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Existence of solutions to the nonlinear Schrödinger equation on
locally finite graphs
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Abstract. Let G = (V, E) be a locally finite connected graph and Δ be the
usual graph Laplacian operator. According to Lin and Yang (Rev. Mat.
Complut., 2022), using calculus of variations from local to global, we
establish the existence of solutions to the nonlinear Schrödinger equation
on locally finite graphs, say −Δu + hu = feu, x ∈ V . In particular,
we suppose that there exist positive constants μ0 and ω0 such that the
measure μ(x) ≥ μ0 for x ∈ V and symmetric weight ωxy ≥ ω0 for all
xy ∈ E, if h and f satisfy distinct certain assumptions, we prove that the
above-mentioned equation has a strictly negative solution by three cases.
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1. Introduction. As a graph is a discrete generalization of Euclidean space
or Riemann manifold, there have been increasingly more studies on partial
differential equations on graphs. For the discrete Laplacian case, in a series of
works [5–7], by variational methods, Grigor’yan, Lin, and Yang solved several
elliptic differential equations on graphs, say the Kazdan–Warner equation, the
Yamabe equation, and the Schrödinger equation. Since then, Huang et al.
[10] studied the existence of solutions to the mean field equation with Dirac
delta mass on finite graphs, Hou and Sun [12] discussed the Chern–Simons–
Higgs equation on graphs, Han et al. [8] investigated the nonlinear biharmonic
equations on graphs. Using the new method of Brouwer degree, Sun and Wang
[20] proved the existence of solutions to the Kazdan–Warner equation on a
connected finite graph, a similar topic was studied by Liu [19] on the mean
field equation on graphs. The Kazdan–Warner equation was generalized by Ge
and Jiang [4] to certain infinite graphs. Recently, many results also have been
obtained for parabolic equations on graphs. The blow-up phenomenon of the

http://crossmark.crossref.org/dialog/?doi=10.1007/s00013-023-01830-9&domain=pdf
http://orcid.org/0000-0002-3681-2452


404 Z. Qiu and Y. Liu Arch. Math.

semilinear heat equation was studied by Lin and Wu [13,21] on locally finite
graphs. Lin and Yang [16] proposed a heat flow for the mean field equation on
finite graphs. For other related works, we refer the reader to [1–3,9,11,14,17,
18,23] and the references therein.

Now we recall some definitions on a graph. Let G = (V,E) be a connected
graph, where V denotes the vertex set and E denotes the edge set. Throughout
this paper, we always assume that G satisfies the following conditions (a)−(d).
(a) (Locally finite) For any x ∈ V , there exist only finitely many vertices
y ∈ V such that xy ∈ E.
(b) (Connected) For any x, y ∈ V , there exist only finitely many edges con-
necting x and y.
(c) (Symmetric weight) For any x, y ∈ V , let ω : V × V → R be a positive

symmetric weight, i.e., ωxy > 0 and ωxy = ωyx.
(d) (Positive finite measure) μ : V → R

+ defines a positive finite measure on
the graph G.

For any function u : V → R, the Laplacian of u is defined as

Δu(x) =
1

μ(x)

∑

y∼x

ωxy(u(y) − u(x)), (1.1)

where y ∼ x means xy ∈ E. The associated gradient form of two functions u
and v reads

Γ(u, v)(x) =
1

2μ(x)

∑

y∼x

ωxy(u(y) − u(x))(v(y) − v(x)).

Denote Γ(u) � Γ(u, u), and the length of the gradient of u is represented by

|∇u|(x) =
√

Γ(u)(x) =
(

1
2μ(x)

∑

y∼x

ωxy(u(y) − u(x))2
) 1

2

. (1.2)

The integral of a function f on V is denoted by
∫

V

fdμ =
∑

x∈V

μ(x)f(x).

For any p ≥ 1, the Lebesgue space Lp(V ) on the graph G is

Lp(V ) = {u : V → R, ‖u‖Lp(V ) < +∞}, 1 ≤ p ≤ ∞,

where the norm of u ∈ Lp(V ) is given as

‖u‖Lp(V ) =
{

(
∑

x∈V μ(x)|u(x)|p) 1
p , 1 ≤ p < ∞,

supx∈V |u(x)|, p = ∞.

