\Delta(nH^{2})$$

$$= \sum_{\alpha,i,j,k}(h_{ijk}^{\alpha})^{2} + \sum_{\alpha,i,j,k}h_{ij}^{\alpha}h_{kijk}^{\alpha} - \frac{1}{2}\Delta(nH^{2})$$

$$= |\nabla h|^{2} - n^{2}|\nabla^{\perp}\mathbf{H}|^{2} + \sum_{\alpha,i,j,k}(h_{ij}^{\alpha}h_{kki}^{\alpha})_{j} + \sum_{\alpha,i,j,k,m}h_{ij}^{\alpha}h_{mk}^{\alpha}R_{mijk}$$

$$+ \sum_{\alpha,i,j,m}h_{ij}^{\alpha}h_{im}^{\alpha}R_{mj} + \sum_{\alpha,\beta,i,j,k}h_{ij}^{\alpha}h_{ik}^{\beta}R_{\beta\alpha jk} - \frac{1}{2}\Delta(nH^{2}). \tag{3.1}$$

From (2.1), (2.2), and (2.7), we have

$$\sum_{\alpha,i,j,k,m} h_{ij}^{\alpha} h_{mk}^{\alpha} R_{mijk} + \sum_{\alpha,i,j,m} h_{ij}^{\alpha} h_{im}^{\alpha} R_{mj}$$

$$= \sum_{\alpha,i,j,m} h_{ij}^{\alpha} \left(\sum_{k} h_{mk}^{\alpha} R_{mijk} + h_{im}^{\alpha} R_{mj} \right)$$

$$= n\rho^{2} - \sum_{\alpha,\beta} \tilde{\sigma}_{\alpha\beta}^{2} + nH^{2}\rho^{2} + n \sum_{\alpha,\beta,i,j,k} H^{\beta} \tilde{h}_{kj}^{\beta} \tilde{h}_{ij}^{\alpha} \tilde{h}_{ik}^{\alpha}$$

$$- \frac{1}{2} \sum_{\alpha,\beta} N(\tilde{A}_{\alpha} \tilde{A}_{\beta} - \tilde{A}_{\beta} \tilde{A}_{\alpha}), \tag{3.2}$$

where $N(\tilde{A}_{\alpha}\tilde{A}_{\beta} - \tilde{A}_{\beta}\tilde{A}_{\alpha}) = \text{tr}[(\tilde{A}_{\alpha}\tilde{A}_{\beta} - \tilde{A}_{\beta}\tilde{A}_{\alpha})^{2}], \ \tilde{A}_{\alpha} = (\tilde{h}_{ij}^{\alpha}) = (h_{ij}^{\alpha} - H^{\alpha}\delta_{ij}).$ By use of (2.5) and (2.7), we get

$$\sum_{\alpha,i,j,k,} h_{ij}^{\alpha} h_{ki}^{\beta} R_{\beta\alpha jk} = -\frac{1}{2} \sum_{\alpha,\beta} N(\tilde{A}_{\alpha} \tilde{A}_{\beta} - \tilde{A}_{\beta} \tilde{A}_{\alpha}). \tag{3.3}$$

Putting (3.2) and (3.3) into (3.1), we obtain

$$\frac{1}{2}\Delta\rho^{2} = |\nabla h|^{2} - n^{2}|\nabla^{\perp}\mathbf{H}|^{2} + \sum_{\alpha,i,j,k} (h_{ij}^{\alpha}h_{kki}^{\alpha})_{j}$$

$$+n\rho^{2} - \sum_{\alpha,\beta} \tilde{\sigma}_{\alpha\beta}^{2} + nH^{2}\rho^{2} + n\sum_{\alpha,\beta,i,j,k} H^{\beta}\tilde{h}_{kj}^{\beta}\tilde{h}_{ij}^{\alpha}\tilde{h}_{ik}^{\alpha}$$

$$- \sum_{\alpha,\beta} N(\tilde{A}_{\alpha}\tilde{A}_{\beta} - \tilde{A}_{\beta}\tilde{A}_{\alpha}) - \frac{1}{2}\Delta(nH^{2}).$$
(3.4)

