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Rigidity of Willmore submanifolds and extremal submanifolds
in the unit sphere
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Abstract. Let M be an n-dimensional (n > 4) compact Willmore (or
extremal) submanifold in the unit sphere S™*. Denote by Ric and H the
Ricci curvature and the mean curvature of M, respectively. It is proved
that if (f,,(Ric})¥)% < A(n, X\, H,p) (or B(n,\ H,p)), then M is a
totally umbilical sphere, where A(n,\, H,p) and B(n,\, H,p) are two
explicit positive constants depending on n, A, H, and p. This extends
parts of the results from a pointwise Ricci curvature lower bound to an
integral Ricci curvature lower bound.
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1. Introduction. Let z : M — S™'P be an n-dimensional submanifold in an
(n + p)-dimensional unit sphere S™*?. Choose a local orthonormal frame field
{e1,...,entp} in S"TP such that, restricted to M, the {ey,...,e,} are tangent
to M. We will make the following convention on the range of indices:

1§27.7;k;7§n7 n+1§a7ﬁ7’77§n+p

Denote by H and S the mean curvature and the squared length of the second
fundamental form of M, respectively. Then we have

S=Y (2 H=Y Ho,, H“:igm, H - |H],

;1,7

where hf; are the components of the second fundamental form of M:
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We define the following non-negative function on M:
p* =8 —nH?, (1.1)

which vanishes exactly at the umbilic points of M, the Willmore functional is

W(z) = /p”dv = /(S —nH?)% dv. (1.2)
M M

It was shown in [4] that the Willmore functional is an invariant under the
Mobius transformation of S™*P. The Willmore submanifold was defined by
[10].

Definition 1.1. x : M — S™*P is called a Willmore submanifold if it is a critical
point of the Willmore functional W (z).

In particular, when n = 2, the functional essentially coincides with the
well-known Willmore functional W () and its critical points are the Willmore
surfaces. The Euler—Lagrange equation (i.e., Willmore equation) can be found

n [10, (1.2)].
Li [10] also proved the following pointwise pinching theorem for compact
Willmore submanifolds.

Theorem A ([10]). Let M be an n-dimensional (n > 2) compact Willmore
submanifold in S"TP. If p? < QJ‘W, then either p> = 0 and M is totally
umbilical, or p? = ﬁ. In the latter case, either p =1 and M is a Willmore

torus Wi m—m = S™(1/"57) x S"7"(\/ ™) orn =2, p =2, and M is the

Veronese surface.

Define

Plz) = /p%zv - /(s — nH?)do, (1.3)

which vanishes if and only if M is a totally umbilical submanifold. So the
function F(z) measures the extent to which (M) is a totally umbilical sub-
manifold. Obviously, when n = 2, F(z) reduces to the well-known Willmore
functional W (x).

Definition 1.2. z : M — S™*P is called an extremal submanifold if it is a
critical point of the functional F'(x).

Guo and Li [7] calculated the Euler-Lagrange equation of F'(z) and proved
the following rigidity theorem.

Theorem B ([7]). Let M be an n-dimensional (n > 2) compact extremal sub-
mamfold in S, If p? < 5= 1/ , then either p?> = 0 and M is totally umbilical,
or p? = 5= 1/ In the latter case, either p =1, n = 2m, and M is a Clifford
torus Chy.m = Sm(\/g) X Sm(\/g); orn=2,p=2, and M is the Veronese
surface.
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Both of the above results are pointwise pinching theorems. It seems to be
interesting to study the L?-pinching condition. In [18] and [19], the authors
obtain the following global pinching theorems for compact Willmore subman-
ifolds and extremal submanifolds in a sphere.

Theorem C ([18]). Let M be a compact Willmore surface in the unit sphere

S2+P. There exists an explicit positive constant C = %B such that if

(Jur pH2 < C, then p? =0 and M is a totally umbilical sphere, where B is a
constant.

Theorem D ([19]). Let M be an n-dimensional (n > 3) compact extremal sub-
manifold in S™VP. There exists an explicit positive constant A,, depending only
on n such that if ([}, p”)% < Ay, then M is a totally umbilical submanifold.

For each x € M, let R,,(z) be the smallest eigenvalue of the Ricci tensor
at z, and Ric? (z) = max{0, (n — 1)A — R,,(z)} for A € R.. Define

1

q
IRict [, = | [ (ict)s
M
It is obvious that || Ric? ||, = 0 if and only if Ric > (n — 1)\
Chen and Wei proved the following rigidity theorem.