For any x, y ∈ V , since the graph G is connected, there exists a shortest
path γ connecting x and y. The distance between x and y is defined by ρ(x, y),
which means the number of edges belonging to the shortest path γ. That is, if
xy ∈ E, then ρ(x, y) = 1, if xy 
∈ E, without loss of generality, we may choose
a shortest path γ = {x1, x2, . . . , xk+1} connecting x and y, then ρ(x, y) = k.
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Throughout this paper, we fix a vertex O ∈ V , and denote the distance function
between x and O by

ρ(x) = ρ(x, O).

For any integer k > 0, an open ball centered at O with radius k is denoted by

Bk = {x ∈ V : ρ(x) < k},

and the boundary of Bk is written as

∂Bk = {x ∈ V : ρ(x) = k}.

For any fixed k, Grigor’yan et al. [6] defined the Sobolev space W 1,2
0 (Bk) and

its norm by

W 1,2
0 (Bk) =

{
u : Bk ∪ ∂Bk → R

∣∣∣ u|∂Bk
= 0,

∫

Bk

|∇u|2dμ < +∞
}

and

‖u‖W 1,2
0 (Bk)

=
( ∫

Bk

|∇u|2dμ

) 1
2

. (1.3)

In fact, W 1,2
0 (Bk) is exactly a finite-dimensional linear space since the bounded

domain Bk only contains finitely many vertices. Hence W 1,2
0 (Bk) = R

|Bk|,
where |Bk| is the number of points in Bk. Then W 1,2

0 (Bk) is pre-compact,
precisely, if {uj} is a bounded sequence in W0

1,2(Bk), then there exists some
u ∈ W 1,2

0 (Bk) such that up to a subsequence {uj} converges to u in W 1,2
0 (Bk).

Let us recall another important Sobolev space W 1,2(V ) and its norm, which
are defined by

W 1,2(V ) =
{

u : V → R

∣∣∣
∫

V

(|∇u|2 + u2)dμ < +∞
}

and

‖u‖W 1,2(V ) =
( ∫

V

(|∇u|2 + u2)dμ

) 1
2

. (1.4)

Let Cc(V ) = {u : V → R | supp u ⊂ V is a finite vertex set}, and W0
1,2(V )

be the completion of Cc(V ) under the norm as in (1.4). Obviously, W 1,2(V ) and
W 1,2

0 (V ) are Hilbert spaces with the inner product 〈u, v〉 =
∫

V
(Γ(u, v) + uv) dμ.

Let h(x) ≥ h0 > 0 for all x ∈ V , we define the space of functions

H =
{

u ∈ W 1,2
0 (V ) :

∫

V

(|∇u|2 + hu2)dμ < ∞
}

(1.5)

with the norm

‖u‖H =
(∫

V

(|∇u|2 + hu2)dμ

) 1
2

. (1.6)
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It is clear that H is a Hilbert space with the inner product

〈u, v〉H =
∫

V

(Γ(u, v) + huv) dμ, ∀ u, v ∈ H .

Unlike W 1,2
0 (Bk), W 1,2(V ) and H are infinite-dimensional spaces.

In 2017, using variational methods, Grigor’yan, Lin, and Yang [7] solved
the Schrödinger equation −Δu + hu = f(x, u) on locally finite graphs. They
proposed an exact assumption on the locally finite graph G, namely, there
exists a constant μ0 > 0 satisfying

μ(x) ≥ μ0, ∀ x ∈ V, (1.7)

which makes the Sobolev embedding theorems hold on the graph. Moreover, if
h and f satisfy certain distinct assumptions, they proved that the equation has
a strictly positive solution. After that, Zhang and Zhao [22] studied a certain
nonlinear Schrödinger equation −Δu+(λa(x)+1)u = |u|p−1u on locally finite
graphs. Via the Nehari method, if a(x) satisfies certain assumptions, for any
λ > 1, the above equation admits a ground state solution.