Hence

$$\frac{1}{2}\rho^{n-2}\Delta\rho^{2} = \rho^{n-2}(|\nabla h|^{2} - n|\nabla^{\perp}\mathbf{H}|^{2}) + \rho^{n-2}\sum_{\alpha,i,j,k}(h_{ij}^{\alpha}h_{kki}^{\alpha})_{j} - \frac{1}{2}\rho^{n-2}\Delta(nH^{2})$$

$$-n(n-1)\rho^{n-2}|\nabla^{\perp}\mathbf{H}|^{2} + n\rho^{n-2}\sum_{\alpha,\beta,i,j,k}H^{\beta}\tilde{h}_{kj}^{\alpha}\tilde{h}_{ij}^{\alpha}\tilde{h}_{ik}^{\alpha}$$

$$+\rho^{n-2}\left[n\rho^{2} + nH^{2}\rho^{2} - \sum_{\alpha,\beta}N(\tilde{A}_{\alpha}\tilde{A}_{\beta} - \tilde{A}_{\beta}\tilde{A}_{\alpha}) - \sum_{\alpha,\beta}\tilde{\sigma}_{\alpha\beta}^{2}\right]. \tag{3.5}$$

On the other hand, Li [10] has given a characterization of Willmore submanifolds in the following Lemma 3.1.

Lemma 3.1 ([10, Lemma 4.3]). Let M be an n-dimensional submanifold in the unit sphere S^{n+p} . Then M is a Willmore submanifold if and only if for $n+1 \le \alpha \le n+p$,

$$\begin{split} &(n-1)\rho^{n-2}\Delta^{\perp}H^{\alpha}\\ &=-2(n-1)\sum_{i}(\rho^{n-2})_{i}H^{\alpha}_{,i}-(n-1)H^{\alpha}\Delta(\rho^{n-2})\\ &-\rho^{n-2}\left(\sum_{\beta}H^{\beta}\tilde{\sigma}_{\alpha\beta}+\sum_{\beta,i,j,k}\tilde{h}^{\alpha}_{ij}\tilde{h}^{\beta}_{ik}\tilde{h}^{\beta}_{kj}\right)+\sum_{i,j}(\rho^{n-2})_{i,j}(nH^{\alpha}\delta_{ij}-h^{\alpha}_{ij}), \end{split}$$

where $\Delta(\rho^{n-2}) = \sum_i (\rho^{n-2})_{i,i}$, $\Delta^{\perp} H^{\alpha} = \sum_i H^{\alpha}_{,ii}$, and $(\rho^{n-2})_{i,j}$ is the Hessian of ρ^{n-2} with respect to the induced met Ric, $H^{\alpha}_{,i}$ and $H^{\alpha}_{,ij}$ are the components of the first and second covariant derivative of the mean curvature vector field \mathbf{H} .

Using Stokes' formula and Lemma 3.1, we have (see [10])

$$-n(n-1)\int_{M} \rho^{n-2} |\nabla^{\perp} \mathbf{H}|^{2} dv + n \int_{M} \rho^{n-2} \left(\sum_{\alpha,\beta,i,j,m} H^{\beta} \tilde{h}_{mj}^{\beta} \tilde{h}_{ji}^{\alpha} \tilde{h}_{im}^{\alpha} \right) dv$$

$$= -\frac{1}{2} n(n+1) \int_{M} \sum_{i} (\rho^{n-2})_{i} (H^{2})_{i} dv - n \int_{M} \rho^{n-2} \sum_{\alpha,\beta} H^{\alpha} H^{\beta} \tilde{\sigma}_{\alpha\beta} dv$$

$$-n \int_{M} \sum_{\alpha,i,j} H^{\alpha} h_{ij}^{\alpha} (\rho^{n-2})_{i,j} dv. \tag{3.6}$$