Theorem E ([5]). Let M be an n-dimensional (n > 4) closed submanifold in
a space form MDPP with parallel mean curvature. Denote by H the norm of
the parallel mean curvature of M. Assume ¢ + H? > 0. Given X\ satisfying
(n—2)(c+ H?) < (n— DX < (n—1)(c+ H?), if | Ric} [,/2 < €(n, e, A, H),

then M is a totally umbilical sphere S”(ﬁ) Here
P, 1
e(n,e,\,H) = =
) b ) c +H2 2 )
I+ e em C2(n)

where P, = %.

In [14], Shu studied the rigidity of Willmore submanifolds in terms of Ricci
curvatures and obtained the following theorem.

Theorem F ([14]). Let M be an n-dimensional (n > 5) compact Willmore
submanifold in the unit sphere S™*P. If the Ricci curvature Ric, H, and p of
M satisfy

Ric > (n—2)+ (n—2)Hp + (n— 1)H?,
then either M is totally umbilic, or M is a Willmore torus W, »m, = Sm(\@) X
(/D).
When n = 2, all minimal surfaces are Willmore surfaces (see [10, (1.3)]).

But there are many compact non-minimal Willmore surface (see [1,2,6,11,13]).
When n > 3, minimal submanifolds are not Willmore submanifolds in general,
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for example, Clifford minimal tori S™ (/%) x S"~™ (/") are not Willmore

submanifolds when n # 2m. In [8], the authors proved that all n-dimensional
minimal Einstein submanifolds in a sphere are Willmore submanifolds. Mo-
tivated by everything above, we shall prove the following global pinching
theorems for compact Willmore and extremal submanifolds in S™t?,

The PhD thesis [20] of the first author studied the rigidity of extremal
submanifolds in terms of the Ricci curvature.

Theorem G ([20]). Let M be an n-dimensional (n > 4) compact extremal sub-
manifold in the unit sphere S™P. If the Ricci curvature of M, H, and p
satisfy

Ric > (n—2)+ (n—2)Hp+ (n— 1)H?,

then M is either totally umbilic, a Clifford torus Sm(\/g) X Sm(\/g) in S"TL,

or CP%(2) in S7. Here CP?(2) denotes the 2-dimensional complex projective
space minimally immersed in S” with constant holomorphic sectional curva-
ture.

Now we extend parts of Theorems F and G from a pointwise Ricci curvature
lower bound to an integral Ricci curvature lower bound. Our main result in
this paper is the following:

Theorem 1.3. Let M be an n-dimensional (n > 4) Willmore submanifold in
the unit sphere S"TP. Given \ satisfying
(n=2)+(n—2)Hp+(n—1)H> < (n =A< (n—1)(1 + H§) + (n — 2)Hopo, (1.4)
where Hy = max,cps H and pg = max,ecns p, if
| Ric? ||z < A(n, A\, H, p),
then M is a totally umbilical sphere. Here

1 1

ni(n=1) (1+Hg) C2%(n)’
(n—2)? (n—1)(A—Hg)—(n—2)(1+Hopo)

A(A’ n) H? p) =

Corollary 1.4. Let M be a 4-dimensional compact Willmore submanifold in the
unit sphere S4P. If

Ric > 2+ 2Hp + 3H?,
then M 1is totally umbilic.

Remark 1.5. It is easy to see that || Ric® » = 0 if and only if Ric > (n—1)A.
From (1.4), we know this means Ric > (n—2)+ (n—2)Hp+ (n—1)H?. When
n > 5, this generalizes Theorem F in the sense of strict inequality. Theorem 1.3
extends Theorem F to n = 4.

Theorem 1.6. Let M be an n-dimensional (n > 4) extremal submanifold in the
unit sphere S"P. If

IRic? |2 < B(A\,n,H,p),
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then M is a totally umbilical sphere, where

1 1

4n(n—1)2 1 2 :
i+ e m T C Y

B(A’n7H7p) =

Remark 1.7. It is easy to see that this generalizes Theorem G in the sense of
strict inequality.