More recently, Lin and Yang [15] proposed another assumption for a lo-
cally finite graph G, under which they obtained a broader Sobolev embedding
theorem on a locally finite graph G. Instead of (1.7), they assumed that there
exists a constant ω0 > 0 such that

ωxy ≥ ω0, ∀ xy ∈ E. (1.8)

They established a method of calculus of variations from local to global and
solved the linear Schrödinger equation −Δu + hu = f , where f : V → R

is a function on G. Following the lines of them, in this paper, we consider
the existence of solutions to the following nonlinear Schrödinger equation on
locally finite graphs, say

{−Δu + hu = feu, in V,
u ∈ H ,

(1.9)

where Δ is the Laplacian operator given as in (1.1), and H is defined as in
(1.5). Now we are ready to state our main result.

Theorem 1.1. Let G = (V,E) be a graph satisfying conditions (a) − (d). Sup-
pose that there exists a constant h0 > 0 such that h(x) ≥ h0 for all x ∈ V .
Let f be a negative function on G, i.e., f(x) < 0 for all x ∈ V . If any of the
following three assumptions is satisfied:

(i) f ∈ L1(V ) ∩ L2(V );
(ii) μ(x) ≥ μ0 > 0 for all x ∈ V , f ∈ L1(V );
(iii) ωxy ≥ ω0 > 0 for all xy ∈ E, for some p ≥ 1 and any fixed vertex O ∈ V ,
the distance function ρ ∈ Lp(V ), and f ∈ L1(V ) ∩ Lp/(p−1)(V ); then the
equation (1.9) has a strictly negative solution.

The remaining parts of this paper are organized as follows: In Section 2,
we introduce the Sobolev embedding theorems on locally finite graphs, which
come from [7,15] directly. Furthermore, we give a specific proof of the Sobolev
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embedding theorem on W 1,2
0 (Bk). In Section 1.1, we use the variational meth-

ods to prove Theorem 1.1, then we deduce an interesting special corollary.
Throughout this paper, we do not distinguish a sequence and its subsequence,
and use C to denote absolute constants without distinguishing them even in
the same line.

2. Sobolev embedding theorem. For any integer k > 0, we define another norm
for W 1,2

0 (Bk) by

‖u‖W 1,2
0 (Bk)

=
( ∫

Bk

(|∇u|2 + hu2)dμ

) 1
2

, (2.1)

which is different from the norm as in (1.3). And we have the following lemma.

Lemma 2.1. For any fixed integer k > 0, the norm (2.1) is equivalent to that
in (1.3).

Proof. For any fixed integer k > 0, denote the norm (1.3) as ‖u‖∗
W0

1,2(Bk)
.

Since h(x) is a known coefficient function and Bk contains only finitely many
vertices, h(x) has a maximum value on Bk, which is recorded as h

(k)
M . In [24],

Zhu proved the Poincaré inequality on finite graph
∫

Bk

u2dμ ≤ Ck

∫

Bk

|∇u|2dμ, ∀ u ∈ W0
1,2(Bk), (2.2)

where Ck is a constant depending on k. Inserting (2.2) into (2.1), we have

‖u‖2
W 1,2

0 (Bk)
=

∫

Bk

(|∇u|2 + hu2)dμ ≤
∫

Bk

(|∇u|2 + h
(k)
M u2)dμ

≤ (1 + h
(k)
M Ck)

∫

Bk

|∇u|2dμ

= (1 + h
(k)
M Ck)‖u‖∗2

W0
1,2(Bk)

. (2.3)

On the other hand, noting that hu2 ≥ h0u
2 ≥ 0 and μ(x) > 0 for all x ∈ Bk,

one has

‖u‖∗2
W0

1,2(Bk)
=

∑

x∈Bk

μ(x)|∇u|2(x) ≤
∑

x∈Bk

μ(x)
(|∇u|2(x) + h(x)u2(x)

)

= ‖u‖2
W 1,2

0 (Bk)
. (2.4)

Combining (2.3) and (2.4), the lemma is proved. �

Remark 2.2. What is interesting about the graph is that W 1,2
0 (Bk) is the Eu-

clidean space R
|Bk|, and the norms of Euclidean space are equivalent, which is

consistent with Lemma 2.1 on graphs.

