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Abstract. In this paper, we study an isospectral problem of a weighted
Sturm–Liouville equation with the Dirichlet boundary condition, which
lies at the basis of the integrability of the Camassa–Holm equation. We
will choose the general setting of the so-called measure differential equa-
tions to solve the optimization problem on eigenvalues. It should be no-
ticed that our technique in this paper can be used to deal with other
self-adjoint boundary conditions.
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1. Introduction. This paper is concerned with the spectral problem

y′′ =
1
4
y + λm(t)y, (1.1)

with the Dirichlet boundary condition

y(0) = y(1) = 0, (1.2)

where m ∈ C− := {f ∈ C[0, 1] : f(t) ≤ 0, f(t) �≡ 0}. It is well known that
problem (1.1)–(1.2) has a sequence of simple eigenvalues 0 < λ1(m) < λ2(m) <
· · · < λk(m) → +∞. See [6].

The weighted Sturm–Liouville problem (1.1) lies at the basis of the inte-
grability of a celebrated recent model for shallow water waves, which is the
following Camassa–Holm equation:

ut − uxxt + 3uux = 2uxuxx + uuxxx (1.3)

where u is the fluid velocity in the x-direction. See [2,3]. To study the integra-
bility of the Camassa–Holm equation (1.3), a key point is to understand the
associated spectral problem (1.1) with a certain boundary condition, where
m = u − uxx is the weight function. During the last two decades, there are
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many important and interesting results obtained for the Camassa–Holm equa-
tion. See [1,2,5,7,8,14,16,17] and the references therein. For results on the
inverse spectral problems and the corresponding isospectral problems of the
Camassa–Holm equation, we can refer to [9,11–13].

The purpose of this paper is to investigate an isospectral problem as fol-
lows:

I(h) := inf

⎧
⎨

⎩
−

1∫

0

m(t) dt : m ∈ Eh

⎫
⎬

⎭
, (1.4)

where h ∈ (0,+∞) is fixed and

Eh := {m ∈ C− : λ1(m) = h}. (1.5)

In order to solve the minimization problem (1.4), we will choose the general set-
ting of the so-called measure differential equations (MDEs) to understand the
eigenvalues, eigenfunctions, and the minimization. Based on the relationship
between ODEs and MDEs, we will obtain the conclusion about the minimiza-
tion problem (1.4) as follows.

Theorem 1.1. It holds that

I(h) =
coth 1

4

h
∀h ∈ (0 + ∞). (1.6)

Moreover, the infimum I(h) is never attained for any function of Eh.

It should be remarked that our technique in this paper can be used to deal
with other self-adjoint boundary conditions, such as the Neumann boundary
condition.

This paper is organized as follows. In Section 2, we will recall some basic
facts on measure differential equations, which are used in the proof of the main
results. In Section 3, based on the relationship between ODEs and MDEs, we
will prove Theorem 1.1.

2. Preliminaries. In order to solve the minimization problem (1.4), we will
extend in this section the lowest eigenvalues λ1(m) of (1.1) to the case of
MDEs.

Let C = C[0, 1] be the space of continuous functions on [0, 1]. Hence, the
dual space of C is the space of Radon measures on [0, 1]:

M0 = M0([0, 1],R) := (C, ‖ · ‖∞)∗
,

where measures ν ∈ M0 are normalized as ν(0+) = 0. See [4] and also [19] for
more details on measures.

For a fixed measure

μ ∈ M−
0 := {ν ∈ M0 : ν �= 0 and ν(t) is decreasing on [0, 1]} ,

we study the following second order measure differential equation

dy• =
1
4
y dt + λy dμ(t), (2.1)



Vol. 121 (2023) On the isospectral problem of the Camassa–Holm equation 69

with the Dirichlet boundary condition (1.2). Here we are adopting the notation
from [20]. It should be remarked that the measure differential equation (2.1)
reduces to the ordinary differential equation (1.1) when the measure μ ∈ M−

0

is continuously differentiable with the derivative m(t) = μ′(t) ∈ C−.
As for the lowest eigenvalue for the equation (2.1) with the boundary con-

dition (1.2), we can establish the following minimization characterization by
similar arguments as those in [19].

Lemma 2.1. Given μ ∈ M−
0 , we have the following minimization characteri-

zation of the lowest eigenvalue λ1(μ) for the problems (2.1) and (1.2):

λ1(μ) = min
u∈W1,2

0 \{0}

∫

[0,1]
u′2 dt + 1

4

∫

[0,1]
u2 dt

− ∫

[0,1]
u2 dμ(t)

, (2.2)

where

W1,2
0 := {z ∈ W 1,2[0, 1] : z(0) = z(1) = 0}.