2. Preliminaries. In this section, we review some fundamental formulas for
submanifolds. Let M be an n-dimensional compact submanifold in S™*?. Thus
the Gauss equations are as follows

Riji = (kb0 — 0udjn) + > (hiih$ — hihh). (2.1)
Thus we have
Ri; = (n— 1)5ij + nZHah% — Zh?k gj, (2.2)
a ak

R=n(n—1)+n*H> - S =n(n—1)1+ H?) - p*. (2.3)

The Codazzi and Ricci equations are given by
li);'k = ?kjv (24)
Rapij = Z h?khfj - Z hfkhgj' (2.5)

k k

The Ricci identity shows that
WS — he =Y b Bmikt + > ho Rojet + > b Rar. (2.6)
m m B

Denote by hg; the components of the second fundamental form of M. Define
the following tensors:

no _ 8 o~ 7aipB
he, = hey — HSij, 0ap =Y h&h, Gap =Y h&%hL. (2.7)
0,J ,J
Then the (p x p)-matrix (G,3) is symmetric and can be assumed to be
diagonalized for a suitable choice of e, y1,...,€nqp. Set
5’05 = 5a(5a5, (2.8)
we have by a direct calculation
D hf =0, 0ap =Gap+nH H?, p* =) 60 =S —nH?, (2.9)
k a
ST onhghg, = > R RSRS, +2 > HORGRY + HOp? + nH2HP, (2.10)
1,7k, 1,9,k i,7,0

and
2
Sat-yats(a) o 211
a3 [eY «

The above symbols and formulas are quoted from [10]. For the convenience of
narration and the following proof, let us repeat it here.
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From (2.2), we get

Rij = (n—1)0;; + (n—2) > HhS + (n— 1)H?5;; Zh (2.12)

Let Ry, be the smallest eigenvalue of the Ricci tensor. By using the Cauchy—
Schwarz inequality > H o‘h < Hp and (2.12), we have

%QS (n—1)(1+ H?*) + (n—2)Hp — Rp,. (2.13)
Given A satisfying
(n—2)+(n—2)Hp+ (n— DH> < (n— DA< (n— 1)(1+ H) + (n— 2)Hopo, (2.14)
we can set
Ai=(n—1A=(n—2)+ (n—2)Hopo+ (n — 1)Hg +6 (2.15)
for some & > 0. Put Ric® = max{0, (n — 1)\ — R, }. By definition,
(n—=2)+(n—2)Hp+ (n—1)H? = R < =6+ A — Ry < =6 +Ric} . (2.16)

Lemma 2.1 ([5,17]). Let M™ (n > 3) be a closed submanifold in S™P. Then
for allt >0 and f € CY(M), f >0, we have

AZWdev >k Zf :

(n —2)? 1 (n —2)?

4(n—1)2(1+1t) C2(n)’ ke = An—1)2t’ C(n)=2"

fkg/(lJrHQ)dev, (2.17)
M

where

(n+1)1+1/n

k =
1 (’I’L* 1) 1/n

)

and wy, is the volume of the unit ball in R™.

Lemma 2.2 ([19]). Let M be an n-dimensional compact Riemannian subman-
ifold in S™*P. Then

|VR|? > |Vp.|?, (2.18)
where [VH2 = 5 ;5w (BS540, pe = /S0 T (k8 + 205)2 > 0, € > 0.

From (2.17) and (2.18), we have

n—2

. =
/\vh|2dv > /|Vp5|2dv >k (/pg"zdv> —/@/(HH?)pgdv. (2.19)
M M

M M

Letting ¢ — 0 in (2.19), we obtain

/|w3|2dv >k /p%dv — ko /(1 + H?)p?dv. (2.20)
M

M M
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An argument similar to (2.20) shows that

n—2
n

2 ~ n2
”Z /p”*2|Vh|2dv > ky /pm dv — ks /(1 + H*)p"dv. (2.21)
M

M M

3. Proof of Theorem 1.3. By use of (2.4), (2.6), and the definition of A and
p?, we have

1o 1 avz| 1 2
5807 = A ;(hﬁ) S A(nH?)

Z ’ij? Z h kz]k A(nHQ)

i3,k i3,k

|Vh|2—n2|VLH|2+ Z ( R kkz Z hzg mklejk

a,i,7,k a,i,7,k,m

apa 1
+ Z hzjhszmJ+ Z hz] szﬁa]k 2A(nH2) (31)

a,i,j,m a,B,i,3,k

From (2.1), (2.2), and (2.7), we have

Z h”Lj mkRm1]k+ Z h?jh’?m

a,i,j,k,m a,t,j,m

= Z h?j (Z hyankRmijk' + h?mij>

a,t,],m

=np —Za ﬂ+nH2p2+n Z H'ghk] f‘J ik
a,B «o,B,i,7,k
1 L. L.
= > N(AuAp — AgAa), (3.2)
o,
where N(A,Ag — AgA,) = tr[(AnAs — AgAy)?], Ao = (h$y) = (hS — H®6;5).
By use of (2.5) and (2.7), we get
« 1 A A A A
> hEh Raaji = = > N(AaAp— A3A,). (3.3)
a,igk, a,B

