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On the maximal singular integral with Riesz potentials
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Abstract. We investigate the maximal singular integral with Riesz po-
tentials and give a short proof of its estimates through a result from
Duoandikoetxea and Rubio de Francia in dimension n > 1 and the es-
timates of Fourier transforms of the measures in dimension n = 1. In
particular, this enables us to drop the Dini condition when n > 1. In
the appendix, we provide a proof of a counterexample for Corollary 4.1
in [Invent. Math. (1986)] by Duoandikoetxea and Rubio de Francia in
dimension n = 1.
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1. Introdution. In the 1950 s, Calderón and Zygmund [2,3] introduced the
following homogeneous singular integral operator:

I(f)(x) := lim
ε→0+

∫

|y|>ε

Ω(y)
|y|n f(x − y)dy = lim

ε→0+
Iε(f)(x),

where Ω is homogeneous of degree 0, with mean value zero over the unit
sphere S

n−1. It was shown that the homogeneous singular integral operator I
and the associated maximal operator I∗(f)(x) := supε>0 |Iε(f)(x)| is bounded
on Lp(Rn) for all 0 < p < ∞, provided Ω ∈ Lq(Sn−1) for some q > 1 . The
original proof of this boundedness used the method of rotations (see [3,10,20]).
In 1984, Duoandikoetxea and Rubio de Francia [9] offered a new proof of
this result through the estimates of the corresponding Fourier transforms of
measures, which had become a powerful tool in modern harmonic analysis
(see [13,15]). Moreover, it was proven further in [1,17] that when n > 1, the
singular integral operator I and the associated maximal operator I∗ are both
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bounded on Lp(Rn) for all 1 < p < ∞, just provided Ω ∈ H1(Sn−1), where
H1(Sn−1) is the Hardy space on the unit sphere studied in [4] (see also [5]) .

For p = 1, Seeger [19] showed that the operator I is of weak type (1, 1)
on L1(Rn) if Ω ∈ L log L(Sn−1), based on a microlocal decomposition of the
kernel. However, it is still an open problem whether the weak type (1, 1) bound-
edness of I and I∗ hold just assuming Ω ∈ H1(Sn−1) . For the recent progress
in the investigations of the weak type (1, 1) bound criterions and the appli-
cations including the Calderón commutators and their variants, we refer the
readers to [14] and the comprehensive work of Ding and Lai [7].

Recently, Yu et al. [21] established an estimate of an extension of the clas-
sical Calderón–Zygmund singular integral operator as follows:

Tε(f)(x) :=
∫

|y|>ε

Ω(y)
|y|n−β

f(x − y)dy,

where Ω is homogeneous of degree 0, with mean value zero over the unit sphere
S

n−1, and 0 < β < n . This kind of integral operator appears in the approxi-
mation of the surface quasi-geostrophic systems (SQG) from the generalized
SQG systems which cover incompressible Euler systems and have been widely
studied in the past years by many experts (see [22] and the references therein) .

Formally, Tε becomes Iε if β = 0, thus Tε can be viewed as an extension
of the classical Calderón–Zygmund singular integral operator. Indeed, they
proved the following result:

Theorem 1 ([21]). Let 0 < β0 < 1/2 and Ω be a homogeneous function
of degree 0, with mean value zero over the unit sphere S

n−1. If there exist
positive numbers B1, B2 such that |Ω(x)| ≤ B1 and

∫ 1

0
ω(δ)

δ dδ = B2, where
ω(δ) := sup{|Ω(x) − Ω(x′)| : |x − x′| ≤ δ, x, x′ ∈ S

n−1}, then for any
f ∈ L1(Rn)

⋂
Lq(Rn) with 1 < q < ∞, there exists an absolute constant C

depending on n, q,B1, B2, and β0 such that

‖Tεf‖q ≤ C

(
‖f‖q +

β(q−1)n/q

((q − 1)n − qβ)1/q
‖f‖1

)

holds uniformly for ε > 0 and 0 < β < min{1 − β0 , (q − 1)n/q}.
It is well known that for any 0 < β < n, it holds that