By a direct computation, we get (see [10])

$$\int_{M} \rho^{n-2} \sum_{\alpha,i,j,k} (h_{ij}^{\alpha} h_{kki}^{\alpha})_{j} dv
= n \int_{M} \left(\sum_{\alpha,i,j} H^{\alpha} h_{ij}^{\alpha} (\rho^{n-2})_{i,j} \right) dv + \frac{n^{2}}{2} \int_{M} \sum_{i} (\rho^{n-2})_{i} (H^{2})_{i} dv, \quad (3.7)$$

and

$$-\frac{1}{2} \int_{M} \rho^{n-2} \Delta(nH^2) dv = \frac{n}{2} \int_{M} \sum_{i} (\rho^{n-2})_{i} (H^2)_{i} dv.$$
 (3.8)

By use of (3.6), (3.7), and (3.8), integrating (3.5) over M, we have

$$\frac{1}{2} \int_{M} \rho^{n-2} \Delta \rho^{2} dv = \int_{M} \rho^{n-2} (|\nabla h|^{2} - n|\nabla^{\perp} \mathbf{H}|^{2}) dv
+ n \int_{M} \rho^{n-2} \left(H^{2} \rho^{2} - \sum_{\alpha,\beta} H^{\alpha} H^{\beta} \tilde{\sigma}_{\alpha\beta} \right) dv + n \int_{M} \rho^{n} dv
- \int_{M} \rho^{n-2} \sum_{\alpha,\beta} (N(\tilde{A}_{\alpha} \tilde{A}_{\beta} - \tilde{A}_{\beta} \tilde{A}_{\alpha}) + \tilde{\sigma}_{\alpha\beta}^{2}) dv.$$
(3.9)

We have by a direct calculation

$$H^{2}\rho^{2} - \sum_{\alpha\beta} H^{\alpha}H^{\beta}\tilde{\sigma}_{\alpha\beta} \ge 0, \tag{3.10}$$

$$|\nabla h|^2 - n|\nabla^{\perp} \mathbf{H}|^2 = |\nabla \tilde{h}|^2, \tag{3.11}$$

where $|\nabla^{\perp}\mathbf{H}|^2 = \sum_{\alpha,i} (H_{,i}^{\alpha})^2$, $|\nabla \tilde{h}|^2 = \sum_{\alpha,i,j,k} (\tilde{h}_{ijk}^{\alpha})^2 = \sum_{\alpha,i,j,k} (h_{ijk}^{\alpha} - H_{,k}^{\alpha} \delta_{ij})^2$. Thus

$$\frac{1}{2} \int_{M} \rho^{n-2} \Delta \rho^{2} dv \ge \int \rho^{n-2} |\nabla \tilde{h}|^{2} dv
+ \int_{M} \rho^{n-2} \sum_{\alpha,\beta} [n\rho^{2} - N(\tilde{A}_{\alpha}\tilde{A}_{\beta} - \tilde{A}_{\beta}\tilde{A}_{\alpha}) - \tilde{\sigma}_{\alpha\beta}^{2}] dv. \quad (3.12)$$

It is easy to see that

$$\frac{1}{2} \int_{M} \rho^{n-2} \Delta \rho^{2} dv = -\frac{4(n-2)}{n^{2}} \int_{M} |\nabla \rho^{\frac{n}{2}}|^{2} dv.$$
 (3.13)

Putting (3.13) into (3.12) yields

$$0 \ge \frac{4(n-2)}{n^2} \int_{M} |\nabla \rho^{\frac{n}{2}}|^2 dv + \int \rho^{n-2} |\nabla \tilde{h}|^2 dv + \int_{M} \rho^{n-2} \sum_{\alpha,\beta} [n\rho^2 - N(\tilde{A}_{\alpha}\tilde{A}_{\beta} - \tilde{A}_{\beta}\tilde{A}_{\alpha}) - \tilde{\sigma}_{\alpha\beta}^2] dv.$$
(3.14)