Putting (3.2) and (3.3) into (3.1), we obtain

1 (073 «
§Ap2 = |Vh|> = n?|ViH]? + Z (R hiki);

a,i,7,k
+np? —ZO’ B+nH2p2—|—n Z Hﬁhkj f; ok
o, a,B,i,7,k
<5 P 1
=Y N(AuAp - AgA,) - 5A(nHQ). (3.4)

a,B
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Hence
1 1
SO = R VRE — nVEHP) 450 Y (ki) — et 2 AWE?)
a,i, g,k
—n(n—1)p" 2[VEH? +np" "2 N HPR hgAS,
a,B,i,5,k
+p" 2 | np? + nH? Q—ZN(AQAB—A@AQ)—Z&iﬁ . (3.5)

a,B

On the other hand, Li [10] has given a characterization of Willmore
submanifolds in the following Lemma 3.1.

Lemma 3.1 ([10, Lemma 4.3]). Let M be an n-dimensional submanifold in
the unit sphere S™TP. Then M is a Willmore submanifold if and only if for
n+1<a<n+p,

(Tl _ l)pn72AJ_Ha
= 2(n—1)Y (5" 2)HS — (n— DH*A(p"?)

i

ZHﬁ%ﬁ + Y SRR |+ D (0" (nH 6 — hE),
Byisdik hJ

where A(p"~2) =3, (p" )i, ALH® =Y, HY;, and (p"2); ; is the Hessian
of p"~2 with respect to the induced met Ric, H and Hf; are the components

of the first and second covariant derivative of the mean curvature vector field
H.

Using Stokes’ formula and Lemma 3.1, we have (see [10])

fn(nf1)/p"72|VJ‘H|2dv+n/p”72 > HPRhShS, | dv
M M a,f,1,5,m

1 n— n— (o7
:—inn—kl/z 2) H2)dv—n/ 2> HYH G0 pdv

4 B
—n/ZH“h%(pn_z)i,jdv. (3.6)
M a,i,j
By a direct computation, we get (see [10])

n 2 he
kkz

om,]k

/ ZHa a n 2 z,j dv+%/2(pn_2)i(H2)id1}, (37)
Mo?

M a,i,j
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and

—f/" 2A(nH?)dv = — /Z "2y, (H?)d (3.8)
M ¢

By use of (3.6), (3.7), and (3.8), integrating (3.5) over M, we have

1
5/p"—2Ap2dU = /p”_Q(\Vh|2 —n|VH|?)dv
M M

+n/p"72 (H2 2 —ZHD‘Hﬂ&Qg> dv—l—n/p"dv

M B M

/ e 22 N(Aads — AgAa) +525)dv. (3.9)

M

We have by a direct calculation

H?p* =Y H*HGop > 0, (3.10)
o,
|Vh|? —n|VIH]? = |VA|%, (3.11)

where ‘VLHP = Zal(H?)z, |Vh|2 = Z(yz]k(ﬁ%k)z = Za,i,j,k(h%k_H,ofc‘Sij)Q'

Thus
%/pn72Ap2dv 2 /pn72|vﬁl2dv

M

" 2Z[np — N(AuAp — AgA,) — 625]dv. (3.12)
M
It is easy to see that
1 _ 4(n—2 n
5/p" 2Ap2dv = _%/szﬁdv. (3.13)
M M

Putting (3.13) into (3.12) yields

4(n —2 . -
0> %/|Vp5|2dv+/p"_2|Vh|2dv
M

/ =2 Z np® — N(AaAg — AgAy) — 52 5)dv. (3.14)
M
Set Q = np2 _ Zaﬁ(]\f(ﬁaflﬂ — ,Zlﬁfla) +5iﬁ). Now we estimate the lower

bound of Q based on p? and Ric . For a fixed «, we choose {e;} such that A,
is diagonalized, A, = diag{A{,..., A%}, then (2.12) gives

SN R =m-1)A+H) + (n—2)) H'AL — (A?)? - Ry, (3.15)

Jj B#Fa
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B#a
—ZZ 20— <ady S (g
BAa ij fF#a ij
<4Z n—1)(1+ H?) + ZH% — R](A7)?