For our convenience, we use the norm (2.1) to prove the Sobolev embedding
theorem on W 1,2

0 (Bk), note that Lin and Yang [15] did not give a specific proof.
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Theorem 2.3. Let G = (V,E) be a graph satisfying conditions (a) − (d). For
any u ∈ W 1,2

0 (Bk) and any 1 ≤ q ≤ ∞, there exists a positive constant C
depending only on q, h0, and Bk such that

‖u‖Lq(V ) ≤ C‖u‖W 1,2
0 (Bk)

. (2.5)

Proof. For any x ∈ Bk and u ∈ W 1,2
0 (Bk), noting that Bk contains only finitely

many vertices, by (1.2) and (2.1), we obtain

h0 min
x∈Bk

μ(x)u2(x) ≤
∑

x∈Bk

μ(x)h(x)u2(x)

≤ 1
2

∑

x∈Bk

∑

y∼x

ωxy(u(y) − u(x))2 +
∑

x∈Bk

μ(x)h(x)u2(x)

= ‖u‖2
W 1,2

0 (Bk)
,

which implies

‖u‖L∞(Bk) ≤ (
h0 min

x∈Bk

μ(x)
)− 1

2 ‖u‖W 1,2
0 (Bk)

.

Thus, for any 1 ≤ q < +∞, we have

(
∑

x∈Bk

μ(x)|u(x)|q
) 1

q

≤ (
h0 min

x∈Bk

μ(x)
)− 1

2 V (Bk)
1
q ‖u‖W 1,2

0 (Bk)
,

where V (Bk) =
∑

x∈Bk
μ(x) denotes the volume of Bk. Therefore (2.5) holds.

�

Along the lines of [7,15], we introduce the following Sobolev embedding
theorems on W 1,2(V ). The proof process of Theorem 2.4 and 2.5 is given
based on the locally finite graph case, and the theorems are also correct for
W 1,2

0 (Bk), so we will not give the finite-dimensional form of them.

Theorem 2.4 (Sobolev embedding theorem 1, [7]). Let G = (V,E) be a graph
satisfying conditions (a) − (d). If (1.7) is satisfied, then for any u ∈ W 1,2(V )
and any 2 ≤ q ≤ ∞, there exists a positive constant C depending only on q
and μ0 satisfying ‖u‖Lq(V ) ≤ C‖u‖W 1,2(V ). In particular,

‖u‖L∞(V ) ≤ 1√
μ0

‖u‖W 1,2(V ).

Theorem 2.5 (Sobolev embedding theorem 2, [15]). Let G = (V,E) be a graph
satisfying conditions (a) − (d). If (1.8) is satisfied, and the distance function
ρ(x) ∈ Lp(V ) for some p > 0, then for any u ∈ W 1,2(V ), there exists a positive
constant C depending only on ω0, p, and μ(O) such that

‖u‖Lp(V ) ≤ C(‖ρ‖Lp(V ) + 1)‖u‖W 1,2(V ).
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3. Proof of Theorem 1.1. In this section, we shall prove Theorem 1.1 by using
a direct variational method from local to global. Fix a point O ∈ V , denote the
distance between x and O by ρ(x). Then we can define the open ball on the
graph centered at O with radius k ∈ Z

+, we write Bk = {x ∈ V : ρ(x) < k}.
For fixed k, let W 1,2

0 (Bk) be the Sobolev space with the norm (2.1).
Define a functional Jk : W 1,2

0 (Bk) → R by

Jk(u) =
1
2

∫

Bk

(|∇u|2 + hu2)dμ −
∫

Bk

feudμ, ∀ u ∈ W0
1,2(Bk), (3.1)

which is the variational functional corresponding to the equation (1.9) on
W 1,2

0 (Bk).
Case (i). f ∈ L1(V ) ∩ L2(V ).
To begin with, we show that the functional (3.1) is bounded from below,

and then we give the result that its infimum can be achieved. Noting that
eu > u + 1 holds for all u ∈ R, and f(x) < 0 for all x ∈ V , we thus have
feu < f(u + 1) ≤ |fu| + |f |. Using the Hölder inequality, we obtain

‖fu‖L1(Bk) ≤ ‖f‖L2(Bk)‖u‖L2(Bk) =
( ∫

Bk

f2dμ

) 1
2
( ∫

Bk

u2dμ

) 1
2

.

