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Abstract. It is proved that every finitely generated profinite group with
fewer than 2ℵ0 conjugacy classes of elements of infinite order is finite.
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1. Introduction. In [4], Jaikin-Zapirain and Nikolov proved that a profinite
group with countably many conjugacy classes must be finite. A well-known
theorem of Zelmanov [9] asserts that profinite torsion groups are locally finite;
that is, their finite subsets generate finite subgroups. Inspired by these results,
we use an extension of Zelmanov’s theorem (also due to Zelmanov; see Theorem
C below) and some ideas from Wilson [7] to prove the following result:

Theorem A. Let G be a finitely generated profinite group. If G has fewer than
2ℵ0 conjugacy classes of elements of infinite order, then G is finite.

We shall also prove a local version of this result, concerning p-elements for a
fixed prime p. We recall that a (generalized) p-element of a profinite group G is
an element that (topologically) generates a finite p-group or a copy of the group
Zp of p-adic integers. By a p∞-element we understand a p-element of infinite
order. The p-Sylow subgroups of G are the maximal subgroups consisting of p-
elements; such subgroups exist and are conjugate (see for example [6, Chapter
2]).

Theorem B. Let G be profinite group, p an odd prime, and P a p-Sylow sub-
group. If G has fewer than 2ℵ0 conjugacy classes of p∞-elements, and P is
finitely generated, then P is finite.

Similar results may hold without the hypotheses of finite generation; indeed,
it is natural to conjecture that an arbitrary profinite group with fewer than 2ℵ0
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conjugacy classes of elements of infinite order is locally finite. We explain briefly
why these hypotheses arise. When trying to prove that a profinite torsion group
is locally finite, one can immediately pass to finitely generated subgroups, and
results of Zelmanov on finitely generated Lie algebras can be used. In our
proofs, a critical case is concerned with groups having the property that the
set of torsion elements is dense, and this property does not pass to finitely
generated or indeed procyclic subgroups (as the existence of infinite abstract
finitely generated residually finite torsion groups shows). The difficulty that
arises is reminiscent of the open problem of determining whether profinite
torsion groups have finite exponent: this too is essentially a problem about
(countably based) pro-p groups that are not finitely generated.

2. Preliminaries; cosets of conjugates. For unexplained notation and general
information about profinite groups and their Sylow theory, we refer the reader
to [6]. We write N�O G to indicate that N is an open normal subgroup of a
profinite group G, and for x ∈ G, we write xG for the conjugacy class of x
and NxG for the product of the sets N , xG. Each conjugacy class xG is closed
(being the image of G under the continuous map g �→ xg). All subgroups
arising are understood to be closed. A subset of a group is said to have finite
exponent if its elements have bounded orders. The following elementary facts
will be used frequently: elements x, y of a profinite group G are conjugate in G
if and only if for each M�O G, the elements Mx,My are conjugate in G/M (see
e.g. [7, Lemma 2.1]); the property of having fewer than 2ℵ0 conjugacy classes
of elements of infinite order is inherited by open subgroups and continuous
images.

Proposition 2.1. Let G be a profinite group, p a prime, and P a p-Sylow sub-
group of G. Let N0�O G, u ∈ P .

Suppose that, for each coset Nt with N�O G, t ∈ P , and Nt ⊆ N0u,
(a) Nt ∩ P �⊆ tG, and
(b) Nt ∩ P does not have finite exponent.
Then G has at least 2ℵ0 G-conjugacy classes of p∞-elements.

Proof. The result is very similar to [7, Proposition 2.2], which was the special
case when N0u = G, and the proof is essentially the same. However the printed
proof in [7] contains small errors (corrected in the arXiv version) and so we
give the proof in its entirety.

We construct a descending chain (Nk)k�0 of open normal subgroups and
a family (Rk)k�0 of finite subsets of N0u ∩ P such that, for each k � 1 and
x ∈ Rk, there are elements x(1), x(2) ∈ Nk−1x ∩ P for which

(i) Nkx
(1) and Nkx

(2) are not conjugate in G/Nk and

(ii) Nkx
(1) and Nkx

(2) have order at least pk in G/Nk.

We set R0 = {u}. Suppose that k � 1 and that Nk−1, Rk−1 have been
constructed, and let x ∈ Rk−1. By (b), we can find x(1) ∈ Nk−1x ∩ P and a
subgroup Lx�O G with Lx < Nk−1 such that Lxx(1) has order at least pk in
G/Lx. By (a), the result [7, Lemma 2.1] mentioned above, and again (b), we
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can find Mx�O G with Mx � Lx and x(2) ∈ Lxx ∩ P such that Mxx
(1) and

Mxx(2) are non-conjugate elements of G/Mx and with Mxx
(2) of order at least

pk in G/Mx. We define

Nk =
⋂

x∈Rk−1
Mx and Rk = {x(1), x(2) | x ∈ Rk−1}.