‖Tεf‖q ≤ C(n, q, β)‖f‖p if
1
p

− 1
q

=
β

n
,

‖Tεf‖q,∞ ≤ C(n, β)‖f‖1 if 1 − 1
q

=
β

n

through the Riesz potentials (see [11, Theorem 1.2.3]). Then the estimate
in Theorem 1 can be achieved by interpolations. Nevertheless, the constant
C(n, q, β) will be infinitely large when β → 0+. Therefore, the main point of
interest in Theorem 1 is that the constant C is independent of β, and when
β → 0+, the estimates of the classical truncated Calderón–Zygmund singular
integral Iε are formally recovered from Theorem 1. It is in this sense that Tε

can be viewed as an extension of the classical truncated Calderón–Zygmund
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singular integral and the corresponding estimates here are more accurate than
the classical ones through Riesz potentials.

The proof of their estimate in Theorem 1 was via the so called “geomet-
ric approach”, which originated from [16]. Although their method of proof is
enlightening, the procedure of the proof is a little long and it requires the
imposition of the Dini condition.

In this paper, we investigate further the maximal singular integral with
Riesz potentials:

(T ∗f)(x) := sup
ε>0

|Tεf(x)|,

and give a short proof of its estimate (independent of β and hence bet-
ter than the classical estimates of Riesz potentials) through a result from
Duoandikoetxea and Rubio de Francia ([9], see also [12,18]) in dimension n > 1
and the estimates of Fourier transforms of the measures in dimension n = 1.
In particular, we improve the results in [21] by dropping the Dini condition,
when n > 1, which is imposed on Theorem 1. Indeed, we obtain the following
result:

Theorem 2. Let 1 ≤ p < q < ∞ and Ω be a homogeneous function of degree 0,
with mean value zero over the unit sphere S

n−1.
(1) For n > 1, if ‖Ω‖Lr(Sn−1) < ∞, where 1

q + 1 = 1
p + 1

r , then there exists
a positive constant C depending on n, p, q, and ‖Ω‖Lr(Sn−1) such that for any
f ∈ Lp(Rn)

⋂
Lq(Rn),

‖T ∗f‖q ≤ C

(
‖f‖q +

β(r−1)n/r

((r − 1)n − rβ)1/r
‖f‖p

)

holds for 0 < β < (r − 1)n/r.
(2) For n = 1, if there exists a positive number B1 such that |Ω(x)| ≤ B1,

then there exists a positive constant C depending only on p, q, and B1 such
that for any f ∈ Lp(Rn)

⋂
Lq(Rn),

‖T ∗f‖q ≤ C

(
‖f‖q +

β(r−1)/r

((r − 1) − rβ)1/r
‖f‖p

)

holds for 0 < β < (r − 1)/r, where 1
q + 1 = 1

p + 1
r .

Remark 1. The proof of part (1) of Theorem 2 relies on [9, Corollary 4.1],
however, it should be noted that [9, Corollary 4.1] does not hold in dimension
n = 1 (see [18] or the proof in the appendix below). So in the one-dimensional
case, we need to pay more attentions

As an immediate corollary of Theorem 2, we obtain the corresponding
estimates (independent of β) for the singular integrals with Riesz potentials:

(Tf)(x) := lim
ε→0+

∫

|y|>ε

Ω(y)
|y|n−β

f(x − y)dy = lim
ε→0+

Tε(f)(x),

where Ω is homogeneous of degree 0, with mean value zero over the unit sphere
S

n−1. Indeed, we have
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Corollary 1. Let 1 ≤ p < q < ∞ and Ω be a homogeneous function of degree
0, with mean value zero over the unit sphere S

n−1.
(1) For n > 1, if ‖Ω‖Lr(Sn−1) < ∞, where 1

q + 1 = 1
p + 1

r , then there exists
a positive constant C depending on n, p, q, and ‖Ω‖Lr(Sn−1) such that for any
f ∈ Lp(Rn)

⋂
Lq(Rn),

‖Tf‖q ≤ C

(
‖f‖q +

β(r−1)n/r

((r − 1)n − rβ)1/r
‖f‖p

)

holds for 0 < β < (r − 1)n/r.
(2) For n = 1, if there exists a positive number B1 such that |Ω(x)| ≤ B1,

then there exists a positive constant C depending only on p, q, and B1 such
that for any f ∈ Lp(Rn)

⋂
Lq(Rn),

‖Tf‖q ≤ C

(
‖f‖q +

β(r−1)/r

((r − 1) − rβ)1/r
‖f‖p

)

holds for 0 < β < (r − 1)/r, where 1
q + 1 = 1

p + 1
r .