Due to f ∈ L2(V ) and f2 > 0, one has
∫

Bk

|fu|dμ ≤
(∫

V

f2dμ

) 1
2
( ∫

Bk

u2dμ

) 1
2

. (3.2)

In view of h(x) ≥ h0 > 0 for all x ∈ V , by the Young inequality and (3.2), we
deduce that

∫

Bk

|fu|dμ ≤ 1√
h0

(∫

V

f2dμ

) 1
2
( ∫

Bk

hu2dμ

) 1
2

≤ 1√
h0

(∫

V

f2dμ

) 1
2
( ∫

Bk

(hu2 + |∇u|2)dμ

) 1
2

≤ ε

h0

∫

V

f2dμ +
1
4ε

∫

Bk

(hu2 + |∇u|2)dμ. (3.3)

Taking ε = 1 and inserting (3.3) into (3.1), we have

Jk(u) ≥ 1
4
‖u‖2W0

1,2(Bk)
− 1

h0
‖f‖2L2(V ) − ‖f‖L1(V ), ∀ u ∈ W0

1,2(Bk), (3.4)

which implies

Jk(u) ≥ − 1
h0

‖f‖2L2(V ) − ‖f‖L1(V ),

where we recall that f ∈ L1(V )∩L2(V ) is a known coefficient function. Accord-
ingly, the right side of the inequality is a constant which does not depend on
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the radius k, that is, for any open ball centered at O, the variational functional
has the same lower bound. Denote

Λk = inf
u∈W0

1,2(Bk)
Jk(u),

obviously, 0 ∈ W0
1,2(Bk), and Jk(0) = − ∫

Bk
fdμ ≤ ‖f‖L1(V ) < +∞, thus it

follows that

− 1
h0

‖f‖2L2(V ) − ‖f‖L1(V ) ≤ Λk ≤ ‖f‖L1(V ). (3.5)

Next we claim that the infimum Λk is reachable in W0
1,2(Bk). Noting that

{Λk} is a bounded sequence of numbers, for any fixed positive integer k, we
can take a sequence of functions {u

(k)
j } in W0

1,2(Bk) such that Jk(u(k)
j ) → Λk

as j → ∞. For any ε > 0, it follows from (3.4) and (3.5) that

1
4
‖u

(k)
j ‖2W0

1,2(Bk)
− 1

h0
‖f‖2L2(V ) − ‖f‖L1(V ) ≤ Λk + ε ≤ ‖f‖L1(V ) + ε,

which implies that {u
(k)
j } is bounded in W0

1,2(Bk). By taking into account
that W0

1,2(Bk) is pre-compact, there exists some uk ∈ W 1,2
0 (Bk) such that up

to a subsequence {u
(k)
j } converges to uk in W 1,2

0 (Bk) under the norm (2.1).
Consequently, Λk = Jk(uk), and the critical function uk satisfies the Euler-
Lagrange equation

{−Δuk + huk = feuk , in Bk,
uk = 0, on ∂Bk,

(3.6)

then our claim is proved.
Now we are in position to characterize {uk} from local to global. Let u = uk

in (3.4), together with (3.5), we have

‖uk‖2W0
1,2(Bk)

≤ 4
(

Λk +
1
h0

‖f‖2L2(V ) + ‖f‖L1(V )

)

≤ 4
(

1
h0

‖f‖2L2(V ) + 2‖f‖L1(V )

)
, (3.7)

which yields that ‖uk‖W0
1,2(Bk) ≤ C for a constant C independent of k. There-

fore, the critical functions {uk} all have the same upper bound. For any finite
set K ⊂ V , we can always find a sufficiently large k ∈ Z

+ such that K ⊂ Bk.
According to Theorem 2.3, it follows from (3.7) that

‖uk‖L∞(K) ≤ (
h0 min

x∈K
μ(x)

)− 1
2 ‖uk‖W 1,2

0 (Bk)
≤ C. (3.8)

Noting that {uk} is a sequence of functions defined on Bk

⋃
∂Bk, we extend

the domain Bk

⋃
∂Bk to V and obtain

uk(x) =
{

uk(x), x ∈ Bk,
0, x /∈ Bk.

(3.9)

Then (3.8) ensures that we can take the convergent subsequence of {uk} point
by point, and there exists a function u∗ on V such that {uk} converges to u∗
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locally uniformly in V . Namely, for any fixed positive integer l,

lim
k→∞

uk(x) = u∗(x), ∀ x ∈ Bl.