Set $Q = n\rho^2 - \sum_{\alpha,\beta} (N(\tilde{A}_{\alpha}\tilde{A}_{\beta} - \tilde{A}_{\beta}\tilde{A}_{\alpha}) + \tilde{\sigma}_{\alpha\beta}^2)$. Now we estimate the lower bound of Q based on ρ^2 and $\mathrm{Ric}_{-}^{\lambda}$. For a fixed α , we choose $\{e_i\}$ such that A_{α} is diagonalized, $A_{\alpha} = \mathrm{diag}\{\lambda_{1}^{\alpha}, \ldots, \lambda_{n}^{\alpha}\}$, then (2.12) gives

$$\sum_{j} \sum_{\beta \neq \alpha} (\tilde{h}_{ij}^{\beta})^{2} = (n-1)(1+H^{2}) + (n-2) \sum_{\gamma} H^{\gamma} \tilde{h}_{ii}^{\gamma} - (\tilde{\lambda}_{i}^{\alpha})^{2} - R_{ii}, \quad (3.15)$$

and

$$\sum_{\beta} N(\tilde{A}_{\alpha}\tilde{A}_{\beta} - \tilde{A}_{\beta}\tilde{A}_{\alpha}) = \sum_{\beta \neq \alpha} N(\tilde{A}_{\alpha}\tilde{A}_{\beta} - \tilde{A}_{\beta}\tilde{A}_{\alpha})$$

$$= \sum_{\beta \neq \alpha} \sum_{ij} (\tilde{h}_{ij}^{\beta})^{2} (\tilde{\lambda}_{i}^{\alpha} - \tilde{\lambda}_{j}^{\alpha})^{2} \leq 4 \sum_{\beta \neq \alpha} \sum_{ij} (\tilde{h}_{ij}^{\beta})^{2} (\tilde{\lambda}_{i}^{\alpha})^{2}$$

$$\leq 4 \sum_{i} [(n-1)(1+H^{2}) + (n-2) \sum_{\gamma} H^{\gamma}\tilde{h}_{ii}^{\gamma} - (\tilde{\lambda}_{i}^{\alpha})^{2} - R_{m}](\tilde{\lambda}_{i}^{\alpha})^{2}$$

$$\leq 4[(n-1)(1+H^{2}) + (n-2)H\rho - R_{m}]N(\tilde{A}_{\alpha}) - 4N(\tilde{A}_{\alpha}^{2}). \tag{3.16}$$

Summing over α , we get

$$\sum_{\alpha,\beta} N(\tilde{A}_{\alpha}\tilde{A}_{\beta} - \tilde{A}_{\beta}\tilde{A}_{\alpha})$$

$$\leq 4[(n-1)(1+H^{2}) + (n-2)H\rho - R_{m}]\rho^{2} - 4\sum_{\alpha} N(\tilde{A}_{\alpha}^{2}). \quad (3.17)$$

Obviously

$$\sum_{\alpha} N(\tilde{A}_{\alpha}^2) \ge \frac{1}{n} \sum_{\alpha} (N(\tilde{A}_{\alpha}))^2 = \frac{1}{n} \sum_{\alpha} \tilde{\sigma}_{\alpha}^2.$$
 (3.18)

Substituting (3.18) into (3.17), we have

$$\sum_{\alpha,\beta} N(\tilde{A}_{\alpha}\tilde{A}_{\beta} - \tilde{A}_{\beta}\tilde{A}_{\alpha}) \le 4[(n-1)(1+H^2) + (n-2)H\rho - R_m]\rho^2 - \frac{4}{n}\sum_{\alpha}\tilde{\sigma}_{\alpha}^2. (3.19)$$

Combining (2.11) with (3.19), we obtain

$$Q \ge n\rho^2 - 4[(n-1)(1+H^2) + (n-2)H\rho - R_m]\rho^2 + \frac{4-n}{n}\rho^4$$

$$= (4-n)(\frac{\rho^2}{n} - 1)\rho^2 - 4[(n-2) + (n-1)H^2 + (n-2)H\rho - R_m]\rho^2.$$
(3.20)