2. The proof of Theorem 2. In the same way as [21], we split the singular
integral Tε into two parts: the one near the origin and the other one apart
from the origin, depending on the parameter β. More precisely, let ψ be a
positive radial Schwartz function supported in the ball {x ∈ R

n : |x| ≤ 2} and
be equal to 1 on the unit ball. Let ψβ(x) = ψ(βx), then we have Tε = T1,ε+T2,ε,
where

T1,ε(f)(x) :=
∫

|y|>ε

Ω(y)
|y|n−β

ψβ(y)f(x − y)dy,

T2,ε(f)(x) :=
∫

|y|>ε

Ω(y)
|y|n−β

(1 − ψβ(y))f(x − y)dy.

First, by resorting to Young’s inequality (see [10, Theorem 1.2.12]), we
obtain the following estimate on ‖T ∗

2 f‖q:

Lemma 1. Let 1 ≤ p < q < ∞.
(1) For n > 1, if ‖Ω‖Lr(Sn−1) < ∞, where 1

q + 1 = 1
p + 1

r , then there exists
a positive constant C depending on n, p, q, and ‖Ω‖Lr(Sn−1) such that for any
f ∈ Lp(Rn),

‖T ∗
2 f‖q ≤ C

β(r−1)n/r

((r − 1)n − rβ)1/r
‖f‖p

holds for 0 < β < (r − 1)n/r, where 1
q + 1 = 1

p + 1
r .

(2) For n = 1, if there exists a positive number B1 such that |Ω(x)| ≤ B1,
then there exists a positive constant C depending only on p, q, and B1 such
that for any f ∈ Lp(Rn),

‖T ∗
2 f‖q ≤ C

β(r−1)/r

((r − 1) − rβ)1/r
‖f‖p

holds for 0 < β < (r − 1)/r, where 1
q + 1 = 1

p + 1
r .
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Proof. (1) For n > 1, by Young’s inequality, we have

‖T ∗
2 f‖q ≤ B1

∥∥∥∥∥∥
∫

Rn

χ{y: |y|≥1/β}
|y|n−β

|f(x − y)|dy

∥∥∥∥∥∥
q

≤ B1

⎛
⎜⎝

∫

|y|≥1/β

|Ω(y)|r
|y|(n−β)r

dy

⎞
⎟⎠

1/r

‖f‖p

≤ C
β(r−1)n/r

((r − 1)n − rβ)1/r
‖f‖p,

which holds uniformly for ε > 0 and 0 < β < (r − 1)n/r, where 1
q +1 = 1

p + 1
r .

(2) For n = 1, the proof is similar to that of (1). �

According to Lemma 1, we just need to estimate ‖T ∗
1 (f)‖q and this is the

key part of the whole proof. For this, we first generalize [9, Theorem A] to be
more suitable for our proof of the estimate of ‖T ∗

1 (f)‖q below.

Lemma 2. Suppose that {μk}k∈Z is a sequence of Borel measures in R
n such

that μk ≥ 0, sup
k∈Z

μ̂k(0) ≤ C, and

|μ̂k(ξ) − μ̂k(0)| ≤ C|ak+1ξ|α,

|μ̂k(ξ)| ≤ C|akξ|−α,

for some lacunary sequence of positive numbers {ak}k∈Z and some α > 0 .
Then the maximal operator

Mμ(f)(x) := sup
k∈Z

|(μk ∗ f)(x)|

is bounded on Lp(Rn) for all 1 < p < ∞ .

Proof. We can assume that α ≤ 1 and define a sequence of functions {Φk}k∈Z

by Φ̂k(ξ) = μ̂k(0)Φ̂(akξ), where Φ is a positive Schwartz function such that
Φ̂(0) = 1 . Then, due to the fact that supk∈Z μ̂k(0) ≤ C, it is easy to see
that the same Fourier transform estimates for μk are also satisfied by the
sequence of measures {Φk(x)dx}k∈Z . It follows that the Fourier transforms of
the measures dσk(x) := dμk(x) − Φk(x)dx satisfy the following estimates:

|σ̂k(ξ)| ≤ C|ak+1ξ|α,

|σ̂k(ξ)| ≤ C|akξ|−α.