Notice that M0 is a Banach space equipped with the norm

‖μ‖V = sup

{
k−1∑

i=0

|μ(ti+1) − μ(ti)| : 0 = t0 < t1 < · · · < tk = 1, k ∈ N

}

,

the total variation of μ(t) on [0, 1]. Meanwhile, as a dual space, M0 can be
equipped with the weak∗ topology w∗. We say that μn is weakly∗ convergent
to μ0 if and only if it holds that

lim
n→∞

∫

[0,1]

f dμn =
∫

[0,1]

f dμ0

for any f ∈ C. Generally, a measure can not be a limit of smooth measures in
the norm ‖·‖V. However, we have the following fact about the weak∗ topology.

Lemma 2.2 ([18]). For fixed μ0 ∈ M−
0 , there is a sequence of smooth measures

{μn} ⊂ C∞ ∩ M−
0 satisfying

μn → μ0 in (M−
0 , w∗)

and ‖μn‖V = ‖μ0‖V.

Based on the continuous dependence of solutions of initial value problems of
measure differential equations in measures [20] and the characterization (2.2),
we can prove the continuity of the eigenvalue λ1(μ) in measures μ ∈ M−

0 with
respect to w∗ topologies.

Lemma 2.3. The following nonlinear functional is continuous:

(M−
0 , w∗) → R, μ → λ1(μ).

Meanwhile, the normalized eigenfunctions y1(t, μ), corresponding to λ1(μ) with

y1(t, μ) ≥ 0 and ||y1(·, μ)||2 = 1,
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are continuous in μ with respect to w∗ topologies, i.e.,

(M−
0 , w∗) → (C, ‖ · ‖∞), μ → y1(·, μ),

and

(M−
0 , w∗) → (W1,2, w), μ → y1(·, μ).

3. Main results. At first, we will extend problem (1.4) to the measure case.
More precisely, let

Ẽh := {μ ∈ M−
0 : λ1(μ) = h}. (3.1)

We will study the following minimization problem on measure differential equa-
tions

Ĩ(h) := inf

⎧
⎪⎨

⎪⎩
−

∫

[0,1]

dμ(t) : μ ∈ Ẽh

⎫
⎪⎬

⎪⎭
. (3.2)

Using the continuity in Lemma 2.3, we will obtain that the minimal value Ĩ(h)
defined in (3.2) can be attained by some measure in Ẽh.

Lemma 3.1. Given h ∈ (0,+∞), there exists some measure μh ∈ Ẽh such that

−
∫

[0,1]

dμh(t) = Ĩ(h).

Proof. Since Ĩ(h) > 0, one can take a minimizing sequence {μn}+∞
n=1 ⊂ Ẽh

such that

−
∫

[0,1]

dμn(t) → Ĩ(h)

as n → +∞. Since μn ∈ M−
0 , then ‖μn‖V = − ∫

[0,1]
dμn(t) ≤ C for all n ≥ 1

for some constant C > 0. According to the Banach-Alaoglu theorem, there is
a subsequence {μnk

}+∞
k=1 ⊂ {μn}+∞

n=1 such that μnk
→ μh in (M0, w

∗) for some
μh ∈ M0. Then, we have

−
∫

[0,1]

dμh(t) = − lim
k→+∞

∫

[0,1]

dμnk
(t) = Ĩ(h).

Furthermore, it holds that μh ∈ M−
0 and λ1(μh) = limk→+∞ λ1(μnk

) = h by
Lemma 2.3, which implies that μh ∈ Ẽh. �

In order to describe the minimizing measures, we denote the (unit) Dirac
measure δa located at a ∈ (0, 1) as follows:

δa(t) =
{

0 for t ∈ [0, a),
1 for t ∈ [a, 1].

Notice that −rδa ∈ M−
0 for r > 0. To find the solution of problem (3.2),

we solve the following measure differential equation

dy• =
1
4
y dt + λy d(−rδa(t)), t ∈ [0, 1], (3.3)
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with the initial condition

(y(0), y•(0)) = (y0, z0) ∈ R
2. (3.4)

Denote

ω =
1
2
i ∈ C.