From (2.13), (2.16), and (3.20), by using $n \ge 4$, we get

$$Q \ge -n[(n-2) + (n-1)H^2 + (n-2)H\rho - R_m]\rho^2$$

$$\ge -n[-\delta + \Lambda - R_m]\rho^2,$$
 (3.21)

i.e.,

$$Q \ge -n(-\delta + \operatorname{Ric}_{-}^{\lambda})\rho^{2}. \tag{3.22}$$

By Lemma 2.1, (2.21), (3.22), and (3.14), we get

$$0 \ge \frac{4(n-1)}{n^2} \left[k_1 \left(\int_{M} \rho^{\frac{n^2}{n-2}} dv \right)^{\frac{n-2}{n}} - k_2 \int_{M} (1+H^2) \rho^n dv \right]$$

$$+ n\delta \int_{M} \rho^n dv - n \int_{M} (\operatorname{Ric}_{-}^{\lambda}) \rho^n dv.$$
(3.23)

Applying the Hölder inequality, we obtain

$$0 \ge \frac{4(n-1)}{n^2} [k_1 \| \rho^n \|_{\frac{n}{n-2}} - k_2 (1 + H_0^2) \int_M \rho^n dv]$$

$$+ n\delta \int_M \rho^n dv - n \| \operatorname{Ric}_-^{\lambda} \|_{\frac{n}{2}} ||\rho^n \|_{\frac{n}{n-2}},$$
(3.24)

i.e.,

$$0 \ge \frac{4(n-1)}{n^2} k_1 \|\rho^n\|_{\frac{n}{n-2}} - n \|\operatorname{Ric}_{-}^{\lambda}\|_{\frac{n}{2}} \|\rho^n\|_{\frac{n}{n-2}} + \left[n\delta - \frac{4(n-1)}{n^2} k_2 (1 + H_0^2)\right] \int_{M} \rho^n dv.$$
(3.25)

By taking

$$t = \frac{(n-2)^2(1+H_0^2)}{\delta n^3(n-1)}$$

such that $\left[n\delta - \frac{4(n-1)}{n^2}k_2(1+H_0^2)\right] = 0$, we have

$$0 \ge \left\{ \frac{4(n-1)}{n^2} k_1 - n \| \operatorname{Ric}_{-}^{\lambda} \|_{\frac{n}{2}} \right\} \| \rho^n \|_{\frac{n}{n-2}}.$$

Therefore, under the assumption $\|\operatorname{Ric}_{-}^{\lambda}\|_{\frac{n}{2}} < \frac{4(n-1)}{n^3}k_1$, it is easy to see from the above that $\rho^2 = 0$ and M is totally umbilical.

4. Proof of Theorem 1.6. First of all, Guo and Li calculated the Euler–Lagrange equation of F(x) given by (1.3).

Theorem 4.1 ([7]). Let M be an n-dimensional submanifold in the unit sphere S^{n+p} . Then M is an extremal submanifold if and only if it satisfies for $n+1 \le \alpha \le n+p$,

$$\sum_{\beta,i,j,k} \tilde{h}_{ij}^{\alpha} \tilde{h}_{ik}^{\beta} \tilde{h}_{kj}^{\beta} = -(n-1)\Delta^{\perp} H^{\alpha} - \sum_{\beta} H^{\beta} \tilde{\sigma}_{\alpha\beta} - H^{\alpha} \rho^2 + \frac{n}{2} H^{\alpha} \rho^2. \tag{4.1}$$

From (4.1), we have

$$n\sum_{\alpha,\beta,i,j,k} H^{\beta} \tilde{h}_{kj}^{\beta} \tilde{h}_{ij}^{\alpha} \tilde{h}_{ik}^{\alpha} = -n(n-1) \sum_{\beta} H^{\beta} \Delta^{\perp} H^{\beta} - n \sum_{\alpha,\beta} H^{\beta} H^{\alpha} \tilde{\sigma}_{\alpha\beta} + \frac{n(n-2)}{2} H^{2} \rho^{2}.$$

$$(4.2)$$

Putting (4.2) into (3.4) yields

$$\frac{1}{2}\Delta\rho^{2} = |\nabla h|^{2} - n^{2}|\nabla^{\perp}\mathbf{H}|^{2} + \sum_{\alpha,i,j,k} (h_{ij}^{\alpha}h_{kki}^{\alpha})_{j} + n\rho^{2} - \sum_{\alpha,\beta} \tilde{\sigma}_{\alpha\beta}^{2} + nH^{2}\rho^{2}$$