Then by Plancherel’s theorem, the operator

G(f) :=

( ∞∑
−∞

|σk ∗ f |2
)1/2

is bounded on L2(Rn). Now we observe that

Mμf ≤ sup
k∈Z

|f ∗ Φk| + sup
k∈Z

|f ∗ σk| ≤ sup
k∈Z

|f ∗ Φk| + G(f).
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Since

sup
k∈Z

Φ̂k(0) = sup
k∈Z

μ̂k(0)Φ̂(0) = sup
k∈Z

μ̂k(0) ≤ C,

by Minkowski’s integral inequality, the operator

sup
k∈Z

|f ∗ Φk|

is bounded on Lp(Rn) for all 1 < p < ∞. Thus, we obtain the boundedness
of the maximal operator Mμ on L2(Rn). However, since dσk(x) = dμk(x) −
Φk(x)dx, the maximal operator

σ∗(f) := sup
k∈Z

||σk| ∗ f |

satisfies the following inequality:

σ∗(f) ≤ Mμf + sup
k∈Z

|f ∗ Φk|

and thereby, is bounded on L2(Rn). Therefore, according to [9, Theorem B], the
operator G(·) is bounded on Lp(Rn) for all |1/p−1/2| < 1/4, i.e., 4/3 < p < 4 .
If we follow the procedure above again and again, then for any p ∈ (1,∞), we
can obtain the the boundedness of the maximal operator Mμ on Lp(Rn) in
finite steps. The proof is complete. �

By Lemma 2, we are now able to estimate ‖T ∗
1 (f)‖q. Indeed, we prove the

following result:

Lemma 3. Let 1 < q < ∞.
(1) For n > 1, if ‖Ω‖Lr(Sn−1) < ∞ for some r > 0, then there exists

a positive constant C depending on n, q, and ‖Ω‖Lr(Sn−1) such that for any
f ∈ Lq(Rn),

‖T ∗
1 f‖q ≤ C‖f‖q

holds for 0 < β < n.
(2) For n = 1, if there exists a positive number B1 such that |Ω(x)| ≤ B1,

then there exists a positive constant C depending on q,B1 such that for any
f ∈ Lq(Rn),

‖T ∗
1 f‖q ≤ C‖f‖q

holds for 0 < β < 1.

Proof. For n > 1, we see that the kernel corresponding to limε→0+ T1,ε is

K(x) :=
Ω(x)

|x|n−β
ψβ(x) = h(|x|)Ω(x)

|x|n , x ∈ R
n\{0},

where h(r) := rβψβ,1(r) and ψβ,1(|x|) := ψβ(x). Then there exists a positive
constant C depending on n such that

R∫

0

|h(r)|2dr ≤ CR, ∀R > 0.
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Indeed, to prove the above inequality, we just need to consider the case R <
2/β . Then

R∫

0

|h(r)|2dr =

R∫

0

r2βdr =
R2β+1

2β + 1
≤ R2β+1 ≤ 22β

(ββ)2
R.

An easy calculation shows that ββ obtains its minimum value when β = e−1.
Thus, 1

(ββ)2
≤ e2e−1

. Therefore,

R∫

0

|h(r)|2dr ≤ 22ne2e−1
R = CR, ∀R > 0.

Now we resort to [9, Corollary 4.1] to obtain that, when n > 1, there exists
a positive constant C depending on n, q,B1 such that for any f ∈ Lq(Rn),

‖T ∗
1 f‖q ≤ C‖f‖q

holds for 0 < β < n.
It remains to prove the case for n = 1. To this end, we define the sequence

of measures

dσk(r) := |r|βψβ(r)
Ω(r)
|r| χ[2k,2k+1](|r|)dr,

where r ∈ R and k ∈ Z. We have to prove the following estimates of the Fourier
transforms of the measures σk: there exist an α > 0 and a positive constant C
depending on B1 such that for any ξ ∈ R, it holds that

|σ̂k(ξ)| ≤ C min(|2kξ|, |2kξ|−1).