The solution (y(t), y•(t)) of equation (3.3) is

(
y(t)
y•(t)

)

=

⎧
⎪⎪⎨

⎪⎪⎩

(
y0 cos ωt + z0

sinωt
ω−ωy0 sinωt + z0 cos ωt

)

for t ∈ [0, a),
(

ŷ0 cos ω(t − a) + ẑ0
sinω(t−a)

ω−ωŷ0 sinω(t − a) + ẑ0 cos ω(t − a)

)

for t ∈ [a, 1],

with

(ŷ0, ẑ0) =
(

y0 cos ωa + z0
sin ωa

ω
, −ωy0 sinωa + z0 cos ωa − λrŷ0

)

.

To obtain eigenvalues of problems (2.1)–(1.2), we only need to study the
solution of the equaiton (2.1) with the initial value (y0, z0) = (0, 1). In this
case,

(ŷ0, ẑ0) =
(

sinωa

ω
, cos ωa − λr

sinωa

ω

)

for a ∈ (0, 1).

Denote

Θ(a, λ) := y(1).

By the above formulas, we get that

Θ(a, λ) =
sin ωa

ω
cos ω(1 − a) +

(

cos ωa − λr
sinωa

ω

)
sin ω(1 − a)

ω

=
sin ω

ω
− λr

sin ωa

ω

sin ω(1 − a)
ω

.

Now λ ∈ C is an eigenvalue of (2.1)–(1.2) if and only if λ satisfies

Θ(a, λ) = 0,

which implies that

λ1(−rδa) =
ω sin ω

r sin ωa sin ω(1 − a)
. (3.5)

Especially, when a = 1/2, we have that

λ1(−rδ1/2) =
ω sin ω

r sin2 ω
2

=
coth 1

4

r
.

Moreover, we have the following properties of the function λ1(−rδa) by con-
sidering a ∈ (0, 1) as a variable.

Lemma 3.2. It holds that

inf
a∈(0,1)

λ1(−rδa) = λ1(−rδ1/2) =
coth 1

4

r
.
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Proof. By (3.5), it is easy to check that λ1(−rδa) is strictly decreasing in
a ∈ (0, 1/2] and λ1(−rδ1−a) = λ1(−rδa) for all a ∈ (0, 1). �

Lemma 3.3. For fixed μ ∈ M−
0 with − ∫

[0,1]
dμ(t) = r, there exists a ∈ (0, 1)

such that

λ1(μ) ≥ λ1(−rδa).

Proof. Assuming μ ∈ M−
0 with − ∫

[0,1]
dμ(t) = r, we have ‖μ‖V = r since μ(t)

is decreasing. Taking an eigenfunction y(t) corresponding to λ1(μ), it holds
that

λ1(μ) =

∫

[0,1]
(y′)2 dt + 1

4

∫

[0,1]
y2 dt

− ∫

[0,1]
y2 dμ(t)

. (3.6)

Notice that there exists a ∈ (0, 1) such that

‖y‖∞ = max
t∈[0,1]

|y(t)| = |y(a)|.

Then, the denominator in (3.6) can be estimated as

0 < −
∫

[0,1]

y2 dμ(t) ≤ (y(a))2‖μ‖V = (y(a))2r = −
∫

[0,1]

y2 d(−rδa(t)).

(3.7)

Now (3.6) and (3.7) imply that λ1(μ) satisfies

λ1(μ) ≥
∫

[0,1]
(y′)2 dt + 1

4

∫

[0,1]
y2 dt

− ∫

[0,1]
y2 d(−rδa(t))

≥ λ1(−rδa),

in which the last inequality holds by the minimization characterization (2.2). �

As for the minimizer of the minimization problem (3.2), we have the fol-
lowing conclusion.

Lemma 3.4. Let μh ∈ Ẽh be a minimizer as in Lemma 3.1 and ‖μh‖V = rh.
It holds that

h = λ1(μh) = λ1(−rhδ1/2) =
coth 1

4

rh
.

Furthermore, we have μh = −rhδ1/2.

Proof. Because of Lemmas 3.2 and 3.3, we have

coth 1
4

rh
= λ1(−rhδ1/2) ≤ λ1(μh) = h.

It remains to show this is in fact an equality. Otherwise, let us suppose the
strict inequality

coth 1
4

rh
< h.
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Then there exists some 0 < r < rh such that

λ1(−rδ1/2) =
coth 1

4

r
= h.

Hence, it holds that −rδ1/2 ∈ Ẽh. However, ‖ − rδ1/2‖V = r < rh = ‖μh‖V,
which contradicts the assumption that μh is a minimizer.