$$-n(n-1)\sum_{\beta} H^{\beta}\Delta^{\perp}H^{\beta} - n\sum_{\alpha,\beta} H^{\beta}H^{\alpha}\tilde{\sigma}_{\alpha\beta} + \frac{n(n-2)}{2}H^{2}\rho^{2}$$

$$-\sum_{\alpha,\beta} N(\tilde{A}_{\alpha}\tilde{A}_{\beta} - \tilde{A}_{\beta}\tilde{A}_{\alpha}) - \frac{1}{2}\Delta(nH^{2}).$$
(4.3)

Integrating (4.3) over M and using Stokes' formula, we have

$$\frac{1}{2} \int_{M} \Delta \rho^{2} dv = \int_{M} (|\nabla h|^{2} - n|\nabla^{\perp} \mathbf{H}|^{2}) dv + \int_{M} \left(n\rho^{2} - \sum_{\alpha,\beta} \tilde{\sigma}_{\alpha\beta}^{2} \right) dv
+ \int_{M} n \left(H^{2} \rho^{2} - \sum_{\alpha,\beta} H^{\beta} H^{\alpha} \tilde{\sigma}_{\alpha\beta} \right) dv + \int_{M} \frac{n(n-2)}{2} H^{2} \rho^{2} dv
- \int_{M} \sum_{\alpha,\beta} N(\tilde{A}_{\alpha} \tilde{A}_{\beta} - \tilde{A}_{\beta} \tilde{A}_{\alpha}) dv.$$
(4.4)

By (3.10) and (3.11),

$$0 \ge \int_{M} |\nabla \tilde{h}|^{2} dv + \frac{n(n-2)}{2} \int_{M} H^{2} \rho^{2} dv + n \int_{M} \rho^{2} dv - \int_{M} \sum_{\alpha,\beta} (N(\tilde{A}_{\alpha}\tilde{A}_{\beta} - \tilde{A}_{\beta}\tilde{A}_{\alpha}) + \tilde{\sigma}_{\alpha\beta}^{2}) dv.$$
(4.5)

Substituting (3.22) into (4.5), by the definition of Q, we have

$$0 \ge \int_{M} |\nabla \tilde{h}|^2 dv + \frac{n(n-2)}{2} \int_{M} H^2 \rho^2 dv$$
$$- \int_{M} n(-\delta + \operatorname{Ric}_{-}^{\lambda}) \rho^2 dv. \tag{4.6}$$

From (2.20), we get

$$0 \ge k_1 \left(\int_{M} \rho^{\frac{2n}{n-2}} dv \right)^{\frac{n-2}{n}} - k_2 \int_{M} (1+H^2)\rho^2 dv,$$

$$+ \frac{n(n-2)}{2} \int_{M} H^2 \rho^2 dv - n \int_{M} (-\delta + \operatorname{Ric}_{-}^{\lambda}) \rho^2 dv, \tag{4.7}$$

i.e.,

$$0 \ge k_1 \left(\int_{M} \rho^{\frac{2n}{n-2}} dv \right)^{\frac{n-2}{n}} - n \int_{M} (\operatorname{Ric}_{-}^{\lambda}) \rho^2 dv$$

$$- \int_{M} (k_2 - n\delta) \rho^2 dv + \int_{M} \left[\frac{n(n-2)}{2} - k_2 \right] H^2 \rho^2 dv.$$

$$(4.8)$$

We choose $t = \frac{(n-2)^2}{4\delta n(n-1)^2}$ such that $k_2 = n\delta$. By using Hölder's inequality, from the above, we obtain

$$0 \ge k_1 \|\rho^2\|_{\frac{n}{n-2}} - n \|\operatorname{Ric}_{-}^{\lambda}\|_{\frac{n}{2}} \|\rho^2\|_{\frac{n}{n-2}}. \tag{4.9}$$

Therefore, under the assumption

$$\|\operatorname{Ric}_{-}^{\lambda}\|_{\frac{n}{2}} < \frac{k_1}{n} = \frac{(n-2)^2 \delta}{4n(n-1)^2 \delta + (n-2)^2} \frac{1}{C^2(n)},$$

it is easy to see from (4.9) that $\rho^2 = 0$ and M is totally umbilical.