Now consider the set F = {Nkx
G | k � 0, x ∈ Rk}, partially ordered

with respect to inclusion. By construction, each element of F contains at least
two maximal elements; it follows that F has 2ℵ0 chains (Nkx

G
k )k�0. By com-

pactness, the intersection
⋂

Nkx
G
k of each such chain is non-empty; it is also

evidently a union of conjugacy classes. If (Nkx
G
k ), (Nky

G
k ) are distinct chains,

then their intersections
⋂

Nkx
G
k ,

⋂
Nky

G
k are disjoint: if k is minimal with

Nkx
G
k �= Nky

G
k , then k � 1 and xk, yk are distinct elements of Rk; since

Nk−1x
G
k = Nk−1y

G
k , their relationship is that of the elements x(1), x(2) ap-

pearing in the construction of Rk and so Nkx
G
k and Nky

G
k are disjoint.

Finally, if x ∈ ⋂
k Nkx

G
k , then for each r � 1, it follows that

Nr+1x
pr

= Nr+1x
pr

r+1 �= Nr+1 and so xpr

/∈ Nr+1. Therefore the elements of
the intersections of chains (Nkx

G
k ) are p∞-elements and the result

follows. �

Lemma 2.2. Let G be a profinite group, p a prime, and P a p-Sylow subgroup.
Let K be a closed normal subgroup and t ∈ P , and suppose that Kt ∩ P ⊆ tG.
(a) If p �= 2, then K is an extension of a pro-p′-group by a pro-p-group.
(b) If K is open and is an extension of a pro-p′-group by a pro-p-group, then

t has finite order.

Proof. (a) First suppose that G is finite. We use results proved in [7]. From [7,
Lemmas 3.3, 3.7] applied to quotient groups G/K1 with K1�G and K1 � K, we
conclude that K has no perfect composition factors of order divisible by p, and
then the conclusion follows from [7, Lemmas 3.3, 4.1]. (It is worth mentioning
that [7, Lemma 3.7] depends on the classification of the finite simple groups;
in particular, this is the reason why the prime 2 is excluded.)

Now we consider the general case. For each N �O G, let RN/N be the
smallest normal subgroup of G/RN with K/N a p-group; from above, RN/N
is a p′-group, and so

⋂
N RN is a pro-p′ group while K/

⋂
RN is a pro-p group.

(b) To prove that t has finite order, we may replace G by G/R where R is
the smallest normal subgroup of K with K/R a pro-p group since this quotient
group inherits the hypotheses on G. We now have K � P . Let L�O G with
L � K and write Ḡ, K̄, t̄ for the images of G,K, and t in G/L. Since K̄t̄ ⊆ t̄Ḡ,
we have

|K̄| = |K̄t̄| � |Ḡ|/|CḠ(t̄)|,
and so

|CG/L(Lt)| � |Ḡ : K̄| = |G : K|.
It follows that |DL/L| � |G : K| where D = CG(t). This holds for all L, and
since

⋂
L = 1, we conclude that D is finite. But 〈t〉 � D. �
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Corollary 2.3. Let G be profinite, p a prime, and P a p-Sylow subgroup. Sup-
pose that G has fewer than 2ℵo conjugacy classes of p∞-elements. If either p is
odd or G is a pro-2 group, then for all N0�O G and u ∈ P , there exist N�O G,
t ∈ P with Nt ⊆ N0u and Nt ∩ P of finite exponent.

Proof. By Proposition 2.1, there exist N�O G, t ∈ P with Nt ⊆ N0u and
either Nt∩P ⊆ tG or Nt∩P of finite exponent. In the former case, t has finite
order by Lemma 2.2, so Nt ∩ P again has finite exponent. �
3. Dense torsion: Zelmanov’s theorems. Because the open cosets of a profinite
group G constitute a base of neighbourhoods, the set of torsion elements of G
is dense if and only if for each N0�O G and u ∈ P , the coset N0u contains an
element of finite order. In particular, the groups studied in Corollary 2.3 have
this property.

In [10], Zelmanov proved a theorem that gives sufficient conditions for cer-
tain finitely generated Lie algebras L to be nilpotent. We fix a finite generat-
ing set X and consider the set X∗ consisting of X and all iterated products
of elements of X. An element a ∈ L is called ad-nilpotent if the linear map
adLa : y �→ ya from L to L is nilpotent. Zelmanov’s theorem ([10, Theorem
1.1]) asserts that if (i) L satisfies a polynomial identity and (ii) every element
of X∗ is ad-nilpotent, then L is nilpotent.

The following theorem is a consequence of this deep result. It is also due
to Zelmanov, and we thank him for allowing us to include the proof.

Theorem C. Let G be a finitely generated pro-p group and suppose that
(i) the set of torsion elements is dense in G, and
(ii) G has an open normal subgroup N and an element a such that Na has

finite exponent.
Then G is finite.

Proof. Consider the Zassenhaus filtration (Gk) of G; this is the descending
chain of normal subgroups defined by Gk = G ∩ (1 + Jk), where J is the
augmentation ideal of the group algebra FpG. Write Lp(G) =

⊕
k�1 Lk where

Lk = Gk/Gk+1 for each k. Then Lp(G) is a Lie algebra over Fp, with multi-
plication Li ×Lj → Li+j on the direct summands induced by the commutator
map in G (see for example [10] or [8]).