<Al D+ )+ (1= D Hp— RuN(Aa)— NG (3.16)

Summing over «, we get

> ON(AAp - AgA,)

a.p
<4[(n—-1)A+H* +(n—-2)Hp—R,lp 4ZN (3.17)
Obviously
. 1 . 1
N(A2) > =) (N(AL)) == &2 :
SN 2 53N = 1300 (3.18)
Substituting (3.18) into (3.17), we have
D N(Aadp — AgAs) < 4l(n—1)(1+ H?) + (n—2)Hp — Rm]p® — — Za (3.19)
o,B

Combining (2.11) with (3.19), we obtain

4fnp4

Q > np® —4[(n = 1)(1 + H?) + (n = 2)Hp — Rp]p* +

= (=)~ Dt =4l —2) + (n— DH? + (0= 29 Hp— Bylp?

(3.20)
From (2.13), (2.16), and (3.20), by using n > 4, we get
Q= —nlln=2)+ (n = DH+ (n = DHp = Fn]y*
> —n[—6+ A — Ry]p? (3.21)
ie.,
Q > —n(—0 + Ric*)p%. (3.22)
By Lemma 2.1, (2.21), (3.22), and (3.14), we get
0> 4(”7; 2 P (/pn"gzdv) —kQ/(1+H2)p"dv
M M
+n(5/p”dv — n/(Ric’l)p”dv. (3.23)
M M
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Applying the Holder inequality, we obtain

4n—1
02 %Uﬁ”ﬂ””ﬁ — ko1 + HJ) /p"dv]
M
+nd / o = [ Ric |15 l0" | . (3.21)
ie.,
4(n—1) N _ B
0> =—5—kilp" | 52y — nll RicZ [|3llo" |l =,
A4(n—1
+ ["5 - %’@(1 + Hg)} /p"dv. (3.25)
M
By taking

(n—2)2(1+ HE)
on3(n—1)

such that [nd — %kg(l + H3)] = 0, we have

4(n—1) :
o2 {10 Vi s Y1,

t =

Therefore, under the assumption || Ric? [|= (Zgl)kl, it is easy to see from

the above that p? = 0 and M is totally umblhcal.

4. Proof of Theorem 1.6. First of all, Guo and Li calculated the Euler-Lagrange
equation of F(x) given by (1.3).

Theorem 4.1 ([7]). Let M be an n-dimensional submanifold in the unit sphere
S™TP. Then M is an extremal submanifold if and only if it satisfies forn+1 <
a<n+p,

S RSRGRY = —(n - )ACH =3 B, - HOp® + gHap% (4.1)
B4,k 8
From (4.1), we have

2
n S HPRLRGRS, = —n(n 1) S HPAYH® -0y HPH 505 + "(” )
a,B,i,5.k B a,B

H2p2.

(4.2)
Putting (4.2) into (3.4) yields

1
3 = |Vh|> —=n?|ViH|? + Z (hihik:)s + np? — Z&iﬁ +nH?p?
a,i,gk a,B
-2
—n(n—1)Y HA*H? —ny HPH"G45 + %H%Q
g B
S 1
Y N(AaAp — AgA,) - §A(nH2). (4.3)

a,B
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Integrating (4.3) over M and using Stokes’ formula, we have

. ‘
§/Ap2dv - /(|Vh|2 — | VEHP)dy +/ (np2 - Zagﬁ) dv
M M o,

M
+/n (H2p2 - ZHEHO‘&M;) dv+/@1{2p2dv
M o,B M
- / S N(Aady — AgAa)do. (4.4)
M @B

By (3.10) and (3.11),
- —2
0> /|Vh|2dv+%/H2p2dv
M M
+n/p2dv - /Z(N([laflg — ApAo) +625)dv. (4.5)
M MooB
Substituting (3.22) into (4.5), by the definition of @), we have

- —2
0> /\Vh\QdH%/H%?du
M

M
— /n(—5 + Ric? ) p?do. (4.6)
M
From (2.20), we get
n—2
0>k /p%dv — kg/(l + H?)p?dv,
M M
n(n—2) 2 2 S A 2
+T H<p*dv —n [ (=0 + Ric2)p~dv, (4.7)
M M
ie.,
n—2
0>k /p%dv - n/(Rici‘)dev
M M ) (4.8)
- /(kg —nd)p*dv —I—/ [n(nQ—) — kg] H?p*dv.
M M
We choose t = % such that ko = nd. By using Hélder’s inequality, from

the above, we obtain

0> Elp?|| =, — nllRic2 |5 [10%]] =, - (4.9)
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Therefore, under the assumption

k‘l (’I’L — 2)2(5 1

||RIC_ n < n 4TL(TL— 1)25+ (n— 2)2 CQ(n)7

it is easy to see from (4.9) that p? = 0 and M is totally umbilical.
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