Acknowledgements. The authors thank Professor Chen Hang for his careful reading and helpful suggestions.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

References

- [1] Bryant, R.L.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20, 23–53 (1984)
- [2] Castro, I., Urbano, F.: Willmore surfaces of \mathbbm{R}^4 and the Whitney sphere. Ann. Global Anal. Geom. 19, 153–175 (2001)
- [3] Chang, Y.C., Hsu, Y.J.: Willmore surfaces in the unit N-sphere. Taiwan. J. Math. 8, 467–476 (2004)
- [4] Chen, B.Y.: Some conformal invariants of submanifolds and their applications. Boll. Un. Mat. Ital. 10, 380–385 (1974)
- [5] Chen, H., Wei, G.F.: Rigidity of minimal submanifolds in space forms. J. Geom. Anal. 31, 4923–4933 (2021)
- [6] Ejiri, N.: A counter example for Weiner's open question. Indiana Univ. Math. J. 31, 209–211 (1982)
- [7] Guo, Z., Li, H.: A variational problem for submanifolds in a sphere. Monatsh. Math. 152, 295–302 (2007)
- [8] Guo, Z., Li, H., Wang, C.P.: The second variation formula for Willmore submanifolds in S^n . Results Math. 40, 205–225 (2001)
- [9] Li, H.: Willmore surfaces in S^n . Ann. Global Anal. Geom. 21, 203–213 (2002)
- [10] Li, H.: Willmore submanifolds in a sphere. Math. Res. Lett. 9, 771–790 (2002)
- [11] Li, H., Vrancken, L.: New examples of Willmore surfaces in S^n . Ann. Global Anal. Geom. **23**, 205–225 (2003)
- [12] Li, A.M., Li, J.M.: An intrinsic rigidity theorem for minimal submanifolds in a sphere. Arch. Math. (Basel) 58, 582–594 (1992)
- [13] Pinkall, U.: Hopf tori in S³. Invent. Math. **81**, 379–386 (1985)
- [14] Shu, S.C.: Curvature and rigidity of Willmore submanifolds. Tsukuba J. Math. **31**, 175–196 (2007)

- [15] Wang, C.P.: Moebius geometry of submanifolds in S^n . Manuscr. Math. **96**, 517–534 (1998)
- [16] Xu, H.W., Gu, J.R.: L^2 -isolation phenomenon for complete surfaces arising from Yang–Mills theory. Lett. Math. Phys. **80**, 115–126 (2007)
- [17] Xu, H.W.: $L_{\frac{n}{2}}$ -Pinching theorems for submanifolds with parallel mean curvature in a sphere. J. Math. Soc. Jpn. **46**, 503–515 (1994)
- [18] Xu, H.W., Yang, D.Y.: Rigidity theorem for Willmore surfaces in a sphere. Proc. Indian Acad. Sci. Math. Sci. 126, 253–260 (2016)
- [19] Xu, H.W., Yang, D.Y.: The gap phenomenon for extremal submanifolds in a sphere. Differ. Geom. Appl. 29, 26–34 (2011)
- [20] Yang, D.Y.: A study on the geometric rigidity and eigenvalue problems of Willmore submanifolds. (Chinese) PhD Thesis, Zhejiang University, Hangzhou (2010)

DENG-YUN YANG AND JIN-GUO ZHANG School of Mathematics and Statistics Jiangxi Normal University Nanchang 330022 People's Republic of China e-mail: yangdengyun@139.com

JIN-GUO ZHANG e-mail: jgzhang@jxnu.edu.cn

HAI-PING FU
Department of Mathematics
Nanchang University
Nanchang 330031
People's Republic of China
e-mail: mathfu@126.com

Received: 16 January 2023

Accepted: 6 July 2023