Furthermore, assume that y(t;μh) is an eigenfunction with respect to λ1(μh)
and |y(a;μh)| = maxt∈[0,1] |y(t;μh)| for some a ∈ (0, 1). So, we have

λ1(μh) =

∫

[0,1]
(y′(t;μh))2 dt + 1

4

∫

[0,1]
y2(t;μh) dt

− ∫

[0,1]
y2(t;μh) dμh(t)

≥
∫

[0,1]
(y′(t;μh))2 dt + 1

4

∫

[0,1]
y2(t;μh) dt

− ∫

[0,1]
y2(t;μh) d(−rhδa(t))

≥
∫

[0,1]
(y′(t;μh))2 dt + 1

4

∫

[0,1]
y2(t;μh) dt

− ∫

[0,1]
y2(t;μh) d(−rhδ1/2(t))

≥ λ1(−rhδ1/2),

which implies the identity
∫

[0,1]
(y′(t;μh))2 dt + 1

4

∫

[0,1]
y2(t;μh) dt

− ∫

[0,1]
y2(t;μh) d(−rhδ1/2(t))

= λ1(−rhδ1/2)

since λ1(μh) = λ1(−rhδ1/2).
Hence, y(t;μh) is also an eigenfunction with respect to λ1(−rhδ1/2) and

then μh = −rhδ1/2. �

Now, we can solve the minimization problem (3.2) on measure differential
equations.

Theorem 3.1. It holds that

Ĩ(h) =
coth 1

4

h
∀h ∈ (0 + ∞).

Moreover, the minimal value Ĩ(h) can be attained and only attained by μ =
−Ĩ(h)δ1/2.

Proof. It follows from Lemma 3.4 that the minimizer μh = −rhδ1/2 with rh =
coth 1

4
h . So, we have that

Ĩ(h) = ‖ − rhδ1/2‖V = rh =
coth 1

4

h
.

�

Finally, we will show the main conclusion of this paper.

Proof of Theorem 1.1. Notice that m ∈ Eh induces an absolutely continuous
measure

μm(t) :=
∫

[0,t]

m(s) ds ∈ M−
0 .
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Furthermore, we have − ∫

[0,1]
dμm = − ∫

[0,1]
m(s) ds and λ1(μm) = λ1(m) = h.

Hence, it holds that

Ĩ(h) ≤ −
∫

[0,1]

dμm = −
∫

[0,1]

m(s) ds,

which yields

Ĩ(h) ≤ I(h).

On the other hand, we know that the minimizer μh = − coth 1
4

h δ1/2 ∈ Ẽh

and

Ĩ(h) = −
∫

[0,1]

dμh(s).

By Lemma 2.2, there exists a sequence of smooth measures {μn} ⊂ C∞ ∩ M−
0

satisfying

μn → μh in (M−
0 , w∗),

and ‖μn‖V = ‖μ′
n‖1 = rh. Let ϕn = λ1(μn)

λ1(μh)
μn. Then λ1(ϕn) = λ1(μh) = h.

Therefore, by Lemma 2.3, we obtain

Ĩ(h) = −
∫

[0,1]

dμh(s) = lim
n→∞ −

∫

[0,1]

dμn(s) = lim
n→∞ −λ1(μh)

λ1(μn)

∫

[0,1]

λ1(μn)

λ1(μh)
μ′
n(s) ds

= lim
n→∞ −λ1(μh)

λ1(μn)

∫

[0,1]

ϕ′
n(s) ds ≥ lim

n→∞
λ1(μh)

λ1(μn)
I(h) = I(h).

We have thus proved the equality Ĩ(h) = I(h). Hence, the proof is complete
by Theorem 3.1. �

Remark 3.1. Notice that for every h > 0, one has m(t) ∈ Eh if and only if
hm(t) ∈ E1. Hence, it follows that for every h > 0,

I(h) =
I(1)
h

,

which is consistent with the formula (1.6) in Theorem 1.1.
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[23] Schwabik, Š: Generalized Ordinary Differential Equations. World Scientific, Sin-

gapore (1992)

[24] Yan, P., Zhang, M.: Continuity in weak topology and extremal problems of

eigenvalues of the p-Laplacian. Trans. Amer. Math. Soc. 363, 2003–2028 (2011)

[25] Zhang, M.: Minimization of the zeroth Neumann eigenvalues with integrable
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