Next we claim that u∗ ∈ H . In order to prove this, it suffices to show that u∗

is equal to some function which is in H . We prove this by verifying that the
weak convergent limit of {uk} in H is equal to u∗. Using the norm (1.6), one
has

‖uk‖2H =
∫

V

(|∇uk|2 + hu2
k)dμ

=
1
2

∑

x∈V

∑

y∼x

ωxy(uk(y) − uk(x))2 +
∑

x∈V

μ(x)h(x)u2
k(x)

=
1
2

∑

y∼x, x∈Bk

ωxy(uk(y) − uk(x))2

+
1
2

∑

y∼x, x∈∂Bk

ωxy(uk(y) − uk(x))2

+
∑

x∈Bk

μ(x)h(x)u2
k(x)

≤
∑

y∼x, x∈Bk

ωxy(uk(y) − uk(x))2 +
∑

x∈Bk

μ(x)h(x)u2
k(x)

≤ 2‖uk‖2
W 1,2

0 (Bk)
.

Combining with (3.7), we deduce that {uk} defined as in (3.9) belongs to H
and is bounded in H . By taking into account that H is a Hilbert space, there
exists some ũ ∈ H such that up to a subsequence, {uk} converges to ũ weakly
in H . That is to say, for any φ ∈ Cc(V ),

∫

V

ukφdμ →
∫

V

ũφdμ (3.10)

as k → +∞. We select a special φ(x) ∈ Cc(V ) to verify u∗ = ũ. For any fixed
x1 ∈ V , let

φ(x) =
{

1, x = x1,
0, x 
= x1.

(3.11)

Obviously, φ(x) ∈ Cc(V ). Inserting (3.11) into (3.10), it follows that uk(x1) →
ũ(x1) as k → +∞. Since x1 is arbitrary, convergence is true for all x ∈ V . So we
have uk(x) → ũ(x) for all x ∈ V . By the uniqueness of limit, as a consequence,
u∗(x) = ũ(x) for all x ∈ V . This leads to u∗ ∈ H .

Finally, we shall prove that u∗ is a strictly negative solution of the equation
(1.9). Indeed, it follows from (3.6) that

−
∫

V

Δukφdμ +
∫

V

hukφdμ =
∫

V

feukφdμ, ∀ φ ∈ Cc(V ). (3.12)
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For any fixed x1 ∈ V , let φ be as in (3.11) and k → +∞ in (3.12), we have

−Δu∗(x1) + h(x1)u∗(x1) = f(x1)eu∗(x1).

Since x1 is arbitrary, u∗ is a solution of the equation (1.9). Next we prove that
u∗ is strictly negative satisfying u∗(x) < 0 for all x ∈ V , it suffices to show
that maxx∈V u∗(x) < 0. Obviously, u∗(x) 
≡ 0, suppose not, we have f(x) ≡ 0,
that would contradict the fact that f(x) < 0 for all x ∈ V . Therefore, we
suppose that there exists some x0 ∈ V satisfying u∗(x0) = maxx∈V u∗(x) ≥ 0.
If u∗(x0) = maxx∈V u∗(x) = 0, then by f(x0) < 0, we have

−Δu∗(x0) = f(x0) < 0.

This is impossible, according to μ(x0) > 0 and ωx0y > 0, together with (1.1),
we have

−Δu∗(x0) = − 1
μ(x0)

∑

y∼x0

ωx0yu∗(y) ≥ 0.

If u∗(x0) = maxx∈V u∗(x) > 0, in view of h(x0) > 0 and f(x0) < 0, we then
have

−Δu∗(x0) = −h(x0)u∗(x0) + f(x0)eu∗(x0) < 0.

This is also impossible, it is clear that

−Δu∗(x0) = − 1
μ(x0)

∑

y∼x0

ωx0y(u∗(y) − u∗(x0)) ≥ 0.

Hence u∗(x) < 0 for all x ∈ V . This gives the desired result.
Case (ii). μ(x) ≥ μ0 > 0 for all x ∈ V , f ∈ L1(V ).
By Theorem 2.4, using the Sobolev embedding theorem, we have for any

u ∈ W 1,2
0 (Bk),

‖u‖L∞(Bk) ≤ 1√
μ0

‖u‖W 1,2
0 (Bk)

.