Due to the definitions of the measures σk, we just need to prove the above
estimates for 2k ≤ 2/β, and this should be kept in mind in the following proof.

(1) Firstly, we prove that |σ̂k(ξ)| ≤ C|2kξ|. Since

‖σk‖ ≤ C

2k+1∫

2k

1
r1−β

dr ≤ C2β2kβ

2k+1∫

2k

1
r
dr ≤ C22ee−1

log 2 ≤ C,

and the measure σk is supported in the interval {r : |r| ≤ 2k+1} and σ̂k(0) = 0,
it follows that |σ̂k(ξ)| ≤ C|2kξ|.

(2) Secondly, we prove that |σ̂k(ξ)| ≤ C|2kξ|−1. For this, we have

σ̂k(ξ) =

2k+1∫

2k

(
rβψβ(r)

Ω(1)
r

e−2πirξ + rβψβ(r)
Ω(−1)

r
e2πirξ

)
dr

=: J1 + J2.

We just have to estimate |J1| := | ∫ 2k+1

2k rβψβ(r)Ω(1)
r e−2πirξdr| while the esti-

mate of |J2| := | ∫ 2k+1

2k rβψβ(r)Ω(−1)
r e2πirξdr| follows similarly. To this end, we

have



638 Q. Lin and H. Xie Arch. Math.

|J1| =

∣∣∣∣∣∣∣

2k+1∫

2k

rβψβ(r)
Ω(1)

r
e−2πirξdr

∣∣∣∣∣∣∣
=

|Ω(1)|
2π|ξ|

∣∣∣∣∣∣∣

2k+1∫

2k

ψβ(r)

r1−β
de−2πirξ

∣∣∣∣∣∣∣

≤ B1

2π|ξ|

⎛
⎜⎝

∣∣∣∣∣
ψβ(r)

r1−β

∣∣∣∣
2k+1

2k

∣∣∣∣∣ +

∣∣∣∣∣∣∣

2k+1∫

2k

e−2πirξ βψ′(βr)r1−β − (1 − β)r−βψβ(r)

r2(1−β)
dr

∣∣∣∣∣∣∣

⎞
⎟⎠

≤ C

|ξ|

⎛
⎜⎝ C

2k
+

2k+1∫

2k

(∣∣βψ′(βr)r1−β
∣∣

r2(1−β)
+

∣∣(1 − β)r−βψβ(r)
∣∣

r2(1−β)

)
dr

⎞
⎟⎠

≤ C

|ξ|

⎛
⎜⎝ C

2k
+

2k+1∫

2k

(
Cβ

r1−β
+

C(1 − β)

r2−β

)
dr

⎞
⎟⎠

≤ C

|ξ|
(

C

2k
+

C

2k

)

≤ C

|2kξ| .

Thus, we obtain that |σ̂k(ξ)| ≤ C
|2kξ| , and accordingly,

|σ̂k(ξ)| ≤ C min(|2kξ|, |2kξ|−1).

Note that if we denote by |σk| the total variation of σk, then the same reasoning
as for σk shows that ∣∣∣|̂σk|(ξ) − |̂σk|(0)

∣∣∣ ≤ C|2kξ|,∣∣∣|̂σk|(ξ)
∣∣∣ ≤ C|2kξ|−1.

According to Lemma 2, the maximal operator

σ∗(f) := sup
k∈Z

||σk| ∗ f |

is bounded on Lq(R) for all 1 < q < ∞. Since the measure σk is supported in
the interval {r : |r| ≤ 2k+1}, by [9, Theorem E], the maximal operator

T∗(f) := sup
k∈Z

∣∣∣∣∣∣
∞∑

j=k

σj ∗ f

∣∣∣∣∣∣
is bounded on Lq(R) for all 1 < q < ∞. Now if 2k−1 ≤ ε < 2k, we have the
following inequality:

|T1,εf | ≤
∣∣∣∣∣∣

∞∑
j=k

σj ∗ f

∣∣∣∣∣∣ + σ∗(|f |).