By the main theorem in [8] and condition (ii), the Lie algebra Lp(G) satisfies
a polynomial identity. Let Gk+1u be an arbitrary element of Lk. By (i), there
is a torsion element x ∈ Gk+1u. Thus Gk+1u = Gk+1x, and an easy calculation
shows that if xpn

= 1, then (ad(Gk+1u))p
n

= (ad(Gk+1x))p
n

= 0. It follows
that all elements in the subspaces Lk are ad-nilpotent. From the result of [10]
stated above, we conclude that Lp(G) is nilpotent, and so Gk = Gk+1 for some
k. It follows from a theorem of Lazard see ([1, Section 11]) that G is p-adic
analytic, and so G has an open torsion-free normal subgroup N . However if
L �O G and L < N , then no coset of L in N apart from L itself has torsion
elements. Hence N = 1 and G is finite. �

The case of finitely generated pro-p groups with few conjugacy classes of
p∞-elements is now easily settled.
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Corollary 3.1. Suppose that G is a pro-p group with fewer than 2ℵ0 conjugacy
classes of p∞-elements. Then G is finite.

Proof. From Corollary 2.3 (with G = P ), it is enough to consider the case when
(a) G has a coset N0u of finite exponent and (b) the set of torsion elements is
dense in G. Therefore the result follows immediately from Theorem C. �

4. Proof of Theorems A and B. We need a slight variant of results in [5], noted
in [7, Lemma 2.5].

Lemma 4.1. Let G be a profinite group, p be a prime, and P a p-Sylow subgroup
of G. Let N�O G, t ∈ P and suppose that Nt ∩ P has finite exponent. Then
G has a finite series of closed characteristic subgroups in which each factor is
one of the following: (i) a pro-p-group, (ii) a pro-p′-group, or (iii) a Cartesian
product of isomorphic finite simple groups of order divisible by p.

It is well known that Cartesian powers of finite groups are locally finite.

Proof of Theorem B. From Corollary 2.3 and Lemma 4.1, the group G has a
series of the kind described in Lemma 4.1. Since the hypotheses are inherited
by quotient groups, induction on the length of such a series allows us to assume
that G has a normal subgroup K of one of the types (i), (ii), or (iii) in Lemma
4.1 with the property that the Sylow subgroup PK/K of G/K is finite. Thus
P ∩ K is finitely generated, and it will suffice to prove that it is finite. This
clearly holds if K is a pro-p′-group, or if K is of type (iii) above since then K
is locally finite.

Suppose then that K is a finitely generated pro-p group with P/K finite.
Since the subgroups M/K with M �O G and K � M � N constitute a basis
of neighbourhoods of the identity in G/K, there is a subgroup M �O G with
K � M � N such that M/K and P/K are disjoint; the subgroup M inherits
the hypothesis on conjugacy classes and M/K is a pro-p′-group. By the Schur–
Zassenhaus theorem for profinite groups (cf. [6, Proposition 2.33]), we have
M = K � Q for a pro-p′ subgroup Q. Write Φ for the Frattini subgroup of K.
Since K is finitely generated, K/Φ is finite, and an open subgroup Q0 of Q
acts trivially on it. It follows (for example from [2, Theorem 5.1.4]) that Q0

acts trivially on K/L for each L �O K with L � M , and hence acts trivially on
K. The subgroup C = CQ(K) is normal in M and since Q0 � C, the image of
Q in M/C is finite. Hence KC/C is an open pro-p subgroup of M/C, and so it
inherits the hypothesis on conjugacy classes; therefore it is finite by Corollary
3.1. Therefore the p-Sylow subgroups of both M and G are finite, as required.

�

Now we need a consequence of an important result of Herfort [3].

Lemma 4.2. If G is a profinite group with fewer than 2ℵ0 conjugacy classes of
elements of infinite order, then G has non-trivial p-elements for only finitely
many primes p.

Proof. Herfort’s theorem states that a profinite group with non-trivial p-
elements for infinitely many primes p has a procyclic subgroup A with the
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same property; so A is isomorphic to a Cartesian product A∗ = Crp∈IAp of
non-trivial procyclic p-groups Ap for an infinite set I of primes (see [6, Chapter
2]). Elements of A whose images in A∗ have distinct infinite supports generate
non-isomorphic infinite procyclic subgroups and cannot be conjugate. However
an infinite set has at least 2ℵ0 infinite subsets. �

Proof of Theorem A. By Lemma 4.2, the set π(G) of primes p for which G
has non-trivial p-elements is finite, and by Corollary 3.1, we can assume that
|π(G)| > 1. Assume the result is known for all groups H satisfying the hypoth-
esis and with |π(H)| < |π(G)|. Choose an odd prime p ∈ π(G). By Corollary
2.3, G has a finite series as described in Lemma 4.1, and by induction on the
length of such a series, we can suppose that G has an open normal subgroup
K with one of the three types described in Lemma 4.1; this subgroup K is
finitely generated and it too has fewer than 2ℵ0 conjugacy classes of elements
of infinite order. Hence K is finite: if K is a pro-p group or a pro-p′ group, this
follows since |π(K)| < |π(G)| and in the remaining case K is finitely generated
and locally finite. �
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