Similar to Case (i), by the Hölder inequality and the Young inequality, one
has

∫

Bk

feudμ ≤
∫

Bk

|fu|dμ +
∫

Bk

|f |dμ

≤ ‖u‖L∞(Bk)‖f‖L1(Bk) + ‖f‖L1(V )

≤ 1√
μ0

‖u‖W 1,2
0 (Bk)

‖f‖L1(V ) + ‖f‖L1(V )

≤ 1
4
‖u‖2W0

1,2(Bk)
+

1
μ0

‖f‖2L1(V ) + ‖f‖L1(V ). (3.13)

Hence it follows from (3.1) and (3.13) that

Jk(u) ≥ 1
4
‖u‖2W0

1,2(Bk)
− 1

μ0
‖f‖2L1(V ) − ‖f‖L1(V ), ∀ u ∈ W0

1,2(Bk).
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Then we obtain an analog of (3.5), that is,

− 1
μ0

‖f‖2L1(V ) − ‖f‖L1(V ) ≤ Λk ≤ ‖f‖L1(V ). (3.14)

Based on (3.14), our remaining part of the proof is a generalization of Case (i),
and we omit this part.

Case (iii). ωxy ≥ ω0 > 0 for all xy ∈ E, for some p ≥ 1 and any fixed
vertex O ∈ V , the distance function ρ ∈ Lp(V ), and f ∈ L1(V ) ∩ Lp/(p−1)(V ).
By Theorem 2.5, for any u ∈ W 1,2

0 (Bk), there exists a positive constant C
depending only on ω0, μ(O), and ‖ρ‖Lp(V ) such that

‖u‖Lp(Bk) ≤ C‖u‖W 1,2
0 (Bk)

.

Then we obtain
∫

Bk

feudμ ≤
∫

Bk

|fu|dμ +
∫

Bk

|f |dμ

≤ ‖u‖Lp(Bk)‖f‖
L

p
p−1 (V )

+ ‖f‖L1(V )

≤ C‖u‖W 1,2
0 (Bk)

‖f‖
L

p
p−1 (V )

+ ‖f‖L1(V )

≤ 1
4
‖u‖2W0

1,2(Bk)
+ C‖f‖2

L
p

p−1 (V )
+ ‖f‖L1(V ).

Similar to Case (ii), for the variational functional Jk(u), one has

Jk(u) ≥ 1
4
‖u‖2W0

1,2(Bk)
− C‖f‖2

L
p

p−1 (V )
− ‖f‖L1(V )

and

−C‖f‖2
L

p
p−1 (V )

− ‖f‖L1(V ) ≤ Λk ≤ ‖f‖L1(V ).

The remaining part of the proof is totally analogous to that of Case (i), and
we omit this part. This completely ends the proof of Theorem 1.1. �

There is an interesting special result of Case (iii) in Theorem 1.1 as follows.

Corollary 3.1. Let G = (V,E) be a finite graph satisfying conditions (b) − (d).
Suppose that h(x) > 0 and f(x) < 0 for all x ∈ V . Then the equation (1.9) on
the finite graph G has a strictly negative solution.

Proof. If G is a finite connected graph satisfying conditions (b) − (d), then V
only contains finitely many vertices. Therefore, there always exist constants
h0 = minx∈V h(x) > 0 and ω0 = minxy∈E ωxy > 0 such that h(x) ≥ h0 for
all x ∈ V and ωxy ≥ ω0 > 0 for all xy ∈ E. For any fixed vertex O ∈ V ,
noting that G is a finite connected graph, concerning the distance function
ρ(x) = ρ(x, O), we deduce that

‖ρ(x)‖L∞ = max
x∈V

|ρ(x)| < +∞,
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which implies that ρ ∈ L∞(V ). Furthermore, it always holds that
∫

V

|f |dμ =
∑

x∈V

μ(x)|f(x)| < +∞

and f ∈ L1(V ).
As a consequence, by taking into account Case (iii) in Theorem 1.1, we

deduce that the equation (1.9) has a strictly negative solution on the finite
graph G. �
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