Therefore,

T ∗
1 f ≤ T∗(f) + σ∗(|f |).
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It follows that there exists a positive constant C depending only on q,B1 such
that for any f ∈ Lq(R),

‖T ∗
1 f‖q ≤ C‖f‖q

holds for 0 < β < 1. Thus, we have completed the proof of the case for n = 1.
�

Combining Lemma 1 with Lemma 3, Theorem 2 is proven since

‖T ∗f‖q ≤ ‖T ∗
1 f‖q + ‖T ∗

2 f‖q.

3. Further remarks.

Remark 2. From [9, Corollary 4.2] or [8], we note that when n > 1, Lemma 3
still holds if the space Lq(Rn) is replaced by the weighted space Lq

ω(Rn),
where ω is an Aq weight . It may be of interest to investigate whether there is
the analogous weighted version of Lemma 1 and thus the analogous weighted
version of Theorem 2. For recent remarkable developments of the sparse bounds
for maximal rough singular integrals via the Fourier transform, we refer to the
works of Di Plinio, Hytönen, and Li [6].

Remark 3. Since the above proof of Lemma 3 is not applicable to the case of
q = 1, it may be of interest to investigate whether the corresponding weak-
type (1, 1) boundedness of T1,ε holds uniformly for ε > 0 and 0 < β < n,
just provided the conditions imposed on Lemma 3 . In the course of writing
this manuscript, we noticed that Chen et al. were investigating this case and
employing the different method originated from Seeger [19].

Appendix. As mentioned in the beginning, [9, Corollary 4.1] does not hold in
dimension n = 1. However, so far as we have the material, we can not find any
proof of it in the literature. Thus, we provide our proof of this counterexample
for the convenience of the readers.

Proposition 1. In R
1, if we define the function K(x) := sin(|x|)

x for any x 
= 0
and K(0) := 1, then the Fourier transform of it is not essentially bounded,
i.e., K̂ /∈ L∞(R1). Therefore, the maximal operator

H∗f(x) := sup
ε>0

∣∣∣∣∣∣∣
∫

|x−y|>ε

K(y)f(x − y)

∣∣∣∣∣∣∣
and the corresponding singular integral operator

Hf(x) := lim
ε→0

∫

|x−y|>ε

K(y)f(x − y)

are both not bounded on L2(R1), though the function K satisfies all the condi-
tions (except that n = 1) required in [9, Corollary 4.1].
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Proof. It is easy to see that K ∈ L2(R1), so

K̂(ξ) = lim
M→∞, N→−∞

M∫

N

sin(|x|)
x

e−ixξdx.

Note that we just need to consider the imaginary part of it. What is more,
due to the fact that sin(|x|) sin(xξ)

x is an even function, we can just consider the
integral on the positive interval (0,M). Define the function

I(ξ) := lim
M→∞, ε→0+

M∫

ε

sin(x) sin(xξ)
x

dx.

It is obvious that I(1) = ∞. In what follows, we just consider ξ ∈ (1/2, 1). We
have

M∫

ε

sin(x) sin(xξ)
x

dx =

M∫

ε

cos((1 − ξ)x) − cos((1 + ξ)x)
2x

dx

=
1
2

M∫

ε

1+ξ∫

1−ξ

sin(tx)dtdx

=
1
2

1+ξ∫

1−ξ

M∫

ε

sin(tx)dxdt

=
1
2

1+ξ∫

1−ξ

cos(tε) − cos(Mε)
t

dt

=
1
2

1+ξ∫

1−ξ

cos(tε)
t

dt − 1
2

(1+ξ)M∫

(1−ξ)M

cos(t)
t

dt.

On the one hand, by the Lebesgue dominated convergence theorem, we see
that

lim
ε→0+

1
2

1+ξ∫

1−ξ

cos(tε)
t

dt =
1
2

log(
1 + ξ

1 − ξ
).

On the other hand, by integration by parts, we have

lim
M→∞

1
2

(1+ξ)M∫

(1−ξ)M

cos(t)
t

dt = 0.

Accordingly, for ξ ∈ (1/2, 1), we have I(ξ) = 1
2 log( 1+ξ

1−ξ ), which implies our
claim and the proof is complete. �
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